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Abstract

Many medical decision-making tasks can be

framed as partially observed Markov deci-

sion processes (POMDPs). However, prevail-

ing two-stage approaches that first learn a

POMDP and then solve it often fail because

the model that best fits the data may not be

well suited for planning. We introduce a new

optimization objective that (a) produces both

high-performing policies and high-quality gen-

erative models, even when some observations

are irrelevant for planning, and (b) does so

in batch off-policy settings that are typical

in healthcare, when only retrospective data is

available. We demonstrate our approach on

synthetic examples and a challenging medical

decision-making problem.

1 Introduction
Reinforcement learning (RL) has the potential to assist

sequential decision-making in healthcare, especially in

settings lacking strong evidence-based guidelines. For

example, in this work we will focus on the task of man-

aging patients in an intensive care unit (ICU) with acute

hypotension, a life-threatening emergency in which a

patient’s blood pressure drops dangerously low. In situ-

ations like this in critical care, it is often unclear which

treatment will be most effective for a given patient,

and in what amount, frequency, and duration (García

et al., 2015). RL might help answer these questions, but

applying RL in healthcare is challenging, as highlighted

by Gottesman et al. (2019), and we are still far from

integration into the clinic. Two key challenges for most

clinical decision-making problems, including ours, are:

1. Medical environments are partially observable: a

patient’s current physiological state alone is insuf-

ficient to make good decisions, and we need other

context about their history.
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2. We must learn in a batch setting, given only a single

batch of retrospective (usually observational) data.

In this work we focus on pushing the limits of model-
based RL, using discrete hidden state representations.

Generative models can of course help us learn to recom-

mend good actions (our primary goal), but they also

have many other important benefits. For instance, we

can use them to predict future observations (a form

of validation), they can learn in the presence of miss-

ing data (pervasive in clinical settings), and they are

generally more sample-efficient than competing model-

free approaches (important as many medical problems

are data-limited). Building directly inspectable mod-

els via simple, discrete structures further enables easy

inspection for clinical sensibility, a task much harder

and sometimes impossible to accomplish from more

complicated black-box models (e.g. deep learning).

We propose POPCORN

1
, or Partially Observed Pre-

diction Constrained Reinforcement learning, a new op-

timization objective for the well-known partially ob-

servable Markov decision process (POMDP) (Kaelbling

et al., 1998). POMDPs have been traditionally trained

in a two-stage process, where the first stage learns a

generative model by maximizing the likelihood of ob-

servations and is not tied to the decision-making task.

However, this approach can fail to find good policies

when the model is (inevitably) misspecified; in particu-

lar, a maximum likelihood model may spend capacity

modeling irrelevant information rather than signal im-

portant for the task at hand. We demonstrate this effect

and show how POPCORN, which constrains maximum

likelihood training of the POMDP model so that the

value of the model’s induced policy achieves satisfactory

performance, can overcome these issues.

2 Related Work
RL in Healthcare. Healthcare applications of RL

have proliferated in recent years, in diverse clinical

areas such as schizophrenia (Shortreed et al., 2011),

1An implementation of POPCORN can be found online
at https://github.com/dtak/POPCORN-POMDP, along with
code to reproduce our experiments.

https://github.com/dtak/POPCORN-POMDP
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sepsis (Komorowski et al., 2018; Raghu et al., 2017),

mechanical ventilation (Prasad et al., 2017), HIV (Ernst

et al., 2006), and dialysis (Martín-Guerrero et al., 2009).

However, most works use model-free approaches, os-

tensibly because learning accurate models from noisy

biological data is challenging. All of these works further

assume full-observability, which is often not accurate.

A few prior works in this applied space have explicitly

modeled partial observability. POMDPs have been ap-

plied to heart disease management (Hauskrecht and

Fraser, 2000), sepsis treatment in off-policy or simu-

lated settings (Li et al., 2018; Oberst and Sontag, 2019;

Peng et al., 2018), and HIV management (Parbhoo

et al., 2017). All of these approaches take a two-stage

approach to learning. In contrast, our approach is

decision-aware throughout the optimization process.

Imperfect Models in RL Model-based RL is a long-

standing area of research, and work as early as Abbeel

et al. (2006) looked at learning misspecified models that

are still useful for RL. More broadly, “end-to-end” opti-

mization methods directly incorporate a downstream

decision-making task during model training, and are

growing in popularity across machine learning, from

graphical models (Lacoste–Julien et al., 2011) to sub-

modular optimization (Wilder et al., 2019). Within RL,

recent decision-aware optimization efforts have explored

partially-observed problems in both model-free (Karkus

et al., 2017) and model-based settings (Igl et al., 2018).

These RL efforts differ from ours in two key respects.

First, they exclusively focus on on-policy settings for

simulated environments such as Atari. Second, they

rely heavily on black-box neural networks for feature

extraction, which are not generally sample-efficient or

easily interpreted. In many cases (e.g. Karkus et al.

(2017)), the model is treated as an abstraction and there

is no way to set the importance of the model’s ability

to accurately generate trajectories. Perhaps closest in

spirit to our approach is theoretical work on value-aware

model learning in RL (Farahmand, 2018).

3 Background
POMDP Model. We consider a POMDP with K dis-

crete latent states (e.g. physiological conditions of pa-

tients), A discrete actions (e.g. possible treatments), D-

dimensional observations (e.g. clinical measurements),

and deterministic rewards (e.g. how “good” or “bad”

the treatments were). The entire generative model

for states s

t

2 {1, 2, . . .K} and observations o

t

2 RD

across timesteps t 2 {0, 1, . . . T} is given by:

p(s0 = k) , ⌧0k, (1)

p(s

t+1 = k|s
t

= j, a

t

= a) , ⌧

ajk

,

p(o

t+1,d|st+1=k, a

t

=a) , N (µ

akd

,�

2
akd

).

We define the model parameters as ✓ ⌘ {⌧, µ,�, R}. ⌧

describes the transition probability of moving to the

next (unobserved) state s

t+1, given current state s

t

and

action a

t

. We model each observation o

t

as Gaussian,

with emission parameters µ and �

2
denoting the mean

and variance when in state s

t

after taking action a

t�1.

Although any (tractable) distribution is possible, we

choose to use independent Gaussians across the D di-

mensions for simplicity. Completing the POMDP spec-

ification is the deterministic reward function R(s, a),

specifying the reward from taking action a in state s.

A dataset consists of N trajectories (e.g. decisions made

about a patient’s care, along with clinical observations).

We index each trajectory by n 2 {1, . . . , N}, with the

length of trajectory n given by T

n

 T .

Given a POMDP with parameters ✓, we can compute

the belief b

t

2 �

K

, a vector in the simplex �

K ,
{q 2 RK |PK

k=1 qk = 1, q

k

� 0}. The belief defines

the posterior over state s

t

given all past actions and

observations: b

tk

, p(s

t

= k|o0:t, a0:t�1), is a sufficient

statistic for the entire history, and can be computed

efficiently via forward filtering (Rabiner, 1989). We

can solve the POMDP using a planning algorithm to

learn a policy ⇡

✓

: �

K ! �

A

, mapping any belief

to a distribution over actions (or a single action for

deterministic policies). The goal is to find a policy with

high value (the expected sum of discounted rewards):

V

⇡

=

P
T

t=0 �
tE[r

t

], with � 2 (0, 1) the discount.

Learning Parameters: Input-Output HMM. The

model in Eq. (1) is an input-output hidden Markov

model (IO-HMM) (Bengio and Frasconi, 1995), where

actions are inputs and observations are outputs. The

model parameters {⌧, µ,�} that maximize the marginal

likelihood of observed trajectories can be efficiently

computed using the EM algorithm for HMMs (Rabiner,

1989; Chrisman, 1992). For Bayesian approaches, effi-

cient algorithms for sampling from the posterior over

POMDP models also exist (Doshi-Velez, 2012). The

deterministic reward function R is estimated separately

by minimizing squared errors with the observed rewards

(see Appendix B for additional details).

Solving for the Policy. The value function of

a discrete-state POMDP can be modeled arbitrarily

closely as the upper envelope of a finite set of linear

functions of the belief (Sondik, 1978). However, ex-

act value iteration is intractable even for very small

POMDPs. In this work, we use point based value it-

eration (PBVI) (Pineau et al., 2003), an approximate

algorithm that is significantly more efficient (see Shani

et al. (2013) for a survey of related algorithms and ex-

tensions). Rather than perform Bellman backups over

all valid beliefs b 2 �

K

, PBVI only performs backups

at a specific (small) set of beliefs. For the modest state
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spaces in our applications (K << 100), PBVI is an

efficient solver. However, we require two key innova-

tions beyond standard PBVI. First, we adapt ideas

from Hoey and Poupart (2005) to handle continuous

observations. Second, we relax the algorithm so that

each step is differentiable. See Appendix A for details.

Off-Policy Value Estimation. Let ⇡

✓

be the (near-

optimal) policy obtained from PBVI for the given model

parameters ✓ = {⌧, µ,�, R}. The fact that ⇡

✓

is opti-

mal for a specific model ✓ does not mean it is optimal

in practice (e.g. in the clinic), because our generative

model is almost certainly misspecified. If we have access

to an environment simulator, we can evaluate ⇡

✓

via

standard Monte Carlo rollouts. However, in the batch
setting, we lack the ability to interact with the environ-

ment and must turn to off policy evaluation (OPE) to

estimate a policy’s value.

Let ⇡beh denote the behavior policy under which the

observed data were collected (e.g. clinician treatment

tendencies).

2
Let D denote a set of N trajectories

collected under ⇡beh. In this work, the specific OPE

technique we use is consistent weighted per-decision im-

portance sampling (CWPDIS, (Thomas, 2015)) which

estimates the value of a policy ⇡

✓

as:

V

CWPDIS
(⇡

✓

) ,
TX

t=1

�

t

P
n2D r

nt

⇢

nt

(⇡

✓

)P
n2D ⇢

nt

(⇡

✓

)

, (2)

⇢

nt

(⇡

✓

) ,
tY

s=0

⇡

✓

(a

ns

|o
n,0:s, an,0:s�1)

⇡beh(ans|on,0:s, an,0:s�1)
.

In general, importance sampling (IS) estimators such

as CWPDIS have lower bias than other approaches

but suffer from higher variance. Another class of OPE

methods learn a separate model to simulate trajectories

in order to estimate policy values (e.g. Chow et al.

(2015)), but may suffer from unacceptably high bias in

real-world, noisy settings.

4 Prediction-Constrained POMDPs
We now introduce POPCORN, our proposed prediction-
constrained optimization framework for learning

POMDPs. We seek to learn parameters ✓ that will

both assign high likelihood to the observed data while

also yielding a policy ⇡

✓

with high (estimated) value.

As noted in Sec. 2, previous approaches for learning

POMDPs generally fall into two categories. Two-stage

methods (e.g. Chrisman (1992)) that first learn a model

and then solve it often fail to find good policies un-

der severe model misspecification. End-to-end methods

(e.g. Karkus et al. (2017)) that focus only on the

2In our experiments with simulated environments, we
assume ⇡beh is given. In the real data setting, we estimate
the behavior policy via the k-nearest neighbors approach of
Raghu et al. (2018). See Appendix E.4 for details.

“discriminative” task of policy learning typically fail

to produce accurate generative models of the environ-

ment. They also lack the ability to handle missing

observations, which is especially problematic in medical

contexts where missing data is pervasive.

Our approach offers a balance between these purely

maximum likelihood-driven (generative) and purely

reward-driven (discriminative) extremes. We retain

the strengths of the generative approach—the ability

to plan under missing observations, simulate accurate

dynamics, and inspect model parameters to inspire

scientific hypotheses—while benefiting from model pa-

rameters that are directly informed by the decision task

as in end-to-end frameworks.

4.1 POPCORN Objective
Our proposed framework seeks a POMDP ✓ that maxi-

mizes the log marginal likelihood Lgen of the observed

data D, while enforcing that the solved policy’s (esti-

mated) value V (⇡

✓

) is high enough to be useful. For-

mally, we seek a ✓ that maximizes the constrained

optimization problem:

max

✓

Lgen(✓), subject to: V (⇡

✓

) � ✏, (3)

with the functions Lgen and V defined below. The

tolerance ✏ defines a minimum acceptable policy value

(e.g. as determined by a domain expert).

Setting practical optimization considerations aside, we

would prefer the constrained formulation of Eq. (3) as

it best expresses our model-fitting goals: as good a

generative model as possible, but we will not accept

poor decision-making. This objective is similar to the

prediction-constrained objective used by Hughes et al.

(2018) for optimizing supervised topic models; here we

apply similar ideas to batch, off-policy RL settings.

In practice, solving constrained problems is challeng-

ing, so we transform to an equivalent unconstrained

objective using a Lagrange multiplier � > 0:

max

✓

Lgen(✓) + �V (⇡

✓

). (4)

Setting � = 0 recovers classic two-stage training, while

the limit � ! 1 approximates end-to-end approaches.

In our experiments, we compare against both of these

baseline approaches, referring to the � = 0 case as “2-

stage”, and the � ! 1 case as “Value-only” (for this

case, in practice we optimize V (⇡

✓

) and ignore Lgen).

Computing the Generative Term. We define

Lgen(✓) as the log marginal likelihood of observations,

given the actions in D and parameters ✓:

Lgen(✓) =
P

n2D log p(o

n,0:T
n

|a
n,0:T

n

�1, ✓). (5)

This IO-HMM likelihood marginalizes over uncertainty

about the hidden states, can be computed efficiently

via dynamic programming (Rabiner, 1989), and is also

amenable to automatic differentiation w.r.t. ✓.
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Computing the Value Term. Computation of V (⇡

✓

)

entails two distinct parts: solving for the policy ⇡

✓

given

✓, and then estimating the value of this policy using

OPE and D. We require both to be differentiable to

permit gradient-based optimization. To solve for the

policy, we apply a differentiable relaxation of PBVI

(see Appendix A.4 for full details). Although standard

PBVI returns a deterministic policy, we relax this as

well and learn stochastic policies as they are generally

easier to evaluate with OPE. We emphasize that our

framework is general and other solvers are possible as

long as they can be made differentiable. To compute the

estimated policy value, we use the CWPDIS estimator

in Eq. (2). As it is a differentiable function of ✓, our

unconstrained objective in Eq. (4) can be optimized via

first-order gradient ascent.

4.2 Optimizing the Objective
We optimize using gradients computed from the full

dataset (we do not use subsample to avoid extra vari-

ance). We optimize with Rprop (Igel and Hüsken, 2003)

with default settings. Our objective is challenging due

to non-convexity, as even the generative term alone

admits many local optima. To improve solution quality

in all experiments and for all methods, prior to final

evaluation we take the best of 25 random restarts as

measured by training objective value.

Stabilizing the Off-Policy Estimate. Although our

OPE estimate (using CWPDIS) was reliable in simu-

lated environments, on our real dataset it had unusably

high variance, as is common with IS estimators. We

address this in two ways.

First, we add an extra term in the objective encouraging

larger effective sample size (ESS) and hence lower vari-

ance, following Metelli et al. (2018). Our final objective

includes an ESS penalty with weight �ESS > 0:

max

✓

Lgen(✓) + � ·
"
V (⇡

✓

).� �ESSp
ESS(✓)

#
. (6)

As the CWPDIS estimator in Eq. 2 is the weighted sum

of a sequence of T IS estimators (the average discounted

reward at each t), we sum all these stepwise ESS

t

values

to yield the final ESS(✓) term. ESS

t

is approximated

given IS weights {⇢
nt

}N
n=1 as

(
P

n

⇢

nt

)2P
n

⇢

2
nt

(Kong, 1992).

Second, we restrict the support of ⇡

✓

and then renor-

malize to only allow actions where there was at least

� probability under ⇡beh. This forces strong overlap

between the support of ⇡beh and ⇡

✓

and often substan-

tially reduces the variance of the final OPE estimate.

This also provides a soft notion of “safety”, as now rare

or unknown actions are prohibited.

Hyperparameters. The key hyperparameter for

POPCORN is the scalar tradeoff � > 0. We try a

range of 5 �’s per environment spaced evenly on a log

scale. We also rescale Lgen(✓) by the total number of

observed scalars (D(

P
n

T

n

) if there is no missing data),

so that the magnitude of � has roughly consistent im-

pact across datasets. We also try 5 ESS penalty weights

�ESS evenly spaced on a log scale, but this term was

only necessary for the real data experiments.

5 Simulated Environments
We first evaluate POPCORN on three simulated envi-

ronments to validate its utility across a range of possible

model misspecification scenarios. We later evaluate on

a more difficult medical simulator. For all experiments

in this section, everything is conducted in the batch,

off-policy setting. The simulator is only used to produce

the initial data set and to evaluate the final policy after

training concludes. We separate each experiment into

a description of procedure and highlights of the results.

Recall that our goal is to learn simple—and therefore

interpretable—models that perform robustly in misspec-

ified settings. As such, we compare against an approach

that does not attempt to model the dynamics (“value

term only”), an approach that first learns the model and

then plans (“2-stage”), and a known optimal solution

(when available). In all cases, we are interested in how

these methods trade off between explaining the data

well (log marginal likelihood of data) and making good

decisions (policy value).

5.1 Synthetic Domains with Misspecification
We demonstrate how POPCORN overcomes various

kinds of model misspecification in the context of the

classic POMDP tiger problem (Kaelbling et al., 1998).

The tiger problem consists of a room with 2 doors: one

door is safe, and the other door has a tiger behind it.

The agent has 3 possible actions: either open one of the

doors, thereby ending the episode, or listen for noisy

evidence of which door is safe to open. Revealing a tiger

gives �5 reward, the safe door yields +1 reward, and

listening incurs �0.1 reward. The goal is to maximize

rewards over many repeated trials, with the “safe” door’s

location randomly chosen each time.

We set � = 0.9 to encourage the agent to act quickly.

We collect training data from a random policy that first

listens for 5 time steps, and then randomly either opens

a door or listens again. We train in the batch setting
given a single collection of 1000 trajectories of length

5-15. After optimization, we evaluate each policy via

an additional 1000 Monte Carlo rollouts.

Tiger with Irrelevant Noise: Finding dimen-
sions that signal reward. In this setting, whenever

the agent listens for the tiger, it receives an observation

o

t

with D = 2 dimensions. The first dimension provides

a noisy signal as to the location of the safe door. We set

this “signal” dimension o

t1 ⇠ N (isafe, 0.3
2
), where the



Joseph Futoma, Michael C. Hughes, Finale Doshi-Velez

−1.0 −0.5 0.0
log likelihood oI data

−1.0

−0.5

0.0

0.5

1.0

po
lic

y 
va

lu
e

Ignore 1 noisy dims.

−1.5 −1.0 −0.5
log likelihood of dDtD

−6

−4

−2

0

po
lic

y 
vD

lu
e

80% 0issing DDtD

−1.0 −0.8 −0.6
ORg OLNeOLhRRd RI data

−1.0

−0.5

0.0

0.5

pR
OLc
y 
va
Ou
e

0LVpecLILed LLNeOLhRRd

BeVt PanuaO VROutLRn
VaOue terP RnOy
P2PC251 λ 10
2-Vtage ((0 then PBVI)

Figure 1: Solutions from all competitor methods in the 2D fitness landscape (policy value on y-axis; log marginal likelihood
on x-axis). An ideal method would score in the top right corner of each plot. Left : Results from Tiger with Irrelevant
Noise Dimensions. Middle: Results from Tiger with Missing Data. Right : Results from Tiger with Wrong Likelihood.
POPCORN is robust to all three types of model misspecification tested, and consistently learns better policies than 2-stage
and better models than value-only.

mean is the safe door’s index isafe 2 {0, 1}. The second

dimension is irrelevant to the safe door’s location, and

we set o

t2 ⇠ N (j, 0.1

2
), with j ⇠ Unif({0, 1}) in each

trial. Thus, K = 4 total states would be needed to ex-

plain perfectly both the relevant and irrelevant signals

for all possible values of (isafe, j).

We measure performance allowing only K = 2 states

to assess how each method spends its limited capacity

across the generative and reward-seeking goals. We

expect the 2-stage baseline will identify the irrelevant

states indexed by j, as they have lower standard devia-

tion (0.1 vs. 0.3 for the signal dimension) and thus are

more important to maximize likelihood. In contrast,

we expect POPCORN will focus on the relevant signal

dimension and recover high-value policies.

Tiger with Missing Data: Finding relevant di-
mensions when some data is missing. This next

scenario extends the previous setting in which the listen

action produces D = 2 observations, where the first

signals the safe door’s location and the second is irrel-

evant. However, now the dimension with the relevant

signal is often missing. Specifically, o

t1 ⇠ N (isafe, 0.3
2
)

and o

t2 ⇠ N (j, 0.3

2
), but we select 80% of signal obser-

vations o

t1 to be missing uniformly at random. This

(coarsely) simulates clinical settings where some mea-

surements may be infrequent but important (e.g. rele-

vant lab tests), while others are common but not directly

useful (e.g. routine vitals).

The expected outcome with K = 2 states is that a 2-

stage approach driven by maximizing likelihood would

prefer to model the always-present irrelevant dimen-

sion. In contrast, POPCORN should learn to favor the

signal dimension even though it is rarely available and

contributes less overall to the likelihood. This ability

to gracefully handle missing dimensions is a natural

property of generative models and would not be easily

done with a model-free approach.

Tiger with Wrong Likelihood: Overcoming a
misspecified density model. Finally, we consider

a situation in which our generative model’s density fam-
ily cannot match the true observation distribution. This

time, the listen action produces a D = 1 dimensional

observation o

t

. The true distribution of this observation

signal is a truncation of a mixture of two Gaussians,

denoted GMM(o) = 0.5N (o|0, 0.12) + 0.5N (o|1, 1.02).
If the first door is safe, listening results in strictly neg-

ative observations: p(o) / �(o < 0)GMM(o). If the

second door is safe, listening results in strictly positive

observations: p(o) / �(o > 0)GMM(o).

While the the true observation densities are not Gaus-

sian, we will fit POMDP models with Gaussian likeli-

hoods and K = 2 states. We expect POPCORN to still

deliver high-value policies, even though the likelihood

will be suboptimal. See Appendix C for more details

on the overall setup of all three tiger environments as

well as additional results.

5.2 Conclusions from Synthetic Domains

Across all variants of the Tiger problem, we observe

many common conclusions from Fig. 1. Together, these

results demonstrate how POPCORN is robust to many

different kinds of model misspecification.

POPCORN learns consistently better policies
than 2-stage. Across all 3 panels of Fig. 1, POPCORN

(red) delivers higher value V (⇡

✓

) (y-axis) than the 2-

stage baseline (purple).

Value-only learns poor generative models. In 2 of

3 panels, the value-only baseline (green) has noticeably

worse likelihood Lgen(✓) (x-axis) than POPCORN. The

far right panels shows indistinguishable performance.

Notably, optimizing this objective is significantly less

stable than the full POPCORN objective. This aligns

with findings from Levine and Koltun (2013), who also

observed that policy learning via direct optimization of

IS estimates of policy value is challenging.

POPCORN solutions are consistent with
manually-designed solutions. In all 3 panels, POP-

CORN (red) is the closest method to the ideal manually-
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designed solution (gray).

5.3 Sepsis Simulator: Medically-motivated
environment with known ground truth.

We now move from simple toy problems—each designed

to demonstrate a particular robustness of our method—

to a more challenging simulated domain. In real-world

medical decision-making tasks, it is impossible to eval-

uate the value of a learned policy using data collected

under that policy’s decisions. However, in a simulated

setting, we can evaluate any given policy to assess its

true value. We emphasize ✓ is still learned in the batch

setting, as only after optimization do we use the simu-

lator to allow for accurate evaluation of policy values.

We use the simulator from Oberst and Sontag (2019),

which is a coarse physiological model for sepsis with

D = 5 discrete observations: 4 ordinal-valued vitals

(e.g. “low”/“normal”/“high”), and a binary indicator for

diabetes. The true simulator is governed by an underly-

ing known Markov decision process (MDP), which has

1440 possible discrete states. There are 8 actions (3

different binary actions), and trajectories are at most

20 timesteps. Rewards are sparse, with 0 reward at

intermediate time steps and �1 or +1 at termination.

To make this simulator similar to our other environ-

ments with continuous-valued observations, we add in-

dependent Gaussian noise with standard deviation 0.3

to each observation. This measurement error also makes

the environment partially observable so that modeling

it as a POMDP is reasonable. Although Oberst and

Sontag (2019) used structural causal models to simulate

counterfactual trajectories and explicitly address causal

questions, our POMDP construction implicitly assumes

no hidden confounding. Our work skirts causality, as we

view POMDPs solely as a convenient way to summarize

trajectory histories. Our use of this simulator hence

differs substantially from its original use, where it was

used to create strong (known) hidden confounding in

order to illustrate failure modes of OPE

3
.

The true discrete-state MDP is easily solved via exact

value iteration. We generate 2500 trajectories under

an ✏-greedy behavior policy, with ✏ = 0.14 so each non-

optimal action has a .02 probability of being taken.

Given observed trajectories, we learn POMDPs assum-

ing K = 5 (we obtained similar qualitative results for

other K), and evaluate policies via an additional 2500

Monte Carlo rollouts. See Appendix D for full details.

Results and Conclusions. Figure 2 shows POP-

3We refer interested readers to recent related work in
Tennenholtz et al. (2020) that specifically proposes a new
technique for performing OPE with POMDPs where there
is hidden confounding. This differs from Oberst and Sontag
(2019) who focus solely on a new approach to generating
counterfactual trajectories under a proposed policy.
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Figure 2: Quantitative results from the sepsis simulator.
An ideal method would score in the top right corner. No
methods recover a fully optimal policy (grey line), but
POPCORN consistently learns better policies than 2-stage
and better models than value-only. A policy which takes
actions uniformly at random has a value of �0.72, so the
2-stage policy barely outperforms this.
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Figure 3: Quantitative results from the hypotension data,
showing the trade-offs between policy value and likelihood
(ESS is in legend). POPCORN again learns much better
models than value-only and better policies than 2-stage.

CORN again learns higher-value policies than 2-stage.

Additionally, while the value-term-only baseline learns

a policy on par with POPCORN, its likelihood is sub-

stantially lower. While all policies are far from optimal,

this unsurprising given the small state space, modest

observation noise, and high ✏ for the behavior policy.

6 Real Data Application: Hypotension
To showcase the utility of our method on a real-world

medical decision making task, we apply POPCORN

to the challenging problem of managing acutely hy-

potensive patients in the ICU. Although hypotension

is associated with high morbidity and mortality (Jones

et al., 2006), management of these patients is diffi-

cult and treatment strategies are not standardized, in

large part because there are many underlying potential

causes of hypotension. Previosuly, Girkar et al. (2018)

attempted to predict the efficacy of fluid therapy for

hypotensive patients with only mixed success. We apply

POPCORN to this problem and first study the same

trade-offs between generative and reward-seeking per-

formance as in Sec. 5. We further perform an in-depth

evaluation of the learned policy and our confidence in

it (via effective sample sizes and qualitative checks).

Cohort. We use 10,142 ICU stays from MIMIC-III

(Johnson et al., 2016), filtering to adult patients with at

least 3 abnormally low mean arterial pressure (MAP)
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values in the first 72 hours of ICU admission. Our

observations consist of 9 vitals and laboratory measure-

ments: MAP, heart rate, urine output, lactate, Glasgow

coma score, serum creatinine, FiO2, total bilirubin, and

platelets count. We discretized time into 1-hour win-

dows, and setup the RL task to begin 1 hour after ICU

admission to ensure a sufficient amount of data exists

before starting a policy. Trajectories end either at ICU

discharge or at 72 hours into the ICU admission, so

there are at most 71 actions taken. This formulation

was made in consultation with a critical care physician,

who advised most acute cases of hypotension would

present early during an ICU admission. We expressly

do not impute missing observations: only observed

measurements contribute to the overall likelihood.

Setup. Our action space consists of the two main

treatments for acute hypotension: fluid bolus therapy

and vasopressors, both of which are designed to quickly

raise blood pressure and increase perfusion to the organs.

We discretize fluids into 4 actions (none, low, medium,

high), and discretize vasopressors into 5 actions (none,

low, medium, high, very high) for a total of 20 discrete

actions. To assign rewards to individual time steps, we

use a piecewise-linear function created in consultation

with a critical care physician. A MAP of 65mmHg is

a common target (Asfar et al., 2014), so if an action

is taken and the next MAP is 65 or higher, the next

reward is +1, the highest possible value. Otherwise,

rewards decrease as MAP values drop, with MAP  30

delivering a reward of 0, the smallest possible value.

Further details on the action space discretization, a plot

of the reward function, and other preprocesssing can

be found in Appendix E.

We split the dataset into 5 distinct test sets for cross-

validation, and throughout present results on the test

sets, with standard errors across folds where appro-

priate. We set �ESS = 4 and set � = 0.03, which

prohibits all actions assigned less than 3% probability

by our estimated behavior policy. Lastly, we study

several possible values for the Lagrange multiplier,

� 2 {10�2.5
, 10

�1.5
, 10

�0.5}.
6.1 Conclusions from ICU Application

POPCORN achieves the best balance of high-
performing policies and high likelihood models.
As in earlier results, Figure 3 shows how POPCORN

balances generative and decision-making performance

well, with darker red indicating higher �’s and thus im-

proved policy values. The policy values for the 2-stage

baseline and the likelihood scores for the value-only

baseline both substantially underperform POPCORN.

POPCORN has reasonably accurate forecasts.
To demonstrate the ability of models to predict future

observations, Figure 4 shows results from a forecasting

experiment. Each method is given the first 12 hours

of a trajectory, and then must predict future observa-

tions up to 12 hours in the future. Importantly, only

measured observations are used to calculate the mean

absolute error between model predictions and true val-

ues. Unsurprisingly 2-stage generally performs the best,

although POPCORN for small values of � often per-

forms similarly. On the other hand, the value-only

baseline fares significantly worse. For some observa-

tions (MAP and urine output; see left-most column of

Figure 4), it makes nonsensical predictions far outside

the range of observed data, with errors several orders

of magnitudes worse than POPCORN and 2-stage.

POPCORN enables inspection if learned mod-
els are clinically sensible. We visualize the learned

emission distributions for MAP across the K = 5 states

and 20 actions for each method in Figure 5. Note that

densities may appear non-Gaussian, as they are back-

transformed to the original scale of the data but were

modeled on a log-scale. POPCORN’s distributions are

more spread out and better differentiate between states

compared to the 2-stage baseline, which learns very sim-

ilar states with high overlap. As a result, the 2-stage

policy will end up recommending similar actions for

most patients. Value-only learns states that are even

more diverse, allowing it to learn an effective policy

but at the expense of not modeling the observed data

well. See Appendix E.5 for similar results for lactate,

urine output, and heart rate. Although these results

are exploratory, these simple visualizations of what the

models have learned are only possible due to the white-

box nature of our HMM-based approach, compared

with e.g. deep reinforcement learning methods.

Figure 6 visualizes the action probabilities for the be-

havior policy, a value-only policy, a POPCORN policy,

and a 2-stage policy. In general, the POPCORN policy

most closely aligns with the behavior, although it is

also quite similar to value-only. On the other hand, the

2-stage policy seems in general more conservative and

tends to have lower probabilities on more aggressive

actions. In future work we plan to work with clinical

partners to explore individual patient trajectories and

understand how and why these treatment policies differ.

POPCORN learns models that transfer to other
tasks. Figure 7 shows results testing how well models

transfer to solving a new task. We use a new reward

function that penalizes high lactate values (see Ap-

pendix E.3 for a plot). For each method, we freeze

⌧, µ,� from the previous optimization, but learn a new

R. Then we solve these new models to learn new policies,

and estimate their values. We find that the POPCORN

and two-stage models transfer reasonably well, whereas

value-only is substantially worse especially given its

high original estimated value in Figure 3.
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Figure 4: Forecasting results. Top to bottom, left to right : MAP (scale zoomed out); MAP (value-only out of pane); lactate;
urine output (scale zoomed out); urine output (value-only out of pane); heart rate. 2-stage performs the best throughout,
but for smaller values of � POPCORN is often not much worse. Value-only constantly makes wildly inaccurate predictions,
as its forecast errors are often several orders of magnitude worse (see MAP and urine results in first column).
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Figure 5: Visualization of learned MAP distributions. Left: 2-stage. Middle: POPCORN, � = 0.032. Right: Value-only.
Each subplot visualizes all 100 learned distributions of MAP values for a given method, across 20 actions and K = 5 states.
Each pane in a subplot corresponds to a different action, and shows distributions across the 5 states. Vasopressors vary
across rows, and fluids vary across columns. 2-stage learns states that are mostly homogeneous, value-only learns states
that are differentiated and often far apart, while POPCORN is somewhere in between.
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7 Discussion
We proposed POPCORN, an optimization objective for

off-policy batch RL with partial observability. POP-

CORN balances the trade-off between learning a model

with high likelihood and a model well-suited for plan-

ning, even in batch off-policy settings. Synthetic exper-

iments demonstrate POPCORN achieves good policies

and decent models even in the face of misspecification

(in the number of states, the choice of the likelihood,

or the availability of data). Performance on a clini-

cal decision-making task suggests we may be able to

learn a policy on par or even slightly better than the
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Figure 7: Results from reusing previously learned models
from each approach, and solving them to learn new policies
given a different reward function based on lactate values. 2-
stage and POPCORN learn models that are able to transfer
reasonably well to the new task, while value-only does not.

observed clinician behavior policy. Future directions in-

clude scaling to environments with more complex state

structures or long-term temporal dependencies, investi-

gating semi-supervised settings where not all sequences

have rewards, better leveraging that the behavior policy

is not terribly sub-optimal, and learning Pareto-optimal

policies that balance multiple competing goals. We hope

methods such as ours ultimately become integrated into

clinical decision support tools to assist physicians in

improving the treatment of critically ill patients.



Joseph Futoma, Michael C. Hughes, Finale Doshi-Velez

Acknowledgements

FDV and JF acknowledge support from NSF Project

1750358. JF additionally acknowledges Oracle Labs,

a Harvard CRCS fellowship, and a Harvard Embed-

ded EthiCS fellowship. MCH acknowledges support

from NSF Project HDR-1934553. The authors also

thank David Sontag, Omer Gottesman, Leo Anthony

Celi, Ryan Kindle, and the anonymous reviewers for

thoughtful and constructive feedback.

References

M. I. M. García, P. G. González, M. G. Romero, A. G.

Cano, C. Oscier, A. Rhodes, R. M. Grounds, and

M. Cecconi. Effects of fluid administration on arterial

load in septic shock patients. Intensive care medicine,
41(7):1247–1255, 2015.

O. Gottesman, F. Johansson, M. Komorowski, A. Faisal,

D. Sontag, F. Doshi-Velez, and L. A. Celi. Guide-

lines for reinforcement learning in healthcare. Nature
Medicine, 25, 2019.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.

Planning and acting in partially observable stochas-

tic domains. Artificial intelligence, 101(1-2):99–134,

1998.

S. M. Shortreed, E. Laber, D. J. Lizotte, T. S. Stroup,

J. Pineau, and S. A. Murphy. Informing sequential

clinical decision-making through reinforcement learn-

ing: An empirical study. Machine learning, 84(1-2):

109–136, 2011.

M. Komorowski, L. A. Celi, O. Badawi, A. C. Gordon,

and A. A. Faisal. The artificial intelligence clini-

cian learns optimal treatment strategies for sepsis in

intensive care. Nature Medicine, 24(11):1716, 2018.

A. Raghu, M. Komorowski, L. A. Celi, P. Szolovits,

and M. Ghassemi. Continuous state-space models for

optimal sepsis treatment: a deep reinforcement learn-

ing approach. In Machine Learning for Healthcare
Conference (MLHC), pages 147–163, 2017.

N. Prasad, L. Cheng, C. Chivers, M. Draugelis, and

B. E. Engelhardt. A reinforcement learning approach

to weaning of mechanical ventilation in intensive

care units. In Conference on Uncertainty in Artifical
Intelligence (UAI), 2017.

D. Ernst, G. Stan, J. Goncalves, and L. Wehenkel.

Clinical data based optimal STI strategies for HIV:

A reinforcement learning approach. In Proceedings of
the 45th IEEE Conference on Decision and Control,
pages 667–672. IEEE, 2006.

J. D. Martín-Guerrero, F. Gomez, E. Soria-Olivas,

J. Schmidhuber, M. Climente-Martí, and N. V.

Jiménez-Torres. A reinforcement learning ap-

proach for individualizing erythropoietin dosages in

hemodialysis patients. Expert Systems with Applica-
tions, 36(6):9737–9742, 2009. ISSN 0957-4174.

M. Hauskrecht and H. Fraser. Planning treatment

of ischemic heart disease with partially observable

Markov decision processes. Artificial Intelligence in
Medicine, 18(3):221–244, 2000.

L. Li, M. Komorowski, and A. A. Faisal. The ac-

tor search tree critic (ASTC) for off-policy POMDP

learning in medical decision making. arXiv preprint
arXiv:1805.11548, 2018.

M. Oberst and D. Sontag. Counterfactual off-policy

evaluation with Gumbel-max structural causal mod-

els. In International Conference on Machine Learning
(ICML), 2019.

X. Peng, Y. Ding, D. Wihl, O. Gottesman, M. Ko-

morowski, L. H. Lehman, A. Ross, A. Faisal, and

F. Doshi-Velez. Improving sepsis treatment strategies

by combining deep and kernel-based reinforcement

learning. In AMIA Annual Symposium Proceedings,
volume 2018, page 887. American Medical Informat-

ics Association, 2018.

S. Parbhoo, J. Bogojeska, M. Zazzi, V. Roth, and

F. Doshi-Velez. Combining kernel and model based

learning for HIV therapy selection. AMIA Summits
on Translational Science Proceedings, 2017:239, 2017.

P. Abbeel, M. Quigley, and A. Ng. Using inaccurate

models in reinforcement learning. In International
Conference on Machine Learning (ICML), 2006.

S. Lacoste–Julien, F. Huszár, and Z. Ghahramani. Ap-

proximate inference for the loss-calibrated Bayesian.

In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2011.

B. Wilder, B. Dilkina, and M. Tambe. Melding the

data-decisions pipeline: decision-focused learning for

combinatorial optimization. In AAAI Conference on
Artificial Intelligence, 2019.

P. Karkus, D. Hsu, and W. S. Lee. QMDP-Net: Deep

learning for planning under partial observability. In

Advances in Neural Information Processing Systems
(NeurIPS), 2017.

M. Igl, L. Zintgraf, T. A. Le, F. Wood, and S. Whiteson.

Deep variational reinforcement learning for POMDPs.

In International Conference on Machine Learning
(ICML), 2018.

A. Farahmand. Iterative value-aware model learning. In

Advances in Neural Information Processing Systems
(NeurIPS), pages 9072–9083, 2018.

L. R. Rabiner. A tutorial on hidden Markov models

and selected applications in speech recognition. Proc.
of the IEEE, 77(2):257–286, 1989.



POPCORN: Partially Observed Prediction Constrained Reinforcement Learning

Y. Bengio and P. Frasconi. An input output HMM

architecture. In Advances in Neural Information
Processing Systems (NeurIPS), 1995.

L. Chrisman. Reinforcement learning with perceptual

aliasing: the perceptual distinctions approach. In

AAAI Conference on Artificial Intelligence, 1992.

F. Doshi-Velez. Bayesian nonparametric approaches
for reinforcement learning in partially observable do-
mains. PhD thesis, Massachusetts Institute of Tech-

nology, 2012.

E. J. Sondik. The optimal control of partially observ-

able Markov processes over the infinite horizon: dis-

counted costs. Operations Research, 26(2), 1978.

J. Pineau, G. Gordon, and S. Thrun. Point-based value

iteration: an anytime algorithm for POMDPs. In In-
ternational Joint Conference on Artificial Intelligence
(IJCAI), 2003.

G. Shani, J. Pineau, and R. Kaplow. A survey of

point-based POMDP solvers. Autonomous Agents
and Multi-Agent Systems, 27(1):1–51, 2013.

J. Hoey and P. Poupart. Solving POMDPs with contin-

uous or large discrete observation spaces. In Inter-
national Joint Conference on Artificial Intelligence
(IJCAI), 2005.

A. Raghu, O. Gottesman, Y. Liu, M. Komorowski, A. A.

Faisal, F. Doshi-Velez, and E. Brunskill. Behaviour

policy estimation in off-policy policy evaluation: cal-

ibration matters. arXiv preprint arXiv:1807.01066,

2018.

P. S. Thomas. Safe reinforcement learning. PhD thesis,

University of Massachusetts, Amherst, 2015.

Y. Chow, M. Petrik, and M. Ghavamzadeh. Robust

policy optimization with baseline guarantees. arXiv
preprint arXiv:1506.04514, 2015.

M. C. Hughes, G. Hope, L. Weiner, T. H. Mccoy,

R. H. Perlis, E. Sudderth, and F. Doshi-Velez. Semi-

supervised prediction-constrained topic models. In

International Conference on Artificial Intelligence
and Statistics (AISTATS), 2018.

C. Igel and M. Hüsken. Empirical evaluation of the

improved rprop learning algorithms. Neurocomputing,
50:105–123, 2003.

A. M. Metelli, M. Papini, F. Faccio, and M. Restelli.

Policy optimization via importance sampling. In

Advances in Neural Information Processing Systems
(NeurIPS), 2018.

A. Kong. A note on importance sampling using stan-

dardized weights. Technical Report 348, University

of Chicago Department of Statistics, 1992.

S. Levine and V. Koltun. Guided policy search. In In-
ternational Conference on Machine Learning (ICML),
2013.

G. Tennenholtz, S. Mannor, and U. Shalit. Off-policy

evaluation in partially observable environments. In

AAAI Conference on Artificial Intelligence, 2020.

A. E. Jones, V. Yiannibas, C. Johnson, and J. A. Kline.

Emergency department hypotension predicts sudden

unexpected in-hospital mortality: A prospective co-

hort study. CHEST, 130(4):941–946, 2006.

U. M. Girkar, R. Uchimido, L. H. Lehman, P. Szolovits,

L. A. Celi, and W. Weng. Predicting blood pressure

response to fluid bolus therapy using attention-based

neural networks for clinical interpretability. arXiv
preprint arXiv:1812.00699, 2018.

A. E. W. Johnson, T. J. Pollard, L. Shen, L. H. Lehman,

M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. A.

Celi, and R. G. Mark. Mimic-iii, a freely accessible

critical care database. Scientific data, 3:160035, 2016.

P. Asfar, F. Meziani, J. Hamel, F. Grelon, B. Megar-

bane, N. Anguel, J. Mira, P. Dequin, S. Gergaud,

and N. Weiss. High versus low blood-pressure target

in patients with septic shock. New England Journal
of Medicine, 370(17):1583–1593, 2014.


	Introduction
	Related Work
	Background
	Prediction-Constrained POMDPs
	POPCORN Objective
	Optimizing the Objective

	Simulated Environments
	Synthetic Domains with Misspecification
	Conclusions from Synthetic Domains
	Sepsis Simulator: Medically-motivated environment with known ground truth.

	Real Data Application: Hypotension
	Conclusions from ICU Application

	Discussion
	Additional Details on Point-Based Value Iteration
	Background
	PBVI Overview
	PBVI: Sampling Approximation to Deal with Complex Observation Models
	Softmax Relaxation to Make PBVI Differentiable

	Additional Details on Learning Rewards
	Additional Setup Details and Results for Tiger Domains
	Additional Setup Details for Sepsis Domain
	Additional Setup Details and Results from MIMIC ICU Hypotension Domain
	Data Preprocessing
	Action Space Construction
	Reward Function Construction
	Learning the Behavior Policy
	Additional Qualitative Results


