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A Expectation Over Input Noise for
Sparse Spectrum GP Samples

Consider a sampled function from a sparse spectrum
Gaussian process (SSGP) of the form f̃(x) = aTφf (x).
In this section, we solve the following integral,

φg,i(x) =

∫
φf,i(x+ ξ)p(ξ)dξ (1)

where φf,i(x) is the i-th component of φf (x). φg,i(x)
is the i-th component of the corresponding ’robust’
sample of the form g̃(x) = aTφg(x). Note that the
weights a are the same for both sampled functions,
f̃(x) and g̃(x).

Eq. (1) requires the cross-correlation between function
φ and p. Since p is a probability distribution (Gaus-
sian in this case), it’s complex conjugate is p itself
and the cross-correlation theorem states that in this
case the cross-correlation is equivalent to the convolu-
tion (Smith, 2007, Sec. 8.4). Thus, we can apply the
convolution theorem, which states

(φf,i ∗ p)(x) = F−1 {F {φf,i}F {p}} ,

or in words: a convolution in ’time’ domain is the same
as a multiplication in frequency domain. Before we
apply this result, however, note that in the case of a
separable filter window, we can apply the convolution
in each dimension separately. The final integral we
need to solve then becomes,∫

cos(ωi,k(xk + ξ) +
∑
j 6=k

ωi,jxj + ci︸ ︷︷ ︸
bk

)p(ξk)dξk,

for k = 1, . . . , n. We find the Fourier transforms of a
shifted cosine with frequency ωi,k and the univariate
normal distribution, then multiply those and perform

the inverse transform. We use the following standard
Fourier transforms:

F {cos(ωi,kxk + bk)} =√
π

2
(δ(ω − ωi,k) + δ(ω + ωi,k)) exp

(
j
bk
ωi,k

ω

)
,

and

F

 1√
2πσ2

x,k

exp

(
− x2k
σ2
x,k

) =

1√
2π

exp

(
−1

2
ω2σ2

x,k

)
.

The inverse Fourier transform is given as

h(x) = F−1
{
ĥ
}

(x) =

∫
ĥ(ω) exp(jωx)dω

and plugging in the results from above gives

φg,i(x) = (φf,i ∗ p)(x)

= φf,i(x) exp
(
− 1

2

d∑
j=1

w2
i,jσ

2
x,j

)
.

Overall, filtering results in scaling of the basis functions.

B Details on EP-Approximation of
the Conditional Predictive
Distribution

We aim at finding p(f(x)|Dn, g∗), which is the predic-
tive distribution for the latent function f(x), i.e., the
observable function, conditioned on the data Dn and
as well as on a sample of the robust maximum value
distribution g∗k ∼ p(g∗|Dn). We will denote all evalu-
ated points as X = [x1, . . . ,xn] and the corresponding
observed function values as y = [y1, . . . , yn].
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We start the derivation by rewriting the desired distri-
bution as

p(f(x)|Dn, g∗k) =

∫
p(f(x), g(x)|Dn, g∗k)dg(x)

=

∫
p(f(x)|Dn, g(x))p(g(x)|Dn, g∗k)dg(x). (2)

We compute this integral in 3 steps: First, we approx-
imate p(g(x)|Dn, g∗k) by a Gaussian distribution via
expectation propagation (EP). Second, we compute
p(f(x)|g(x),Dn) by standard Gaussian process (GP)
arithmetic. Third, we make use of the fact that the
marginalization over a product of Gaussian can be
computed in closed form.

Gaussian approximation to p(g(x)|Dn, g∗k): We
fit a Gaussian approximation to p(g(x)|Dn, g∗k) as this
enables us to compute the integral in Eq. (2) in closed
form. This approximation itself is done in three steps,
following along the lines of Hoffman and Ghahramani
(2015) where they approximate p(f(x)|Dn, f∗). The
key idea is that conditioning on the robust maximum
value sample implies the constraint that g(x) ≤ g∗.

1. In a first step, we only incorporate the constraint
g(xi) ≤ g∗k ∀ xi ∈ Dn such that

p(g|Dn, g∗k) ∝ p(g|Dn)

n∏
i=1

1{xi|g(xi)≤g∗k},

where g = [g1, . . . , gn] denotes the latent function
values of g evaluated at x1, . . . ,xn and 1{·} is the
indicator function. The above distribution consti-
tutes a multi-variate truncated normal distribution.
There is no analytical solution for its moments. One
common strategy is to approximate the moments
using EP Herbrich (2005). In practice, EP con-
verges quickly for this distribution. We denote the
outcome as

p(g|Dn, g∗k) ≈ N (g|µ1,Σ1).

2. The next step is getting a predictive distribution
from the (constrained) latent function values:

p0(g(x)|Dn, g∗k) =

∫
p(g|Dn, g∗k)p(g(x)|Dn, g)dg.

(3)

For the first term we use the Gaussian approxima-
tion of the previous step and the second term is
given by standard GP arithmetic:

p(g(x)|Dn, g) = N (g(x)|µg,Σg),

with
µg = [kg(x, X), kgf (x, X)][

kg(X,X) kgf (X,X)
kfg(X,X) kf (X,X) + σ2

εI

]−1 [
g
y

]
= [B1,B2]

[
g
y

]
,

and

Σg = kg(x,x)− [B1,B2]

[
kg(x, X)
kgf (x, X)

]
.

Note that the integral in Eq. (3) is the marginal-
ization over a product Gaussians where the mean
of p(g(x|Dn, g) is an affine transformation of g.
Integrals of this form occur often when dealing
with Gaussian distributions, e.g., in the context
of Kalman filtering, and can be solved analytically
(see e.g., Schön and Lindsten (2011, Corollary 1)).
We obtain

p0(g(x)|Dn, g∗k) ≈ N (g(x)|m0, v0)),

with

m0(x) = B1µ1 +B2y

v0(x) = Σg +B1Σ1B
T
1 .

3. Recall that in the first step we only enforced the
constraints on the function values at the data points.
Thus, we still need to integrate the constraint
g(x) ≤ g∗k ∀ x ∈ X

p(g(x)|Dn, g∗k) ∝ N (m0, v0)1{x|g(x)≤g∗k},

where we again utilize a Gaussian approximation to
this distribution. However, this is only a univariate
truncated normal distribution and we can easily
find the corresponding moments, such that

p(g(x)|Dn, g∗k) ≈ N (g(x)|m̂(x), v̂(x)), (4)

with mean and variance given as

m̂(x) = m0(x)−
√
v0(x)r,

v̂(x) = v0(x)− v0(x)r(r + α),

where α = (g∗k − m0(x))/
√
v0(x) and r =

ϕ(α)/Φ(α). As usual, ϕ(·) and Φ(·) denote the
PDF and CDF of the standard normal distribution,
respectively.

GP arithmetic to find p(f(x)|g(x),y): Starting
with the joint distribution of all involved variablesf(x)

y
g(x)

 ∼ N (0,K) ,

K =

 kf (x,x) kf (x, X) kfg(x,x)
kf (X,x) kf (X,X) + σ2

nI kfg(X,x)
kgf (x,x) kgf (x, X) kg(x,x)

 ,
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we introduce z = [y, g(x)]T for notational convenience
and rewrite the joint distribution as[

f(x)
z

]
∼ N

(
0,

[
kf (x,x) kz(x, X)T

kz(x, X) Kz(x, X)

])
. (5)

Conditioning then gives

p(f(x)|z) = N (f(x)|µ4,Σ4) (6)

µ4 = kz(x, X)TKz(x, X)−1z

Σ4 = kf (x,x)− kz(x, X)TKz(x, X)−1kz(x, X).

Let’s rewrite the mean of Eq. (6) as follows

µ4 = kz(x, X)TKz(x, X)−1︸ ︷︷ ︸
=[A1,A2]

z = A1y +A2g(x), (7)

with A1 and A2 being of appropriate dimensions.

Solve the integral: Now that we have the explicit
forms of the distributions in the integral, we make use
of the results (4) and (6),

p(f(x)|Dn, g∗k) (8)

=

∫
p(f(x)|Dn, g(x))p(g(x)|Dn, g∗k)dg(x) (9)

=

∫
N (f(x)|A1y +A2g(x),Σ4)

N (g(x)|m̂(x), v̂(x)) dg(x). (10)

This integral has the same form as Eq. (3) and can be
solved in closed form as well (see (Schön and Lindsten,
2011, Corollary 1)). The final result is

p(f(x)|Dn, g∗k) ≈ N (f(x)|m̃(x), ṽ(x)) (11)
m̃(x) = A1y +A2m̂(x) (12)

ṽ(x) = Σ4 +A2v̂(x)AT
2 . (13)

C Additional Results

C.1 Results for Hartmann (6-dim.)

In Sec. 4 of the main paper, we provide a comparison
on several benchmark functions up to three dimensions
in terms of the inference regret, rn = |g(x∗n)− g∗|. For
computing the regret, one requires the ’true’ robust op-
timum value g*. This value is generally not known and
has to be found numerically. In practice, we use the
FFT over discrete signals to approximate the expecta-
tion in Equation (1). For the 3-dimensional Hartmann
function, we use nFFT = 101 evaluation points in each
dimension to achieve high accuracy. However, in 6
dimensions this is computationally infeasible for the
required accuracy. Thus, we compare the different
acquisition functions just in terms of the estimated
optimal robust value g(x∗n), see Fig. 1. The input noise
was set to Σx = 0.12I.
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Figure 1: Estimated robust max-value g(x∗n) for the
6-dimensional Hartmann function. We present the
median (lines) and 25/75th percentiles (shaded areas)
across 20 independent runs with 10 randomly sampled
initial points.

C.2 Comparison of Computation Times

Table 1: Average compute time per BO iteration of
different acquisition functions as needed for the within-
model comparison. We report the mean (std) across the
50 different function samples. All units are in seconds.
Timing experiments were run on an Intel Xeon CPU
E5-1620 v4@3.50GHz.

Acquisition function time [sec]

NES-RS (ours) 5.39 (0.23)
NES-EP (ours) 1.90 (0.60)
BO-UU UCB (Beland and Nair, 2017) 0.06 (0.03)
BO-UU EI (Beland and Nair, 2017) 0.71 (0.33)
Unsc. BO (Nogueira et al., 2016a) 0.15 (0.09)
Standard BO EI 0.07 (0.03)

C.3 Number of Max-Value Samples

In Section 3.1 we discuss how to approximate the ex-
pectation over robust maximum values by Monte Carlo
sampling. Here, we explain the exact sampling proce-
dure and subsequently present results of a within-model
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Figure 2: Within-model comparison in terms of the
inference regret rn = |g(x∗n)−g∗| for different values of
the hyperparameter K, i.e., the number of Monte-Carlo
samples to approximate the expectation over robust
max-values. As there is no significant difference in the
performance, we used K = 1 for all experiments in the
paper due to the lower computational cost.

comparison that investigates the effect of the number
of robust max-value samples K on the final result.

Sampling Max-Values Note that the computation
of the acquisition function scales linearly with the num-
ber K of Monte-Carlo samples. However, sampling
the robust max-values only needs to be done once per
Bayesian optimization (BO) iteration, while the acqui-
sition function requires many evaluations during one
BO iteration. Thus, it is advantageous to use as few
Monte-Carlo samples as possible. The exact sampling
procedure for K robust max-value samples is given as
follows:

1. Sample 100 robust max-values as described in Sec-
tion 3.1,

2. Create a regular grid between the 25th and 75th

percentile with K points,

3. Draw the robust max-values from the sample dis-
tribution (step 1) corresponding to the percentiles
of the regular grid (step 2).

The benefit of this procedure is that it makes the
estimate of the expectation more robust w.r.t. the
number of samples used.

Within-Model Comparison To investigate the ef-
fect of the number of Monte-Carlo samples K on the
final performance, we perform a within-model compar-
ison for NES-EP with K = {1, 3, 10, 30, 100} samples.

Results are presented in Fig. 2. Note that the perfor-
mance is independent of the number of samples used
to approximate the expectation. Thus, for the pur-
pose of computational efficiency we use K = 1 for all
experiments in the paper.

C.4 Unscented BO: Hyperparameter κ

The unscented transformation (Julier and Uhlmann,
2004) used for unscented BO (Nogueira et al., 2016a)
is based on a weighted sum:

x̄ = Ex [f(x)] ≈
2d∑
i=0

ω(i)f(x(i)), (14)

with x ∼ N (x|x0,Σx). The so-called sigma points x(i)

are computed as

x
(i)
+ = x0 +

(√
(d+ κ)Σx

)
i
, ∀i = 1, . . . , d

x
(i)
− = x0 −

(√
(d+ κ)Σx

)
i
, ∀i = 1, . . . , d,

(15)

where (
√·)i is the i-th column of the (elementwise)

square root of the corresponding matrix. The weights
ω(i) to the corresponding sigma points are given by

ω0 =
k

d+ κ
,

ω
(i)
+ = ω

(i)
− =

1

2(d+ κ)
, ∀i = 1, . . . , d.

(16)

In the corresponding tech-report (Nogueira et al.,
2016b) to the original paper (Nogueira et al., 2016a),
the authors discuss the choice of optimal values for the
hyperparameter k and suggest κ = 0.0 or κ = −3.0.
For negative (integer) values of k, however, Eq. (16)
leads to a division by zero if d = −κ. Thus, we decided
against κ = −3.0 to be consistent across all experiments
and objective functions. To find the best (non-negative)
value for κ we performed a within-model comparison
with different values for κ in the range between 0.0 and
2.0. Results are presented in Fig. 3. We found that for
κ = 1.0, unscented BO showed the best performance
and consequently also used κ = 1.0 for all experiments
in the paper.

C.5 Synthetic Benchmark Functions -
Distance to Robust Optimum

In the main part of this paper, we compare all methods
with respect to the inference regret rn = |g(x∗n)− g∗|.
Depending on the objective’s scale, the inference regret
may be small although an entirely different optimum is
found. Here, we present the results in terms of distance
to the optimum ‖x∗n − x∗‖ . See Sec. 4.1 for details on
the objective functions and the evaluated methods.
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Figure 3: Within-model comparison in terms of the
inference regret rn = |g(x∗n)−g∗| for different values of
the hyperparameter K, i.e., the number of Monte-Carlo
samples to approximate the expectation over robust
max-values. As there is no significant difference in the
performance, we used K = 1 for all experiments in the
paper due to the lower computational cost.

D Synthetic Objective Functions

In this section, the 1- and 2-dimensional functions
f(x) of the synthetic benchmark problems are visual-
ized. Furthermore, the robust counterparts g(x) are
depicted.

(a) f(x) = sin(5πx2) + 0.5x, with x ∈ [0, 1] and
Σx = 0.052,

(b) RKHS-function (1-dim.) with Σx = 0.032 from
Assael et al. (2014), also used by Nogueira et al.
(2016a),

(c) Gaussian mixture model (2-dim.) with Σx =
0.12I, also used by Nogueira et al. (2016a),

(d) Polynomial (2-dim.) with Σx = 0.62I from
Bertsimas et al. (2010), also used by Bogunovic
et al. (2018). We chose the domain to be X =
[−0.75,−0.25] × [3.0, 4.2] and scaled/shifted the
original objective f(x) s.t. E[f(x)] = 0.0 and
V[f(x)] = 1.0.
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Figure 4: Distance to optimum ‖x∗n − x∗‖2 on synthetic benchmark problems. We present the median (lines)
and 25/75th percentiles (shaded areas) across 100 independent runs with randomly sampled initial points.
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(c) Gaussian Mixture Model (GMM) (2-dim.). Left: synthetic function f(x),
right: robust counterpart g(x).
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Figure 5: Visualization of synthetic benchmark functions f(x) with the robust counterpart g(x).



Noisy-Input Entropy Search for Efficient Robust Bayesian Optimization

References

John-Alexander M. Assael, Ziyu Wang, Bobak Shahri-
ari, and Nando de Freitas. Heteroscedastic treed
Bayesian optimisation. arXiv preprint:1410.7172,
2014.

Justin J. Beland and Prasanth B. Nair. Bayesian op-
timization under uncertainty. NIPS Workshop on
Bayesian Optimization, 2017.

Dimitris Bertsimas, Omid Nohadani, and Kwong Meng
Teo. Robust optimization for unconstrained
simulation-based problems. Operations Research,
58(1):161–178, 2010.

Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka,
and Volkan Cevher. Adversarially robust optimiza-
tion with Gaussian processes. In Advances in Neural
Information Processing Systems (NIPS), pages 5765–
5775, 2018.

Ralf Herbrich. On Gaussian expectation propagation.
Technical report, Microsoft Research Cambridge,
2005.

Matthew W. Hoffman and Zoubin Ghahramani.
Output-space predictive entropy search for flexible
global optimization. In NIPS Workshop on Bayesian
Optimization, 2015.

Simon J. Julier and Jeffrey K. Uhlmann. Unscented
filtering and nonlinear estimation. Proceedings of the
IEEE, 92(3):401–422, 2004.

José Nogueira, Ruben Martinez-Cantin, Alexandre
Bernardino, and Lorenzo Jamone. Unscented
Bayesian optimization for safe robot grasping. In
Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
1967–1972, 2016a.

José Nogueira, Ruben Martinez-Cantin, Alexandre
Bernardino, and Lorenzo Jamone. Unscented
Bayesian optimization for safe robot grasping. arXiv
preprint arXiv:1603.02038, 2016b.

Thomas B. Schön and Fredrik Lindsten. Manipulating
the multivariate Gaussian density. Technical report,
Linköping University, 2011.

Julius Orion Smith. Mathematics of the discrete
Fourier transform (DFT): with audio applications.
Julius Smith, 2007.

Zi Wang and Stefanie Jegelka. Max-value entropy
search for efficient Bayesian optimization. In Pro-
ceedings of the International Conference on Machine
Learning (ICML), pages 3627–3635, 2017.


