
Joseph Futoma, Michael C. Hughes, Finale Doshi-Velez

A Additional Details on Point-Based
Value Iteration

Point based value iteration (PBVI) is an algorithm for
efficiently solving POMDPs (Pineau et al., 2003). See
Shani et al. (2013) for a thorough survey of related
algorithms and extensions in this area.

A.1 Background

As first observed in Sondik (1978), the value function
for a POMDP can be approximated arbitrarily closely
as the upper envelope of a finite set of linear functions
of the belief, commonly referred to as ↵-vectors. Rep-
resenting the value function as a collection of linear
functions, we can write the value of an arbitrary belief
b 2 �

K in the probability simplex as:
V (b) = max

↵

b · ↵. (7)

Each ↵-vector is associated with a corresponding opti-
mal action a

↵

, so the value function can be represented
as a set of pairs {(↵, a

↵

)}
↵2V

. To act according to this
value function representation, the action a

↵

⇤ associated
with ↵

⇤, the maximizing ↵-vector, is taken given the
current belief b at each time point. The task of solving
a POMDP is then to compute this set of ↵-vectors. Un-
fortunately, exactly representing the true value function
(via e.g. exact value iteration) requires exponentially
many ↵-vectors, and this becomes computationally in-
tractable for even small problems. Early techniques for
efficiently solving POMDPs often involved iteratively
pruning redundant ↵-vectors at each iteration of the
solver, but these approaches also did not scale well. See
Shani et al. (2013) for more details.

A.2 PBVI Overview

In PBVI, unlike in exact value iteration, we do not
perform full Bellman backups over the space of all
possible belief points, as this is typically intractable.
Instead, we will only perform backups at a fixed set
of belief points, which we denote by B , {b

i

}B
i=1, with

B = |B| and b

i

2 �

K . We will return later to how this
set is chosen.

We first highlight the computation for the value at a
belief b after a Bellman backup over V , where we let r

a

denote the vector R(·, a):
V

0
(b) = max

a2A

r

a

· b+ �

X

o

p(o|b, a)V (b

a,o

), (8)

where
↵

a,o

(s) =

X

s

0
↵(s

0
)p(o|s0, a)p(s0|s, a), (9)

and b

a,o

(s

0
) = p(s

0|b, a, o) denotes our new belief that
we are in state s

0 having started from belief vector b,
taken a, and seen o.

See Shani et al. (2013) for the full derivation, but some
algebra eventually reduces this expression to:

V
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↵2V

b · ↵a,o

. (10)

The two maxes in this equation implicitly prunes dom-
inated ↵-vectors twice, which is more efficient than
previous approaches that would first enumerate the
(massive) space of all ↵-vectors and then prune after-
wards.

We can use the value function computation in Eq.10 to
efficiently compute the new ↵-vector that would have
been optimal for b, had we ran the complete Bellman
backup:
backup(V, b) = argmax

↵

b

a

:a2A,↵2V

b · ↵b

a

(11)
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b · ↵a,o (12)

During the backup, the action associated with the new
↵-vector is also cached. Importantly, these point-based
updates are substantially more efficient than an exact
update, as they are quadratic rather than exponential.
In addition, for problems with finite horizons, the error
between the PBVI approximate value function and the
true value function decreases to 0 as we more densely
sample the belief simplex and we take B ! 1.

Choose the Belief Points. We now briefly discuss
how the set B is chosen. There are many different
implementation choices that can be made; see Shani
et al. (2013) for a comprehensive list of previous works
of approaches made in different algorithms. A naive
approach is to randomly the simplex or choose beliefs
evenly spaced on a grid, but both are usually inefficient
and may include many beliefs that, in practice, would
rarely be reached by actual trajectories.

We use the strategy used in the original PBVI paper
(Pineau et al., 2003). Start with an initial set of beliefs
B0. In our work, we initialize this to be the uniform
belief vector 1

K

~

1 along with beliefs that place a large
amount of mass (e.g. 99%) on a single state. In the
end, our initial set B0 contains K + 1 belief points. To
add a new belief point b to an existing set B, we find a
successor belief b0 that is most distant from our current
set. We do this by using a distance metric (in practice,
we use standard L2 Euclidean distance), and let

|b0 � B| = min
b2B|b� b

0| (13)
be the distance from a new belief b0 to the set B. We
focus on new candidate beliefs that can be reached
from the current set. For discrete observations, we can
enumerate all possible b

a,o that are reachable given a
starting belief b, if we take each possible action a and
then see observation o. For continuous observations,
we of course cannot enumerate all possible b

a,o but can
instead just draw samples from our observation model.
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We can then add to B an additional new belief b0 that
is farthest from B. Or, we can add a set of new beliefs
that are all “far” from the current set B, e.g. greater
than some pre-specified distance ✏. The high-level idea
for this belief set expansion is for the set B to be spread
out relatively evenly across the reachable parts of belief
space.

Implementation Details. In practice, we may in-
terleave belief expansion steps where we increase the
size of B with a large number of backups, repeatedly
running Eq 11 for all current beliefs in B.

Having the entire PBVI algorithm as a subroutine in
the larger optimization pipeline for POPCORN is a
challenging task. One rather expensive and inefficient
design choice would be to entirely rerun PBVI, from
scratch, at each iteration of gradient descent. Instead,
we cache the intermediate value function and the current
set of belief points during optimization. During one
gradient update, we then choose to only run a small
number of PBVI backups (in practice, between 1-5),
where we run backups of our current beliefs given the
new model parameters ✓ at this iteration of training.

As we are learning both the policy and the model online
during training for POPCORN, we empirically found
that it is helpful to occasionally do a hard reset of both
B and our value function. In the planning community
(e.g. the original PBVI paper), it is typically assumed
that the ground truth model ✓ is known, whereas in
real-world settings, the model must be learned from
data. This means that during training, our estimate of
✓ constantly changes, and over time our value function
and belief set may have been largely determined from
very stale previous values of ✓. In practice, we do these
hard resets very infrequently, e.g. only once every 250
or 500 gradient updates.

A.3 PBVI: Sampling Approximation to Deal
with Complex Observation Models

In normal PBVI, we are limited by how complex our
observation space is. The PBVI backup crucially de-
pends on a summation over observation space (or in-
tegration, for continuous observations). Dealing with
multi-dimensional, non-discrete observations is gener-
ally intractable to compute exactly.

Instead, we will utilize ideas from Hoey and Poupart
(2005) to circumvent this issue. The main idea is
to learn a partition of observation space, where we
group together various observations that, conditional
on a given belief b and taking an action a, would
have the same maximizing ↵-vector. That is, we want
to learn O

↵

= {o|v = argmax
↵2V

↵ · ba,o}. We can
then treat this collection of O

↵

as a set of “meta-

observations”, which will allow us to replace the in-
tractable sum/integral over observation space into a
sum over the number of ↵-vectors, by swapping out
the p(o|b, a) term in Equation 8 with p(O

↵

|b, a), the
(approximate) aggregate probability mass over all ob-
servations in the “meta-observation”. In particular, we
can express the value of a belief by:
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a
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We will make use of a sampling approximation that ad-
mits arbitrary observation functions in order to approx-
imate the O

↵

and p(O
↵

|s0, a), the aggregate probability
of each “meta-observation”.

To do this, first we sample k observations o
k

⇠ p(o|s0, a),
for each pair of states and actions. Then, we can ap-
proximate p(O

↵

|a, s0) by the fraction of sampled o

k

where ↵ was the optimal ↵-vector, ie

p(O
↵

|a, s0) ⇡ |{o
k

: ↵ = argmax
↵2V

↵ · ba,ok}|
k

, (18)

where ties are broken by e.g. favoring the ↵-vector with
lowest index. Using this approximate discrete observa-
tion function, we can perform point-based backups for
V at a set of beliefs B as before. Our backup operation
is now:

backup(V, b) = argmax
↵

b

a

:a2A,↵2V
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a

(19)

↵

b

a

= r

a

+ �

X

↵

0
argmax
↵

a,O
↵

0
b · ↵a,O

↵

0 (20)

↵

a,O
↵

0
(s) =

X

s

0
↵(s

0
)p(s

0|s, a)p(O
↵

0 |a, s0). (21)

The previous sum/integral over observations has now
been replaced by a sum over ↵-vectors, which is gener-
ally more tractable.

A.4 Softmax Relaxation to Make PBVI
Differentiable

In order to be able to differentiate through the entire
PBVI backups and allow gradient-based optimization
for POPCORN, we relax the original argmax operations
involved in PBVI backups and running a PBVI policy
to softmaxes. There are 2 argmax operations in the orig-
inal PBVI backups, in Eqs. 11 and 12. For PBVI with
continuous observations, there is an additional argmax
associated with the probability of “meta-observations”
in Eq. 18. Lastly, there is a fourth argmax associated
with actually running a policy, as we need to determine
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which ↵-vector is the maximizing one, and we take its
corresponding action.

We relax all 4 of these argmaxes to softmaxes. Pre-
viously, there were operations such as argmax

i

x

i

to
select a maximal index; we can view these as returning a
delta function at the maximizing index, or a probability
mass function with all mass on one element. We instead
relax this to a softmax, now returning p , e

x

iP
i

e

x

i

, a
distribution over all elements. Where before we might
have taken, e.g., ↵

j

if j was the maximizing index of
x, now we instead take a soft mean using the softmax
probability distribution p, i.e. we instead would take
A · p where A 2 RK⇥N is a matrix with all N vectors
↵ 2 RK stacked up, and p is a probability vector over
the N choices.

Last, we further modified these softmaxes by using an
additional temperature parameter ⌧ , which lets us con-
trol how close to deterministic the softmax is. That
is, we redefine the softmax as p , e

x

i

/⌧

P
i

e

x

i

/⌧

. As ⌧ ! 0,
the softmax p approaches the deterministic argmax,
while ⌧ ! 1 approaches a uniform distribution. In
experiments, throughout we used a fixed ⌧ = 0.01 for
all environments. In initial tests on the tiger environ-
ment, we tried starting with larger temperatures and
slowly annealing them to smaller values, but found this
only added noise and slowed overall convergence. For
relatively small temperatures, we confirmed that the
softmax-relaxed PBVI solutions were comparable to
the original deterministic ones.

Note that in this relaxation, each ↵-vector is now as-
sociated with a distribution over actions, rather than
a single action as before. Likewise, as we now learn
stochastic policies, to run a soft-PBVI policy, we take
a soft mean of the softmax distribution over actions
associated with each ↵-vector; contrast this with the
deterministic solution where we’d simply choose the
action associated with the maximizing ↵-vector.

It is also worth noting that in simulated environments
where we can actually run a policy, we can always run
a deterministic version of a softmax policy by simply
selecting the most likely action, rather than probabilis-
tically choosing an action from a policy’s distribution
over actions. Our main motivation for using softmax
policies is that it makes OPE easier, as otherwise for
deterministic policies we may run into severe problems
if the support of our deterministic policy has little in
common with the behavior policy.

B Additional Details on Learning
Rewards

We noted in the main text that learning rewards is ex-
plicitly not part of the main optimization procedure in

POPCORN. This is because we expressly do not want
to compute gradients for the estimated policy value
term with respect to the reward function parameters.
If we did so, there would be nothing stopping the opti-
mization procedure to “hallucinate” that the best way to
learn a high-value policy is to simply increase all values
of the reward function to be large. The policy induced
by such a model with incorrectly high rewards would
then appear to be very good, with respect to the model,
but when run in the real world or real environment, it
would perform terribly.

Instead, we simply learn the rewards a separate EM
step, that may be performed alongside each gradient
update to ⌧, µ,� (in practice this is what we do), or may
be done only periodically. In the E-step, we compute
the relevant summary statistics from the forward and
backward pass through the IO-HMM. Importantly, the
E-step does not depend on the reward function R at all;
the forward and backward pass only use the transition
and emission distributions to update relevant state
probabilities. Then, in the M-step, we update only
the reward function, using the observed reward values
from the trajectories in our dataset. This is equivalent
to minimizing the sum of squared errors between our
reward function and the observed reward values. It is
also nearly identical to what the M-step looks like for µ,
but the other observations are assumed to be Gaussian
and hence also have the variance � parameters.

C Additional Setup Details and
Results for Tiger Domains

We show a few extra results from the synthetic tiger
domains, and provide a bit more detail for the setup
for the third environment involving misspecification in
the emission distribution itself.

First, in Figure 8 we show results from the first Tiger
with Irrelevant Noise environment, where we vary the
total dimensionality of observation space from 1 (model
is properly specified) to 16, with the results in the
main paper only showing 2. Throughout, 2-stage al-
ways learns models with the highest likelihood but fails
completely at the downstream decision-making task.
The difference in likelihood between POPCORN and
value-only becomes more muted for larger numbers
of dimensions, as the models are more and more mis-
specified, and the likelihood metric collapses over all
dimensions. The differences would remain more appar-
ent if we instead showed the associated likelihood metric
for each individual dimension of observation space.

Next, in Figure 10 we show results for the Tiger with
Missing Data environment as a function of the fraction
of missingness in the relevant dimension needed to make
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decisions. We vary this amount in the following range:
{10%, 30%, 50%, 70%, 80%, 90%, 95%}. As the overall
amount of missingness increases, likelihood values and
policy values generally degrade, which is to be expected
as less and less total information is contained in a single
dataset. Notably, 2-stage always learns much better
models but performs terribly in its policy, while the
converse is true for value-only.
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Figure 8: Results from the Tiger with Irrelevant Noise
environment, where we now vary the overall observation
dimension size. Throughout, the first dimension is the only
relevant dimension with any information about the decision-
making task (� = 0.3 for this dimension) while the rest all
contain irrelevant observations with lower � = 0.1.
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Figure 9: Additional results from the Tiger with Missing
Data. These results show how performance varies as a
function of the amount of missing data. In the main text,
we only show results from the case where 80% of the relevant
observation variable is missing.

Last, we provide qualitative probing of the models
learned in the last tiger environment, Tiger with Wrong
Likelihood. The true emission distribution is given by a
truncated Gaussian Mixture Model (GMM) with equal
weights, and the truncation depends on the true un-
known latent state value. However, we have setup the
emissions by choosing an appropriate prior distribution
over the latent states so that marginally, the observa-
tions look like they come from a normal GMM and so a
pure likelihood-based approach would try to fit a GMM
rather than the true truncated GMM. See Figure 10 for
the models from the manual solution, 2-stage, and POP-
CORN. The manual solution used oracle knowledge of
the true underlying states which other methods did not
have access to, and simply moment matched by taking
empirical means and variances. Since the results of
value-only and POPCORN were near identical for this
environment, we do not show it. For this environment,

POPCORN does even better than the manual solution.
While 2-stage learns a slightly high likelihood model,
its policy is substantially worse.

In the figure, the histograms show observed observa-
tions in green and blue, and model densities in purple
and red. The green and blue histograms show obser-
vation values colored by their true state. Green bars
correspond to state “1”, so that observations are drawn
from the GMM but truncated to be positive. Likewise,
blue bars correspond to state “0”, and observations from
this state are drawn from the GMM and then truncated
to be negative. The numbers in each subplot denote the
learned mean and variance parameter for the 2 states
for the emission model for each method (conditioned
on the last action being listen). Note that the ground
truth means of the truncated GMM were 0 and 1, and
the ground truth standard deviations were 0.1 and 1.
2-stage correctly recovers these, but it is tricked into
learning a GMM, rather than the true underlying trun-
cated GMM. Histograms of the 2 emission distributions
learned by each approach are shown in red and purple.
2-stage learns the true parameters of the GMM, whereas
POPCORN learns state emissions that are more spread
out so that it can correctly differentiate between the
two true underlying states. The true underlying states
can be perfectly identified by whether or not they are
positive or negative; which of the two GMM mixture
components they came from does not always identify
them correctly.

Figure 10: Qualitative results from the Tiger with Wrong
Likelihood environment. Left : Manual solution, log
marginal likelihood �0.95, policy value 0.20. Middle: 2-
stage EM solution, log marginal likelihood �0.76, policy
value �0.57. Right : POPCORN with � = 1, log marginal
likelihood �0.92, policy value 0.50. See text for details.

D Additional Setup Details for Sepsis
Domain

The original sepsis environment in Oberst and Sontag
(2019) consists of D = 5 discrete observation dimensions.
Four are vitals and naturally ordinal (e.g. “low”, “high”),
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while the last is binary.

We encode each ordinal discrete observation with C

categories as an integer in {0, . . . , C � 1}, then add
independent Gaussian noise to this integer, with � = 0.3.
Adding noise to the 4 ordinal-valued vitals is reasonable
and can be viewed as approximating measurement error,
in some sense, if we pretend that the original discrete
variables were obtained by dichotomizing some “true”
unknown continuous value. This is not strictly true
in practice, as the environment is hard-coded and not
actually based on some sort of underlying dynamical
system. However, adding noise to the diabetes indicator
is just a convenient way to make it continuous-valued.

As noted in the main text, we use this environment
simply as a slightly more challenging medically-inspired
simulator. This differs substantially from its original
use in Oberst and Sontag (2019) where they used it to
introduce strong hidden confounding with known struc-
ture by masking 2 state variables from their methods.

In our work we used K = 5 somewhat arbitrarily. The
main purpose of this environment was to illustrate
the tradeoff POPCORN makes between likelihood and
policy value, and not to try to actually solve the envi-
ronment or learn a policy that is near-optimal. Given
the partially observed nature of our alteration to the
environment, and the high noise level with our ✏-greedy
behavior environment, it’s not immediately obvious
what the best achievable policy that can be learned in
the batch setting is. This will be less than the value of
the true optimal policy for the original MDP, which is
what we showed in the results figure in the main text.

E Additional Setup Details and
Results from MIMIC ICU
Hypotension Domain

E.1 Data Preprocessing

We did very little filtering to the initial raw dataset.
We started with only patients who had data from the
MIMIC-III MetaVision database, as this more recent
data has better metadata around treatment timing. We
only filtered by the first ICU stay for hospital stays
that had multiple ICU admits, and then filtered to ICU
stays with 3 or more MAP measurements less than
65mmHg. To discretize time, we started 1 hour into
ICU admit and used time points at hour 2, etc. up
until hour 72, so that at most our trajectories contain
71 actions. We leave to future work to come up with
improved, potentially data-driven methods for more
realistic time discretization.

Since an IO-HMM generative model can easily handle
missing data, we do not impute missing values for time

points when a measurement is missing. In the event
that multiple measurements were taken in the span of
a single hour, we take the most recent value. This is
extremely uncommon for lab values, and only really
applied to vitals such as MAP or heart rate. Even then,
in MIMIC-III most of the time vitals are logged only
once an hour.

Before modeling the physiological values, we log trans-
formed them (after adding 1 to avoid numeric issues).
After log transforms, the population distributions for
each variable looked reasonably close to normally dis-
tributed. This step was necessary as many clinical
values have a heavy right tail, and would be inappropri-
ately to model with Gaussians. After the log-transform,
we further standardized each variable to have zero mean
and unit variance.

E.2 Action Space Construction

IV fluids somewhat naturally cluster into discrete bins,
so this action variable was easier to discretize. We used 4
bins by amount: {0, [200, 500), [500, 1000), [1000, 2000]}.
Figure 11 shows the distribution of raw fluid amounts
in the data.

Figure 11: Distribution of raw IV Fluid doses in the original
dataset prior to discretization, in mL.

We normalized across vasopressor drug types fol-
lowing the logic in Komorowski et al. (2018) in
order to arrive at equivalent rates across drugs.
Then we took the total amount of vasopressor ad-
ministered within each hour-long decision window
given our time discretization. We eventually then
grouped into 5 bins by total drug amount given each
hour: {0, (0, 5), [5, 15), [15, 40), [40, 150]} with units of
mcg/kg/hr. Figure 12 shows the distribution of raw
fluid amounts in the data.

Lastly, Figure 13 shows the frequency by time point for
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Figure 12: Distribution of raw vasopressor amounts adminis-
tered per hour in the original dataset prior to discretization,
in (normalized) mcg/kg/hr.

how often each of the 20 different types of actions was
administered. Roughly 85% of all time points had no
treatment administered.

Figure 13: Overall frequency of each action type in our
dataset.

E.3 Reward Function Construction

We show reward function plots for the two reward func-
tions used in this paper. Figure 14 shows the MAP-
based reward used in most of the work. Note the inflec-
tion points at 55 and 60 mmHg values. Also, patients
who had adequate urine output had a lower threshold
for MAP values that start to yield worse rewards, as
clinically a modest urine output means the clinician
is less worried about the precise MAP value unless it
becomes very low.

Figure 15 shows the reward used for the reward re-

Figure 14: The true reward function used in hypotension
experiments. The algorithm is rewarded for keeping the the
Mean Arterial blood Pressure (MAP) 65mmHg, a common
target value in critical care.

specification experiment in the main paper, when we
tested to what extent a model learned to yield good
policies with respect to the MAP reward might gen-
eralize to this new reward. Clinically, higher lactate
values indicate possible organ damage and are a sign of
worsening illness.

E.4 Learning the Behavior Policy

We use the approach of Raghu et al. (2018) to learn
our behavior policy, and use a k-nearest-neighbors ap-
proach. Their work found that the calibration of the
behavior policy is crucial for accurate OPE and that
more complex models such as neural networks were
often poorly calibrated. In consultation with our in-
tensivist collaborator, we hand-constructed a distance
function based on our observed variables, and used this
to do kNN.

We used a simple weighted Euclidean distance between
observations, with a weight of 3 on creatinine, 2 on
FiO2, 3 on heart rate, 4 on lactate, 1 on platelets, 5 on
urine output, 2.5 on total bilirubin, 5 on MAP, and 5
on GCS. Although not actually used as features in our
models, we also considered 4 additional binary features
that indicate the discrete vasopressor amount (if any)
given at the last time point, and 3 binary features that
indicate the discrete fluid amount administered at the
last time point. All of these extra features received a
weight of 5. We lastly added features that added the
total raw amount of vasopressor and fluid given thus
far in a trajectory, as well as in the past 8 hours; these
4 features also had a weight of 5. Concretely, we used
d(o, o

0
) =

P
w

i
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i
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0
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2, with the weights w
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listed
previously and i indexing observation variables.
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Figure 15: Reward function based on lactate used for the
reward re-specification experiment in the main text.

For performing kNN, we learned a behavior policy based
on an observation’s 100 nearest neighbors using our
hand-crafted distance metric, and simply count up the
actions performed by those neighbors to use as our
estimate of behavior action probabilities. In rare cases
where none of the 100 nearest neighbors correctly pre-
dicted the true next action taken, we reset the behavior
policy to assign 3% probability to the actual action that
was taken.

We learn a different estimate of the behavior policy
for each of the 5 folds of cross validation, using the
same splits that were used by each of the later methods
considered.

E.5 Additional Qualitative Results

Figures 16, 17, and 18 show additional qualitative re-
sults about the learned models for POPCORN, 2-stage
EM, and value-only, for the heart rate, lactate, and
urine output variables. As in Figure 5 in the main text,
we again see that the 2-stage approach largely learns
states that exhibit very high overlap. Likewise, the
value-only baseline learns states that are much more
spread apart, and even occasionally learn bizarre distri-
butions that are close to a point mass at one value. As

expected, POPCORN learns models in between these
two extremes, with diverse enough states to learn a
good policy while also fitting the data decently well.
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Figure 16: Visualization of learned heart rate distributions. Left: 2-stage EM. Middle: POPCORN, � = 0.032. Right:

Value-only. Each subplot visualizes all 100 learned distributions of heart rate values for a given method across the 20
actions and K = 5 states. Each pane in a subplot corresponds to a different action, and shows distributions across the 5
states. Vasopressor actions vary across rows, and IV fluid actions vary across columns.
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Figure 17: Visualization of learned lactate distributions. Left: 2-stage EM. Middle: POPCORN, � = 0.032. Right:

Value-only. Each subplot visualizes all 100 learned distributions of lactate values for a given method across the 20 actions
and K = 5 states. Each pane in a subplot corresponds to a different action, and shows distributions across the 5 states.
Vasopressor actions vary across rows, and IV fluid actions vary across columns.
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Figure 18: Visualization of learned urine output distributions. Left: 2-stage EM. Middle: POPCORN, � = 0.032. Right:

Value-only. Each subplot visualizes all 100 learned distributions of urine output values for a given method across the 20
actions and K = 5 states. Each pane in a subplot corresponds to a different action, and shows distributions across the 5
states. Vasopressor actions vary across rows, and IV fluid actions vary across columns.
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