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A  Appendix

A.1 Topological Definitions

Here we include the precise definitions of the required
notions — this should not be considered as an exhaustive
introduction, but rather our goal is to give precise
definitions to the concepts used in the paper.

A cell complex can be defined inductively by dimension.
Let Xy be the 0-skeleton of the complex consisting of
points, which can be thought of as 0-dimensional balls
(cells). The k-skeleton X} is obtained by attaching
some number of k-dimensional cells by their bound-
aries to the (k — 1)-skeleton Xj_; via continuous maps.
This process can be repeated indefinitely to form the
cell complex &', but in practice we terminate at some
finite dimension. While cell complexes can be used
fairly flexibly in encoding topological spaces, simpli-
cial complexes are typically preferred in computational
settings for their combinatorial description.

Definition A.1. A k-dimensional simplez (vg, . .
is the convexr combination of k + 1
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We only consider the situation where the vertices cor-
respond to point in a sufficiently nice ambient space,
usually R? so that a geometric realization of simplices
exists as a subset of the ambient space. Simplices
are used to represent a space, but must satisfy some
additional constraints so that they form a simplicial
complez.

] Uk)
vertices,

Definition A.2. A simplicial complex X is a collection
of simplices such that

1. For every simplex o in X, every face T C o is also
n X.

2. For any two simplices o1 and oo, T =01 N 02 15 @
face of both o1 and os.

These can be thought of as higher dimensional analogs
of graphs or triangular meshes — conversely, a graph is
a l-dimensional simplicial complex.

To define homology, we first construct a chain group.
In our setting, the k-th chain group Ci(X) is the freely
generated group generated by k-dimensional simplices.
Importantly, there exists a boundary homomorphism

8k : Ck(.)(') — Ok—l(X)

such that 0 o 9 = 0. Explicitly,

ak(vo, oo ,’Uk) = Z(_]‘)i(vov s 7{}1'7 v 7Uk)

where 0; indicates that the i-th vertex has been re-
moved. Again, we take Jy = 0. Homology can then be

defined as
ker O

Hk(X) - im 8k+1

We consider homology computed over fields, in which
case the homology groups are vector spaces. Rather
than only consider one simplicial complex X, we can
consider an increasing sequence of simplicial complexes,
called a filtration Xy C X} C ... C Xn. The require-
ment is that each X; is itself a simplicial complex. We
consider the filtration function f : X — R such that
each sub/super-level set f~1(—oc0,al, resp. f~![a, )
form a filtration in parameterized by «. Under appro-
priate finiteness conditions, which are always satisfied
for finite simplicial complexes (Edelsbrunner and Harer,
2010)).

Theorem A.3. (Zomorodian and Carlsson, |2005) If
homology is computed over a field, then the homology
of a filtration admits an interval decomposition. The
interval decomposition is direct sum of rank 1 elements
which exists over an interval [b,d).

In our setting, whether the intervals are open or closed
is not important so we supress this aspect of the no-
tation. This collection of intervals is the persistence
diagram.

Definition A.4. A persistence diagram is a collection
of points (b;,d;), possibly with repetition, along with
the diagonal A, i.e. all points such that b = d.

The diagonal plays an important part in the definition
of distances between diagrams. The main distance
we consider is the p-Wasserstein distance between two
diagrams

1/p

Wy (PDi(f), PDi(g)) = inf Yo =P

pEPD(f)

where ¢ is a bijection. This can be viewed as an opti-
mal transport problem, points must either be matched
to the other diagram or the diagonal. This can be
formulated as a classical linear program if we add to
each diagram the projection of the other diagram to
the diagonal

proj(d, b) = <d+b d“’)
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In other words, we can consider the optimal transport
problem between PD(f) U proj(PD(g)) and PD(g) U

proj(PD(f)) where the distance between any two points
on the diagonal is 0.

One of the core techniques in this paper is to compute
the gradient of an energy function with respect to some
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Figure 14: A one dimensional example of a persistence
diagram and the inverse map 7. The function on the
left has critical points at points p, r and g. The local
minima create components in the sub-level sets and
so represent birth times (z-axis), while the maxima
kills one of the components (the younger one) and
so is a death time (y-axis). The inverse map for a
point in the diagram returns the corresponding critical
points/simplicies.

parameters. This is possible through the definition of
an inverse map

7Tf(]/”') : {bi’di}iel—k - (07 T)

This map is unique and well defined in the case of
when a filtration is a strict order, i.e. the simplices
are totally ordered in the filtration. This is never the
case in our scenarios, where the simplices only form a
total order. However this can be resolved by extending
the total order to a strict order either deterministically
or randomly, see (Skraba, Thoppe, and Yogeshwaran,
2017) for a formal proof and description of how this
can be done.

As is the case in our setting, the filtration is not defined
directly on the simplices but rather derived from either
functions on the vertices or depend on some property
of the vertices, e.g. the coordinates of the points that
the vertices correspond to. In this case, we require an
additional inverse map from simplices to a collection
of vertices. This is described in the main paper for two
scenarios which we use in the applications. Once both
inverse maps are defined, the gradient can be defined
in the standard way using the chain rule.

A.2 Comparison

In this paper we use both super-level set filtrations as
well as Vietoris-Rips and weak-Alpha filtrations. Fig-
ure [I5] provides an illustrative comparison of super-level
set filtration (on the left) and a Rips filtration (on the
right). The digit "9" viewed in terms of the super-
level set of its pixel values has one clear connected
component and one clear ring, which can be read from
the corresponding persistence diagrams. However, the
super-level set filtration does not take into consider-
ation distance along the grid and a small (in the 2D
sense) hole can be very large from the superlevel set

perspective. In the Rips case we lay out all the pixel
values in a 3D space and use the euclidean distance.
Here there are many more connected components at
small to medium filtration values, and the same is true
for the number of rings. The Rips does not merely pick
up the obvious ring in the "9" but also rings that are
formed with respect to the vertical axis.
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Figure 15: Compare top level set with Rips filtration

A.3 Explore latent space

In this paper we backpropagate to the latent space of
generative models (query the latent space) in order to
improve on them. However, the ability to topologically
query the latent space may not only be used to give us
more topologically desirable output but also to explore
the nature of the latent space. Consider Figure [I6] that
consists of images produced by a trained InfoGAN-
generator (Chen, Duan, et al., [2016). The type of digit
closest to a "2" with a loop on the bottom is arguably
a digit "2" without such a loop. However, when we
backpropagate to remove the ring we get something that
does not look like any MNIST digit. Similarly, if we
remove the ring in the digit "6" we get something that
does not look very much like any MNIST digit. This
gives some indications that the latent space learned by
the InfoGAN is relatively topologically flexible.

Figure 16: Infogan query

A.4 Topological Mapping

In this paper we train and experiment with networks
that use persistence as input. However, with a differ-
entiable layer we can put the persistence computations
anywhere in the network. Sometimes it is useful to put
certain layers in the middle of a deep network. For
example in domain transfer we often want to create a
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mapping where features will be more useful. The setup
might look like in the Figure We do a simpler setup

Topology-Aware Mapping

Rep | — — —

Figure 17: Topological mapping

Mapping

MNIST

where we train a network to use superlevel persistence
features to classify the naive PD;-features of MNIST
which we define for "1", "2", "3" 4" UEN M7 a9
zero, for "0", "6", "9" as one, and for "8" as two. We
are able to get a 84% accuracy. However, by putting
two convolutional layers (the mapping) which maintain
the dimensionality of the input before our Topology
Layer, we get the results shown in Figure [I§ where we
ultimate improve our accuracy to 86%. In this case,

Figure 18: Intermediate Representation in topological
mapping

it seems as if the mapping thickens the digits in the
images in order to remove topological noise.

A.5 Topological Adversarial Attacks
A.5.1 Features for classification model

In order to train a classification model using only topo-
logical features we must include orientation and di-
rectional information into the persistence homology
features. This can be achieved by using custom filtra-
tion constructed in the following way. First we define
8 directional functions

go(z,y) = cos(@)ax+sin(f)y 60 =0,7/4,7/2,...,71/4

These functions are shifted and scaled so that in the
domain of the image, they range from 0 to 1. If I(x,y)
is the input image, then the filtrations are given by

f9i (‘Tvy) = I(xvy)gei (.%‘,y)

Persistence diagrams of dimensions 0 and 1 are com-
puted for each filtration. We then compute 25 features
on each persistence diagram given by £(p, ¢, 0; PD), for
p and ¢ ranging between 0 and 4, thus totalling 400
features.

A.6 Regularization Sparsity Visualization

In Figure [I9 we see the Rips PDy diagram for the
weights of a logistic regression model without (left) and
with (right) L1 regularization. As the test accuracy
improves, we see that the persistence diagram changes
as well.

Train Acc: 1.0, Test Acc: 0.49 Train Acc: 1.0, Test Acc: 0.79

Dimension 0. Num pts: 99. Num infs: 0 Dimension 0. Num pts: 89. Nurm infs: 0
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Figure 19: Rips and generalization



