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Abstract

We consider the problem of robust optimiza-
tion within the well-established Bayesian op-
timization (BO) framework. While BO is
intrinsically robust to noisy evaluations of the
objective function, standard approaches do
not consider the case of uncertainty about
the input parameters. In this paper, we pro-
pose Noisy-Input Entropy Search (NES), a
novel information-theoretic acquisition func-
tion that is designed to find robust optima
for problems with both input and measure-
ment noise. NES is based on the key insight
that the robust objective in many cases can
be modeled as a Gaussian process, however,
it cannot be observed directly. We evaluate
NES on several benchmark problems from the
optimization literature and from engineering.
The results show that NES reliably finds ro-
bust optima, outperforming existing methods
from the literature on all benchmarks.

1 Introduction

Bayesian optimization (BO) is a well-established tech-
nique for optimization of black-box functions with ap-
plications in a wide range of domains (Brochu et al.,
2010; Shahriari et al., 2016). The two key benefits of
BO are its sample-efficiency and its intrinsic robustness
to noisy function evaluations, rendering it particularly
powerful when function evaluations are either time
consuming or costly, e.g., for drug design or (robot)
controller tuning (Calandra et al., 2016; Cully et al.,
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2015; Griffiths and Hernández-Lobato, 2017). The
sample-efficiency of BO stems from two key ingredi-
ents: (i) a Bayesian surrogate model that approximates
the objective function based on previous evaluations,
e.g., Gaussian process (GP) regression, and (ii) an
acquisition function that defines the next evaluation
point based on the surrogate model. Several acquisi-
tion functions have been proposed that heuristically
trade off between exploration and exploitation (Kush-
ner, 1964; Močkus, 1975; Cox and John, 1992). More
recently, the family of entropy search acquisition func-
tions has been introduced. These acquisition functions
use an information-theoretic approach and choose the
next evaluation point to maximize information about
the global optimum. At the cost of computational
complexity, entropy-based methods are generally more
sample-efficient than other acquisition functions (Hen-
nig and Schuler, 2012; Hernández-Lobato et al., 2014;
Wang and Jegelka, 2017).

In addition to sample efficiency, robustness with respect
to model uncertainties or perturbations on the input
is critical in many applications (see, e.g., (Beyer and
Sendhoff, 2007) for a survey). Examples are numerous
in fields such as control (Başar and Bernhard, 2008),
design engineering (Chen et al., 1996) and operations
research (Adida and Perakis, 2006). In its standard
formulation, BO is intrinsically robust with respect to
noisy function evaluations, however, it leads to sub-
optimal solutions in the presence of perturbations on
the input. While robust optimization has been con-
sidered in the context of BO before, previous work is
based on heuristic acquisition functions. To the best of
our knowledge, entropy-based acquisition functions for
robust optimization problems that fully leverage the
potential of BO have not been addressed to date.

Contributions In this paper, we introduce the first
entropy-based acquisition function that addresses the
problem of robust optimization. We consider a proba-
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bilistic formulation of robustness where the parameters
found during optimization are randomly perturbed at
the implementation stage, i.e., broad optima are prefer-
able over narrow ones. Due to their sample-efficiency,
we build on entropy-based acquisition functions and
propose to choose the next evaluation point in order
to maximize the information about the robust opti-
mum. Our method is based on the key insight that
the robust objective can be modeled with a GP just
as in the standard BO setting. However, the robust
objective is not directly observable, but needs to be
constructed from (noisy) evaluations of the original
function without perturbations on the input. We base
our framework on the recently proposed max-value en-
tropy search (MES) (Wang and Jegelka, 2017), due
to the low computational demand. The resulting for-
mulation requires knowledge of the GP’s predictive
distribution conditioned on the robust maximum value,
which is an analytically intractable distribution. We
propose two methods to approximate this distribution
(i) based on rejection sampling, which in the limit of
infinitely many samples is exact but computationally
expensive, and (ii) based on expectation propagation
(EP) (Minka, 2001), which is computationally more ef-
ficient. We evaluate the proposed acquisition function
on a wide range of benchmark problems and compare
against related approaches from the literature. More-
over, we apply the proposed method to a simulated
aerospace task to demonstrate the importance of robust
black-box optimization in practice.

Related Work Closely related to our method are
the approaches presented by Nogueira et al. (2016) and
Beland and Nair (2017), both of which consider the
same probabilistic robust objective as considered in this
paper (see Eq. (1)). Nogueira et al. (2016) proposed to
use the expectation of the expected improvement (EI)
acquisition function with respect to the input noise.
The expectation is approximated using the unscented
transformation (Julier and Uhlmann, 2004), which is
computationally efficient, but the approximation accu-
racy strongly depends on the choice of hyperparameters.
In the paper by Beland and Nair (2017), the robust ob-
jective is also modeled as a GP, however, it is implicitly
assumed that the robust objective can be observed di-
rectly. In contrast to the two aforementioned methods,
our method uses an information-theoretic approach.
We compare our method to both Nogueira et al. (2016)
and Beland and Nair (2017).

Besides random perturbations on the optimization pa-
rameters, other robust optimization settings have been
investigated in the context of BO. In recent work, Bo-
gunovic et al. (2018) consider the worst-case perturba-
tion within a given set (or minimax setting) instead of
random perturbations. Moreover, the authors provide

rigorous convergence guarantees for their acquisition
function, based on the results from Srinivas et al. (2010).
Chen et al. (2017) consider a finite set of non-convex ob-
jective functions and seek the maximizer that is robust
with respect to the choice of objective function from
the given set. In the setting considered by Martinez-
Cantin et al. (2018), some evaluations are corrupted
such that their value is perturbed much stronger than
the observation noise, thus biasing the surrogate model.
However, this setting does not extend to the case of
perturbations on the input. Groot et al. (2010); Tesch
et al. (2011); Toscano-Palmerin and Frazier (2018) as-
sume that the objective function depends on two types
of input parameters: the control parameters to be op-
timized and environmental parameters against which
the maximizer should be robust. This differs from our
setting, in which we aim at finding an optimum that is
robust with respect to the control parameters.

Similar to Nogueira et al. (2016); Beland and Nair
(2017); Bogunovic et al. (2018), we assume exact knowl-
edge of the control parameters during the optimization
and require robustness when deploying the optimal pa-
rameters. In contrast, Oliveira et al. (2019) proposed
a method that deals with uncertain inputs during the
optimization process, however, their goal is to find the
global optimum instead of the robust optimum.

2 Preliminaries

In this section, we briefly review Bayesian optimization
(BO) and discuss how it relates to the robust optimiza-
tion setting considered in this paper. As the robust
objective will be approximated with GP regression, we
furthermore summarize how perturbations on the input
parameters can be included in the posterior predictive
distribution.

Bayesian Optimization In BO we seek the maxi-
mizer of the unknown objective function f(x) : X → R
over a compact set X ⊆ Rd despite only having access
to noisy observations, yi = f(xi) + ε with ε ∼ N (0, σ2

ε ).
Furthermore, no gradient information is available and
each evaluation of f(x) takes a considerable amount of
time or effort. Thus, the goal is to find the maximum
in as few evaluations as possible. The core idea of
BO is to model the unknown objective f(x) with a
Bayesian surrogate model based on past observations
Dn = {(xi, yi)}i=1:n. Common choices for the model
are Bayesian neural networks (Snoek et al., 2015) or
GPs (Rasmussen and Williams, 2006). In this paper, we
consider the latter. Based on the surrogate model, the
next query point is chosen by maximizing a so-called
acquisition function α(x).

Acquisition functions quantify the exploration-
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exploitation trade-off between regions with large pre-
dicted values (exploitation) and regions of high uncer-
tainty (exploration). Entropy-based acquisition func-
tions address this trade-off by minimizing the uncer-
tainty of the belief about global optimum’s location
p(x∗|Dn) (Hennig and Schuler, 2012). The next evalu-
ation point xn+1 is chosen to maximize the mutual in-
formation between the global optimum x∗ and the next
evaluation point, given by I((x, y);x∗|Dn). Recently,
Wang and Jegelka (2017) introduced the MES acquisi-
tion function, which considers the optimum’s value y∗
instead of its location, i.e., αMES(x) = I((x, y); y∗|Dn).
This formulation significantly reduces the computa-
tional burden compared to its predecessors.

By design, BO is able to efficiently optimize non-convex
black-box functions. However, it is generally not able
to find optima that are robust with respect to pertur-
bations of the input parameters.

Robust Bayesian Optimization In this paper, we
consider a probabilistic formulation of robustness, i.e.,
we assume that the optimization parameters are ran-
domly perturbed at implementation stage. In the pres-
ence of input noise, broad optima should be preferred
over narrow ones. Thus, instead of optimizing f(x)
directly, we aim at maximizing the robust objective,

g(x) = E
ξ∼p(ξ)

[f(x+ ξ)] =

∫
f(x+ ξ)p(ξ)dξ, (1)

such that the robust optimizer is given by
x∗ = arg maxx∈X g(x). The random perturbations
acting on the input parameters x are characterized
by the distribution p(ξ). To this end, we assume
p(ξ) ∼ N (0,Σx) with Σx = diag[σ2

x,1, . . . , σ
2
x,d] and

σ2
x,i to be known for all i. Other choices are of course

possible, e.g., p(ξ) could be chosen as a uniform distri-
bution. Note that for vanishing input noise, σx,i → 0
for all i, the distribution p(ξ) converges to the Dirac
delta distribution and we obtain the standard, non-
robust optimization setting.

Gaussian Process Regression Gaussian process
(GP) regression is a non-parametric method to model
an unknown function f(x) : X 7→ R from data Dn (see,
e.g., (Rasmussen and Williams, 2006)). A GP defines
a prior distribution over functions, such that any fi-
nite number of function values are normally distributed
with mean µf (x) and covariance specified by the kernel
function kf (x,x′) for any x,x′ ∈ X (w.l.o.g. we as-
sume µf (x) ≡ 0). Conditioning the prior distribution
on observed data Dn leads to the posterior predictive
mean and variance,

mf (x|Dn) = kf (x)>K−1y,

vf (x|Dn) = kf (x,x)− kf (x)>K−1kf (x),
(2)

at any x ∈ X with [kf (x)]i = kf (x,xi), [K]ij =
kf (xi,xj) + δijσ

2
ε , [y]i = yi and δij denotes the Kro-

necker delta.

In the context of Bayesian optimization, GP regression
is commonly used as a surrogate model for the objective
f(x). Since the expectation is a linear operator and
GPs are closed under linear operations (Rasmussen
and Williams, 2006), the robust objective g(x) can be
modeled as a GP as well, based on noisy observations
of f(x). The predictive distribution for the robust
objective then becomes

mg(x|Dn) = kgf (x)>K−1y,

vg(x|Dn) = kg(x,x)− kgf (x)>K−1kfg(x),
(3)

where the respective kernel functions are given by
kg(x,x

′) =
∫∫

kf (x + ξ,x′ + ξ′)p(ξ)p(ξ′)dξdξ′ and
kgf (x,x′) =

∫
kf (x+ξ,x′)p(ξ)dξ. For the well-known

squared exponential and Matérn kernel functions, kgf
and kg can be computed in closed-form for normally
and uniformly distributed input noise ξ (see, e.g., (Dal-
laire et al., 2009)).

3 Noisy-Input Entropy Search

In this section, we elaborate on the main contribution
of this paper. We first present our robust acquisition
function and give an overview of the challenges associ-
ated with the proposed approach. The main challenge
is that the robust formulation requires the GP’s predic-
tive distribution conditioned on the robust maximum
value, which is analytically intractable. We propose
two approximation schemes: The first is based on re-
jection sampling (RS), which gives the exact result in
the limit of infinitely many samples, but is computa-
tionally challenging. The second approach is based on
expectation propagation (EP) (Minka, 2001) and is
computationally more efficient, albeit not unbiased.

As discussed in Sec. 2, entropy-based acquisition func-
tions quantify the information gain about the global
optimum of f(x). Hence, the next evaluation point
xn+1 is selected to be maximally informative about
x∗ (or y∗ for MES). For robust optimization, we aim
at finding the maximizer of the robust objective g(x)
instead. We build on the work of Wang and Jegelka
(2017) and consider the mutual information between x
and the objective’s maximum value. Consequently, we
maximize the information about the robust maximum
value g∗ = maxx∈X g(x) and propose the Noisy-Input
Entropy Search (NES) acquisition function

αNES(x) = I
(

(x, y); g∗|Dn
)

= H
[
p(y(x)|Dn)

]
− E
g∗|Dn

[
H
[
p(y(x)|Dn, g∗)

]]
, (4)
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where I(·; ·|·) denotes the conditional mutual informa-
tion and H[·] the differential entropy. Note how NES
reasons about g∗ while only (noisily) observing f(x)
as opposed to the naïve approach of applying max-
value entropy search (MES) to the GP model of the
robust objective, which assumes access to observations
of g(x). The corresponding mutual information would
be I((x, z); g∗|Dn), with the hypothetical observation
model z = g(x) + η and η ∼ N (0, σ2

η). This, however,
is not possible as g(x) cannot be observed directly.

The first term in Eq. (4) corresponds to the entropy of
the GP’s predictive posterior distribution. For Gaus-
sian distributions, the entropy can be computed analyti-
cally such thatH[p(y(x)|Dn)] = 0.5 log[2πe(vf (x|Dn)+
σ2
ε )]. The second term in Eq. (4) has no analytic so-

lution and requires approximations for the following
reasons: (i) The expectation is with respect to the
unknown distribution over g∗ and (ii) it is not obvious
how conditioning on the robust maximum value g∗
influences the predictive distribution p(y(x)|Dn). In
what follows we will address these challenges.

3.1 Approximating the Expectation Over
Robust Maximum Values

The belief over the robust maximum value p(g∗|Dn)
in Eq. (4) cannot be computed in closed form. In
the standard BO setting, the corresponding expecta-
tion has been approximated via Monte Carlo sampling
(Hernández-Lobato et al., 2014; Wang and Jegelka,
2017) We follow this approach and approximate the
expectation over p(g∗|Dn) as

E
g∗|Dn

[
H
[
p(y(x)|Dn, g∗)

]]
≈

1

K

∑
g∗k∈G∗

H
[
p(y(x)|Dn, g∗k)

]
, (5)

where G∗ is a set of K samples drawn from p(g∗|Dn).
We generate samples g∗k ∈ G∗ via a two-step process:
(i) sample a function g̃k(x) from p(g(x)|Dn) and (ii)
maximize it such that g∗k = maxx∈X g̃k(x).

For efficient function sampling from p(g(x)|Dn) and
subsequent maximization, we employ the sparse spec-
trum Gaussian process (SSGP) approximation (Lázaro-
Gredilla et al., 2010). The advantage of SSGPs is that
the sampled functions can be efficiently optimized with
a gradient-based optimizer. In this case, we can sample
functions from p(f(x)|Dn) that are of the form f̃k(x) =
aTφf (x), where φf (x) ∈ RM is a vector of random
feature functions. The components of the feature vector
φf (x) ∈ RM are given by φf,i(x) = cos(wT

i x+bi), with
bi ∼ U(0, 2π) and wi ∼ p(w) ∝ s(w) where s(w) is the
Fourier dual of the kernel function kf . The weight vec-
tor a is distributed according to N (A−1ΦT

f y, σ
2
εA
−1)

with A = ΦT
fΦf + σ2

εI, ΦT
f = [φf (x1), . . . ,φf (xn)],

Dn = {(xi, yi)}i=1:n and y = [y1, . . . , yn] (see, e.g.,
(Lázaro-Gredilla et al., 2010) or (Hernández-Lobato
et al., 2014) for details).

We can now generate g̃k(x) from a function sample
f̃k(x) by taking the expectation w.r.t. the input noise.
As each f̃k(x) is a linear combination of M cosine func-
tions, we can compute this expectation in closed form.
For normally distributed input noise, ξ ∼ N (0,Σx)
with Σx = diag[σ2

x,1, . . . , σ
2
x,d], this operation reduces

to a scaling of the feature functions,

φg,i(x) =

∫
φf,i(x+ ξ)p(ξ)dξ

= φf,i(x) exp
(
− 1

2

d∑
j=1

w2
i,jσ

2
x,j

)
. (6)

Thus, we can efficiently sample g∗k ∼ p(g∗|Dn) exploit-
ing the fact that g∗k = maxx∈X g̃k(x) and g̃k(x) =
aTφg(x). We present a detailed derivation of Eq. (6)
as well as a discussion on the number of samples needed
for a sufficient approximation accuracy of Eq. (5) in
the supplementary material.

3.2 Approximating the Conditional
Predictive Distribution

In the previous section we discussed how to sample
robust maximum values g∗k ∼ p(g∗|Dn). To evalu-
ate the proposed acquisition function αNES(x), we
need to compute the entropy of the predictive dis-
tribution conditioned on a sampled robust maximum
value, i.e., H[p(y(x)|Dn, g∗k)]. Conditioning on g∗k im-
poses g(x) ≤ g∗k, which renders the computation of
p(y(x)|Dn, g∗k) intractable. In this section, we propose
two approximation schemes (i) based on rejection sam-
pling (RS) which is exact in the limit of infinite sam-
ples and (ii) a computationally more efficient approach
based on EP (Minka, 2001).

3.2.1 Using Rejection Sampling

While no closed-form for p(y(x)|Dn, g∗k) is known, it
is straightforward to sample from this distribution
via rejection sampling (RS). For the RS, a sampled
function f̃(x) from p(y(x)|Dn) is generated and its
robust counterpart g̃(x) is computed. Given a ro-
bust maximum value sample g∗k ∼ p(g∗|Dn), a sam-
ple is accepted when the maximum of g̃(x) is smaller
than g∗k. This process is repeated until L samples
have been accepted. Pseudo-code for this procedure is
shown in Alg. 1. Given the set Ỹ of L accepted sam-
ples, we can approximate the entropy of the sample
distribution as proposed by Ahmad and Lin (1976),
H
[
p(y(x)|Dn, g∗k)

]
≈ − 1

L

∑
ỹi∈Ỹ ln [p̂(ỹi)], with p̂(·) be-

ing the kernel density estimate of p(y(x)|Dn, g∗k) based
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(a) Predictive distribution for f(x) ( ) before ( )
and after ( ) conditioning on g∗k ( ).

(b) Predictive distribution for g(x) ( ) before ( )
and after ( ) conditioning on g∗k ( ).

Figure 1: Comparison of predictive distributions for the objective f(x) (left) and the robust objective g(x) (right)
before and after conditioning on the sampled robust maximum value g∗k. The goal is to find the robust maximum ( )
instead of the global maximum ( ); only f(x) can be observed ( ).

Algorithm 1 Rejection sampling for p(y(x)|Dn, g∗k)

1: Input: GP posterior predictive distribution
p(y(x)|Dn), robust maximum value sample g∗k

2: Output: Set Ỹ of L accepted samples
3: Ỹ ← ∅
4: while |Ỹ | ≤ L do
5: f̃(x) ∼ p(y(x)|Dn) // Generate sample
6: g̃(x)←

∫
f̃(x+ ξ)p(ξ)dξ // Robust sample

7: if maxx g̃(x) ≤ g∗k then
8: Ỹ ← Ỹ ∪ {f̃(x) + ε} // Store sample
9: end if
10: end while
11: return Ỹ

on Ỹ (Rosenblatt, 1956). Note that p̂(·) sums over
all samples in Ỹ , such that the entropy computation
scales quadratically with L due to a nested summation
over Ỹ . In the experiments, we found that L = 1000
samples result in a sufficiently accurate approximation.
Due to the Monte Carlo approximation in Eq. (5), the
RS step is conducted for each g∗k ∈ G∗, which renders
the optimization of αNES(x) costly. In the following,
we develop a more efficient approximation scheme.

3.2.2 Using Expectation Propagation

For a computationally more efficient approximation of
H[p(y(x)|Dn, g∗k)], we exploit the fact that the entropy
of a normal distribution is given analytically. As the
observation noise is additive, we can approximate the
predictive distribution p(f(x)|Dn, g∗k) and then add
the observation noise to compute the entropy. In the
remainder of this section we discuss how to compute
a Gaussian approximation to p(f(x)|Dn, g∗k) with EP.
More details are given in the supplementary material.

We rewrite the conditioned posterior predictive distri-

bution of f(x) as

p(f(x)|Dn, g∗k) =∫
p(f(x)|Dn, g(x))p(g(x)|Dn, g∗k)dg(x). (7)

The first distribution, p(f(x)|Dn, g(x)), can be com-
puted from GP arithmetic. Note that the joint distri-
bution p(f(x),Dn, g(x)) is a multivariate normal dis-
tribution and conditioning on Dn and g(x) results in
p(f(x)|Dn, g(x)) = N (f(x)|µf ,Σf ). The second dis-
tribution in the integral, p(g(x)|Dn, g∗k), is the predic-
tive distribution for g(x) with the constraint g(x) ≤ g∗k.
This constraint can either be incorporated by a trun-
cated normal distribution (Wang and Jegelka, 2017) or
by a Gaussian approximation (Hoffman and Ghahra-
mani, 2015). We follow the latter such that our ap-
proximation of the integral in Eq. (7) has an analytic
solution:

1. The constraint g(x) ≤ g∗k implies in particu-
lar that g(xi) ≤ g∗k for all xi ∈ Dn, which results
in a truncated normal distribution for g =
[g(x1), . . . , g(xn)]>. Aside from the univariate case,
there exist no closed-form expressions for the mean
and covariance of this distribution. We approximate
the respective moments with EP (Herbrich, 2005),
denoting the indicator function by 1{·},

p(g|Dn, g∗k) ∝ p(g|Dn)

n∏
i=1

1{xi|g(xi)≤g∗k}

(EP)
≈ N (g|µ1,Σ1) . (8)

2. By marginalizing out the latent function values
g, we obtain a predictive distribution. Deriving
p(g(x)|g,Dn) from GP arithmetic and substituting
Eq. (8) results in

p0(g(x)|Dn, g∗k) =

∫
p(g(x)|g,Dn)p(g|Dn, g∗k)dg

≈ N (g(x)|m0(x), v0(x)). (9)
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3. Next, we incorporate the constraint that g(x) ≤ g∗k
for all x ∈ X by moment matching,

p(g(x)|Dn, g∗k) ∝ p0(g(x)|Dn, g∗k)1{x|g(x)≤g∗k}

≈ N (g(x)|m̂(x), v̂(x)) .

With the shorthand notation β = (g∗k −
m0(x))/

√
v0(x) and r = ϕ(β)/Φ(β), mean and

variance are given by m̂(x) = m0(x) −
√
v0(x)r

and v̂(x) = v0(x)−v0(x)r(r+β) (see, e.g., (Jawitz,
2004)), where ϕ(·) and Φ(·) denote the probability
density function and cumulative density function of
the standard normal distribution, respectively. The
influence of conditioning p(g(x)|Dn) on the robust
maximum value g∗k is visualized in Fig. 1b.

4. Approximating p(g(x)|Dn, g∗k) with a Gaussian of-
fers the benefit that the integral in Eq. (7) can be
solved analytically as it is the marginalization over
a product of Gaussians. Thus, the approximation
to the posterior predictive distribution for f(x) con-
ditioned on g∗k is given by

p(f(x)|Dn, g∗k) ≈ N (f(x)|m̃k(x), ṽk(x)) .

An exemplary visualization of this approximation is
displayed in Fig. 1a. Note that both, mean m̃k(x)
and variance ṽk(x), are strongly influenced in re-
gions of large predicted values.

The final form of the NES acquisition function based
on EP is then given by

αNES-EP(x) =
1

2

[
log
(
vf (x|Dn) + σ2

ε

)
− 1

K

∑
g∗k∈G∗

log
(
ṽk(x) + σ2

ε

)]
. (10)

For each evaluation of Eq. (10), the variance ṽk(x) is
computed for every sample g∗k separately. The EP
step iterates over all data points. During experiments
we found that it converges within 2–5 sweeps. Eq. (9)
dominates the computational cost due to the inversion
of a kernel matrix of size 2n, with n being the number
of data points. The overall complexity of one evaluation
is then O(Kn3). Please note that, unlike the RS-based
approach that relies on a kernel density estimation, the
entropy of the Gaussian approximation obtained with
EP can be computed analytically. In the following, we
evaluate the proposed NES acquisition function and
compare the RS- and EP-based approximations.

4 Experiments

In this section, we evaluate the Noisy-Input Entropy
Search (NES) acquisition function and compare it to
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Figure 2: Within-model comparison in terms of the
inference regret rn = |g(x∗n) − g∗|. We present the
median (lines) and 25/75th percentiles (shaded areas)
across 50 different function samples from a GP prior.

other methods from the literature on a range of bench-
mark problems. Furthermore, we consider an applica-
tion from aerospace engineering, for which robustness
of the design parameters is crucial. For all experiments,
we use a squared exponential (SE) kernel kf (x,x′) =

σ2
f exp(−0.5 ‖x− x′‖2Λ−1) with Λ = diag[`21, . . . , `

2
d].

For this choice, kgf (x,x′) and kg(x,x
′) (see Eq. (3))

can be computed analytically. As performance metric
we choose the inference regret (IR) rn = |g(x∗n)− g∗|,
where x∗n is the estimate of the robust optimum at
iteration n. For all experiments, we perform 100 inde-
pendent runs, each with different sets of initial points,
albeit the same set across all methods. The result
figures show the median across all runs as line and
the 25/75th percentiles as shaded area. The initial
observations are uniformly sampled and the number
of initial points is chosen depending on the dimen-
sionality of the objective (n0 = 3, 5, 10 for d = 1, 2, 3,
respectively). We describe all evaluated methods be-
low. All approaches were implemented based on GPy
(GPy, since 2012) and the code to reproduce all re-
sults is publicly available at https://github.com/
boschresearch/NoisyInputEntropySearch.

- Noisy-Input Entropy Search (NES): The pro-
posed acquisition function using either rejection
sampling (NES-RS) or expectation propagation
(NES-EP). For both variants of NES, we use
M = 500 random features for the SSGP and K = 1
samples for the Monte Carlo estimate of the ex-
pectation over p(g∗|Dn). The number of accepted
samples for NES-RS is set to L = 1000.
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Figure 3: Inference regret rn = |g(x∗n)− g∗| on synthetic benchmark problems. We present the median (lines)
and 25/75th percentiles (shaded areas) across 100 independent runs with randomly sampled initial points.

- BO Under Uncertainty (BO-UU): The method
presented by Beland and Nair (2017) which models
the robust objective g(x) as a GP, but assumes that
it can be observed directly. We evaluate BO-UU
with expected improvement (EI), upper confidence
bound (UCB) and MES (Wang and Jegelka, 2017).

- Unscented BO: The method presented by
Nogueira et al. (2016) where the expectation over
the input noise is approximated using an unscented
transformation (Julier and Uhlmann, 2004).

- Standard BO: Furthermore, we compare against
standard BO with EI as acquisition function, which
in general gives rise to non-robust optima.

4.1 Within-Model Comparison

In a first step, we follow Hennig and Schuler (2012) and
perform a within-model comparison. For this analysis,
we draw 50 function samples from a 1-dim. GP prior
(SE-kernel with σf = 0.5, ` = 0.05) and for each sample
we try to find the robust optimum assuming the input
noise σx = 0.05. During optimization, the GP hyperpa-
rameters are fixed to their true values. The benefit of
this analysis is to isolate the influence of the acquisition
functions from other factors such as the inference of
hyperparameters or a potential model mismatch be-
tween objective and GP model. For unknown objective
functions, however, this procedure is not possible and
the hyperparameters need to be inferred during opti-
mization (see Sec. 4.2). The results of the within-model

comparison are presented in Fig. 2. Clearly, the two
proposed acquisition functions NES-RS and NES-EP
outperform all other approaches. We observed that
the NES acquisition functions continue to explore the
vicinity of the robust optimum even at later stages
of the optimization. The other acquisition functions,
however, stop exploring prematurely, which explains
why the IR-curves level off early in Fig. 2. Furthermore,
the performance of both NES variants is very similar
in terms of IR, indicating that the EP-based approach
is able to approximate the entropy terms in Eq. (4)
similarly well compared to the RS-based approach, but
at lower computational cost.

4.2 Synthetic Benchmark Functions

We evaluate the aforementioned methods on the follow-
ing functions:

(a) f(x) = sin(5πx2)+0.5x, with x ∈ [0, 1] and input
noise σx = 0.05,

(b) RKHS-function (1-dim.) (Assael et al., 2014) with
σx = 0.03, also used by Nogueira et al. (2016),

(c) Gaussian mixture model (2-dim.) with Σx =
0.12I, also used by Nogueira et al. (2016),

(d) Polynomial (2-dim.) (Bertsimas et al., 2010) with
Σx = 0.62I, also used by Bogunovic et al. (2018).
Here, we scaled and shifted the objective f(x) s.t.
E[f(x)] = 0.0 and V[f(x)] = 1.0,

(e) Hartmann (3-dim.) with Σx = 0.12I.
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Figure 4: Gravity assist maneuver: The goal of the maneuver is to get from planet A to planet D (see Fig. 4b) by
choosing an appropriate initial speed and starting angle. During the flight the engines are turned off such that
all direction changes happen due to gravitational forces of planets A–D. The objective penalizes high values for
the initial speed as well as the distance to the target planet, which results in the objective function as shown in
Fig. 4a. Results are shown in Fig. 4c.

Visualizations of the 1- and 2-dimensional functions
are shown in the supplementary material. The kernel
hyperparameters as well as the observation noise are
inferred via marginal likelihood maximization after
each function evaluation. Additionally, we chose a log-
normal hyperprior for the kernel lengthscales, in order
to relate them with the magnitude of the input noise
which led to significantly more stable convergence for
all acquisition functions.

In general, NES shows better convergence and IR across
all benchmark functions, and this performance benefit
increases with the dimensionality of the problem. For
all other methods that are designed to find the robust
optimum, the performance is strongly task dependent.
Moreover, standard BO always finds the global opti-
mum, which is, however, sub-optimal in the robust
setting. Note that the performance of standard BO
appears to be competitive in terms of IR in Fig. 3d/3e,
but the location of the estimated optimum is far off
(see also the supplementary material for an evaluation
of the distance to the optimum).

4.3 Application to Gravity Assist Maneuver

We evaluate the proposed acquisition function on a
so-called gravity assist maneuver. The goal is to plan
a spacecrafts trajectory to a target planet while mini-
mizing energy consumption. For this task gravitational
effects from other planets are exploited in order to
change the spacecraft’s momentum without the need
for active steering, thus saving fuel. A visualization
of this scenario is shown in Fig. 4b. The decision vari-
ables are 1) v0, the initial speed of the spacecraft and
2) α0, the initial angle of flight from the start position.
The optimization objective for this task is given by
J(α0, v0) = log10(dtarget +β ·v0), with dtarget being the
closest distance of the resulting trajectory to the target
planet and β is a parameter that trades-off between the

two cost terms. The resulting cost function is depicted
in Fig. 4a, where the markers correspond to different
resulting trajectories shown in Fig. 4b. The input noise
is set to σv = 0.05 and σα = 3◦ for v0 and α0, respec-
tively. The results for NES-EP and standard BO (EI)
are depicted in Fig. 4c. Using either of the acquisition
functions, the broad local optimum at the upper right
corner of the domain (see Fig. 4a) is quickly explored
within the first function evaluations. After 10–15 func-
tion evaluations, standard BO finds the global optimum
in the lower left corner and continues to exploit this
region of the domain. However, the global optimum is
sensitive to perturbations on α0 and thus the inference
regret stagnates. On the other hand, NES-EP reliably
finds the robust optimum and continues to explore the
vicinity. As a result, the inference regret is almost two
orders of magnitude smaller compared to standard BO.

5 Conclusion
In this paper, we introduced a novel information-
theoretic acquisition function for robust Bayesian op-
timization. Our method, Noisy-Input Entropy Search
(NES), considers a probabilistic formulation of the ro-
bust objective and maximizes the information gain
about the robust maximum value g∗. Evaluation of
NES requires the computation of the GP’s predictive
distribution conditioned on the robust maximum value.
As this distribution is analytically intractable, we pro-
pose two approximation schemes. The first is based
on rejection sampling and is exact in the limit of infi-
nite samples, but computationally challenging. For the
second approximation scheme we employ expectation
propagation, which is computationally more efficient.
NES outperforms existing methods from the litera-
ture on a range of benchmark problems. Finally, we
demonstrated the practical importance of the proposed
approach on a task from aerospace engineering where
robustness is critical.
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