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1 GENERALISED GAUSSIAN
PROCESS EXPERTS

Examples of generalised GP experts include:

Gaussian: for y ∈ R, with identity link function,

p(y|x, θj) = N(y|mj(x), σ2
j ).

Bernoulli: for y ∈ {0, 1},

p(y|x, θj) = Bern(y|g−1(mj(x))),

where the link function maps (0, 1) to the real line, e.g.
logistic, probit. For the logistic link function,

P(y = 1|x, θj) =
exp(mj(x))

1 + exp(mj(x))
.

For the probit link function,

P(y = 1|x, θj) = Φ(mj(x)),

where Φ denotes the standard normal cumulative dis-
tribution function. In this case, the model can be
equivalently formulated through a latent response ỹ
that is Gaussian distributed with mean mj(x) and unit
variance. In particular, ỹ|mj(x) ∼ N(mj(x), 1) and

p(y|ỹ) =

{
1(ỹ ≤ 0) if l = 0
1(ỹ > 0) if l = 1

.

The probit model is recovered by marginalising the
latent ỹ.

Categorical: for y taking unordered values l =
0, . . . , L,

p(y|x, θj) = Cat(y|g−1(mj(x))),

where the link function maps the L-dimensional sim-
plex to RL. For the multivariate logistic link function,

P(y = l|x, θj) =
exp(mj,l(x))

1 +
∑L
l=1 exp(mj,l(x))

,

for l = 1, . . . , L. For the multinomial probit link func-
tion,

P(y = l|x, θj) =

P(ỹl > max(ỹ1, . . . , ỹl−1, ỹl+1, . . . , ỹL, 0)),

for l = 1, . . . , L, where ỹ takes values in RL and
has a multivariate Gaussian distribution with mean
mj(x) = (mj,1(x), . . . ,mj,L(x))T and covariance ma-
trix Σj , which may be the identity matrix, or treated
as a more general scale parameter (in this case, care
should be taken to avoid identifiability issues). The
prior on the vector-valued unknown function mj(x)
can be extended to independent GPs across l =
1, . . . , L or, more generally, a matrix-variate GP.

Ordinal: for y taking ordered values l = 0, . . . , L
and cutoffs 0 = ε0 < ε1 < . . . < εL−1,

P(y ≤ l|x, θj) = g−1(εl −mj(x)),

where the link function maps (0, 1) to the real line.
Due to the nonparametric nature of the model we con-
sider fixed cutoffs ε1, . . . , εL−1 (Kottas et al., 2005).
For the logistic link function,

P(y ≤ l|x, θj) =
exp(εl −mj(x))

1 + exp(εl −mj(x))
.

For the probit link function,

P(y ≤ l|x, θj) = Φ

(
εl −mj(x)

σj

)
, (1)

with additional scale parameter σ2
j for L ≥ 2. In

this case, the model can be equivalently formulated
through a latent response ỹ that is Gaussian dis-
tributed with mean mj(x) and variance σ2

j . In par-

ticular, ỹ|mj(x), σ2
j ∼ N(mj(x), σ2

j ) and

p(y|ỹ) =

 1(ỹ ≤ 0) if l = 0
1(εl−1 < ỹ ≤ εl) if l = 1, . . . , L− 1
1(ỹ > εL−1) if l = L

.
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The ordered probit model is recovered by marginalis-
ing the latent ỹ.

Poisson: for y ∈ {0, 1, 2, . . .},

p(y|x, θj) = Pois(y|g−1(mj(x))),

where the link function maps (0,∞) to R. For the log
link function with λj(x) = exp(mj(x)),

P(y = l|x, θj) =
exp(−λj(x))λj(x)l

l!
.

Alternatively, a non-negative integer-valued output
y ∈ {0, 1, 2, . . .} can be modelled through a discre-
tised latent Gaussian as in (1), with fixed cutoffs
ε1 = 1, ε2 = 2, . . ..

2 LOCAL INPUT MODELS

Other types of inputs can be easily handled through
the assumptions of local independence

p(x|ψ) =

D∏
d=1

p(xd|ψd),

and that each parametric model p(xd|ψd) belongs to
the exponential family, that is,

p(xd|ψd) = exp(ψTd td(xd)− ad(ψd) + bd(xd)),

and td, ad, and bd are known functions specified by
the choice within the exponential family. The stan-
dard conjugate prior for ψ assumes independence of
ψd across d = 1, . . . , D with

π(ψd) ∝ exp(ψTd τd − νdad(ψd)).

In this conjugate setting, the parameters ψ can be
marginalised in each cluster analytically. Specifi-
cally, for the collapsed Gibbs sampler, we need 1) the
marginal likelihood h(xn) and 2) the predictive likeli-
hood h(xn|X−nl|j ), where X−nl|j contains xn′ such that

n′ 6= n, zn′ = (j, l). Additionally, for the spilt and
merge moves we require the the joint marginal likeli-
hood of h(Xl|j). We note that due to the assumption

of local independence

h(xn) =

∫
p(xn|ψ)π(ψ)dψ =

D∏
d=1

h(xn,d),

h(xn|X−nl|j ) =

∫
p(xn|ψ)π(ψ|X−nl|j )dψ

=

D∏
d=1

h(xn,d|X−nl|j,d),

h(Xl|j) =

∫ ∏
n:zn=(j,l)

p(xn|ψ)π(ψ)dψ

=

D∏
d=1

h(Xl|j,d).

Examples (used in this paper) include:

Gaussian: for continuous input xn,d taking values
in R with

p(xn,d|ψd) = N(xn,d|ud, s2d),

where ψd = (ud, s
2
d). The standard conjugate prior is

the normal-inverse gamma distribution,

ud|s2d
ind∼ N(u0,d, c

−1
d s2d), s2d

ind∼ IG(ax,d, bx,d),

which we denote by (ud, s
2
d)

ind∼
NIG(u0,d, cd, ax,d, bx,d). In this case, marginally
xn,d has a non-central t-distribution,

h(xn,d) = t

(
xn,d|u0,d,

bx,d
ax,d

cd + 1

cd
, 2ax,d

)
.

The predictive distribution of xn,d given zn = (j, l) is
a non-central t-distribution,

h(xn,d|X−nl|j,d) = t

(
xn,d|û−nl|j,d,

b̂−nx,l|j,d

â−nx,l|j,d

ĉ−nl|j,d + 1

ĉ−nl|j,d
, 2â−nx,l|j,d

)
,

with ĉ−nl|j,d = cd +N−nl|j , â−nx,l|j,d = ax,d +N−nl|j /2,

û−nl|j,d =
1

cd +N−nl|j
(cdu0,d +N−nl|j x̄

−n
l|j,d),

b̂−nx,l|j,d = bx,d +
1

2

(
cdu

2
0,d − ĉ−nl|j,d(û

−n
l|j,d)

2

+
∑

n′ 6=n:zn′=(j,l)

x2n′,d

 ,

and x̄−nl|j,d = 1/N−nl|j
∑
n′ 6=n:zn′=(j,l) xn′,d. The joint

marginal likelihood of Xl|j,d follows a multivariate t
with mean u0,d1Nl|j , variance matrix

Σl|j,d =
bx,d
ax,d

(
INl|j −

1

cd +Nl|j
1Nl|j1

′
Nl|j

)−1
,

and degrees of freedom 2ax,d, that is

h(Xl|j,d) = t(Xl|j,d|u0,d1Nl|j ,Σl|j,d, 2ax,d).
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Categorical: for discrete inputs xn,d taking un-
ordered values g = 0, 1, . . . , Gd with

p(xn,d|ψd) = ψd,xn,d ,

where ψd is a Gd + 1 vector of probabilities such
that

∑Gd
g=0 ψd,g = 1. The standard conjugate prior

is the Dirichlet distribution with parameter γd =
(γd,0, . . . , γd,Gd). In this case, the marginal likelihood
is the Dirichlet-multinomial with

h(xn,d) =
Γ
(∑Gd

g=0 γd,g

)
Γ
(∑Gd

g=0 γd,g + 1
) Γ

(
γd,xn,d + 1

)
Γ
(
γd,xn,d

) .

The predictive likelihood of xn,d given zn = (j, l) is
the Dirichlet-multinomial with

h(xn,d|X−nl|j,d) =
Γ
(∑Gd

g=0 γd,g +N−nl|j

)
Γ
(∑Gd

g=0 γd,g +N−nl|j + 1
)

Γ
(
γd,xn,d +Nd,−n

l|j,xn,d + 1
)

Γ
(
γd,xn,d +Nd,−n

l|j,xn,d

) ,

where Nd,−n
l|j,g =

∑
n′ 6=n:zn′=(j,l) 1(xn′,d = g). The

joint marginal likelihood of Xl|j,d follows a Dirichlet-
multinomial with

h(Xl|j,d) =
Γ
(∑Gd

g=0 γd,g

)
Γ
(∑Gd

g=0 γd,g +Nl|j

) Gd∏
g=0

Γ
(
γd,g +Nd

l|j,g

)
Γ (γd,g)

,

and Nd
l|j,g =

∑
n:zn=(j,l) 1(xn,d = g).

Binomial: for discrete inputs xn,d taking ordered
values g = 0, 1, . . . , Gd with

p(xn,d|ψd) =

(
Gd
xn,d

)
ψ
xn,d
d (1− ψd)Gd−xn,d ,

where ψd ∈ (0, 1). The standard conjugate prior is the
beta distribution with parameter γd = (γd,0, γd,1). In
this case, the marginal likelihood is the beta-binomial
with

h(xn,d) =

(
Gd
xn,d

)
Γ (γd,0 + γp,1)

Γ (γd,0) Γ (γd,1)

Γ (γd,0 + xn,d) Γ (γd,1 +Gd − xn,d)
Γ (γd,0 + γd,1 +Gd)

.

The predictive likelihood of xn,d given zn = (j, l) is
the beta-binomial with

h(xn,d|X−nl|j,d) =

(
Gd
xn,d

) Γ
(
γd,0 + γd,1 +GdN

−n
l|j

)
Γ
(
γ̂d,0,l|j

)
Γ
(
γ̂d,1,l|j

)
Γ
(
γ̂d,0,l|j + xn,d

)
Γ
(
γ̂d,1,l|j +Gd − xn,d

)
Γ
(
γd,0 + γd,1 +Gd(N

−n
l|j + 1)

) ,

where γ̂d,0,l|j = γd,0 + N−nl|j x̄
−n
l|j,d and γ̂d,1,l|j = γd,1 +

N−nl|j (Gd − x̄−nl|j,d). The joint marginal likelihood of

Xl|j,d follows a Beta-binomial with

h(Xl|j,d) =

 ∏
n:zn=(j,l)

(
Gd
xn,d

) Γ (γd,0 + γd,1)

Γ (γd,0) Γ (γd,1)

Γ
(
γd,0 +Nl|j x̄l|j,d

)
Γ
(
γd,1 +Nl|j(Gd − x̄l|j,d)

)
Γ
(
γd,0 + γd,1 +Nl|jGd

) .

3 POSTERIOR INFERENCE

We present the algorithm for a general setting, when
the observed outputs yn are a deterministic function of
latent Gaussian outputs ỹn. This includes the probit,
ordered probit and multinomial probit, as well as the
Gaussian example with y = ỹ, among others. The
MCMC algorithm targets the posterior

π(z1:N , σ
2
1:k, β0,1:k, λ1:k, αθ, αψ,1:k, ỹ1:N | y1:N , x1:N ) ∝

k∏
j=1

h(Ỹj |σ2
j , β0,j , λj)

kj∏
l=1

h(Xl|j)

N∏
n=1

p(yn|ỹn)

∗ Γ(αθ)

Γ(αθ +N)
αkθπ(αθ)

k∏
j=1

α
kj
ψ,j

Γ(αψ,j)Γ(Nj)

Γ(αψ,j +Nj)

∗ π(σ2
j )π(β0,j)π(λj)π(αψ,j)

kj∏
l=1

Γ(Nl|j),

where we make use of the notation Ỹj to denote the
latent outputs ỹn such that zy,n = j and Xl|j to denote
the inputs xn such that zn = (j, l). The marginal
likelihood of Ỹj given β0,j , λj and σ2

j , obtained from
marginalising the unknown functions mj , is Gaussian,
e.g. for the ordered probit,

h(Ỹj |σ2
j , β0,j , λj) = N(Ỹj | β0,j1Nj , σ2

j INj +Kλj ),

where Kλj denotes the Nj by Nj matrix of the ker-
nel function evaluated at every pair of inputs in y-
cluster j. The marginal likelihood of Xl|j , obtained
from marginalising ψl|j , is also available in closed form
and factorises over D, with examples in Section 2.
The term p(yn|ỹn) represents the deterministic func-
tion specifying the observed output yn given the latent
Gaussian output ỹn; examples are provided in Sec-
tion 1.

The algorithm is a Gibbs sampler, which alterna-
tively samples each set of parameters, 1) the alloca-
tion variables z1:N , 2) the unique cluster parameters
(σ2
j , β0,j , λj)

k
j=1, 3) the concentration parameters αθ

and αψ,1:k and 4) the latent outputs ỹ1:N (if needed).
Computations involving the GP are evaluated using
GPy in Python GPy (since 2012).
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Allocation variables. A non-conjugate collapsed
Gibbs sampler is employed, combining Algorithm 3,
when cluster parameters can be integrated, and Al-
gorithm 8, when cluster parameters cannot be in-
tegrated, of Neal (2000), and extending this for
the nested partitioning scheme. This consists of N
Gibbs steps, where the allocation variable zn for
each data point is updated conditioned on all others
z1, . . . , zn−1, zn+1, . . . , zN . This procedure allows lo-
cal changes to the allocation variables, and to improve
mixing in high-dimensional input spaces, we addition-
ally develop two novel split-merge updates for global
changes to the nested partition. Throughout, we make
use of the superscript notation −n to denote the data
points, parameters, and latent variables with the nth

data point removed.

The local updates are described in the following
steps:

1. Remove singleton cluster:

• Singleton y-cluster: If zy,n 6= zy,n′ for
all n′ 6= n, i.e. data point n is in
a singleton y-cluster, remove that cluster
and set (σ2

k−n+1, β0,k−n+1, λk−n+1, αψ,k−n+1)
equal to the values of the singleton cluster
parameters.

• Singleton x-cluster within a non-singleton y-
cluster: If zy,n = zy,n′ for some n′ 6= n
and zx,n 6= zx,n′ for all n′ 6= n such that
zy,n = zy,n′ , i.e. data point n is in a singleton
x-cluster within a non-singleton y-cluster, re-
move that cluster.

2. Calculate the allocation probability for each oc-
cupied cluster: j ∈ {1, . . . , k−n} and l ∈
{1, . . . , k−nj }

p(zn = (j, l)|z−n1:N , . . .) ∝
N−nj N−nl|j

αψ,j +N−nj
h(ỹn|Ỹ−nj , σ2

j , λj , β0,j)h(xn|X−nl|j ).

3. Calculate the allocation probability for a new
x-cluster within each occupied y-cluster: j ∈
{1, . . . , k−n}

p(zn = (j, k−nj + 1)|z−n1:N , . . .) ∝
N−nj αψ,j

αψ,j +N−nj
h(ỹn|Ỹ−nj , σ2

j , λj , β0,j)h(xn).

4. Calculate the allocation probability for m
new y-clusters: sample m new param-
eters (or m − 1 new parameters if zy,n
was in a singleton y-cluster) from the

prior (σ2
k−n+j , β0,k−n+j , λk−n+j , αψ,k−n+j) ∼

π(σ2)π(β0)π(λ)Gam(uψ, vψ). Then, for
j = k−n + 1, . . . , k−n +m, compute

p(zn = (j, 1)|σ2
j , β0,j , λj , αθ, ỹn, xn) ∝

αθ
m
h(ỹn|σ2

j , β0,j , λj)h(xn).

5. Update the allocation variable zn using the allo-
cation probabilities. All empty clusters are re-
moved, and if one of the m new clusters is se-
lected, set zn = (k−n + 1, 1) and the parameters
(σ2
k−n+1, β0,k−n+1, λk−n+1, αψ,k−n+1) equal to the

parameters of the selected new cluster.

After the full Gibbs sweep for the N allocation vari-
ables, two Metropolis-Hastings steps are performed to
improve mixing and allow global changes to the alloca-
tion variables. The first proposes to move an x-cluster
to be nested within a different or new y-cluster and
is a ‘smarter’ version of the move described in Wade
et al. (2014), by proposing moves that are more likely
to be accepted. This step is separated into three pos-
sible moves: 1) an x-cluster, among those within y-
clusters with more than one x-cluster, is moved to a
different y-cluster; 2) an x-cluster, among those within
y-clusters with more than one x-cluster, is moved to a
new y-cluster; 3) an x-cluster, among those within y-
clusters with only one x-cluster, is moved to a different
y-cluster. Define

kx,2+ =

k∑
j=1

kj1(kj > 1) and kx,1 =

k∑
j=1

1(kj = 1).

At every iteration, Move 1 is performed if kx,2+ > 0.
Next, with probability 1/2, Move 2 is performed, oth-
erwise, Move 3 is performed (with the exception that
when kx,1 = 0, Move 2 is performed with probabil-
ity 1, or when kx,2+ = 0, Move 3 is performed with
probability 1).

The global updates to the y-clusters are described
in the following steps:

1. Move 1: an x-cluster (nested within a y-
cluster with more than one x-cluster) is uni-
formly selected with probability k−1x,2+ and moved
to be nested within a different y-cluster selected
with probability proportional to the conditional
marginal likelihood. Specifically, suppose x-
cluster l in y-cluster j is first selected, then it is
moved to be nested within y-cluster h with proba-
bility proportional to h(Ỹl|j |Ỹh, σ2

h, β0,h, λh). Let
z∗1:N denote the proposed allocations defined by
moving x-cluster l in y-cluster j to be nested
within y-cluster h for h ∈ {1, . . . , j − 1, j +
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1, . . . , k}. The acceptance probability is min(1, p),
where

p =
Γ(Nj −Nl|j)Γ(Nh +Nl|j)

Γ(Nj)Γ(Nh)

∗ Γ(αψ,j +Nj)Γ(αψ,h +Nh)

Γ(αψ,j +Nj −Nl|j)Γ(αψ,h +Nh +Nl|j)

∗ αψ,h
αψ,j

kx,2+
k∗x,2+

∑
h′ 6=j h(Ỹl|j |Ỹh′ , σ2

h′ , β0,h′ , λh′)∑
h′ 6=h h(Ỹl|j |Ỹ ∗h′ , σ2

h′ , β0,h′ , λh′)
,

where Ỹ∗h′ contains the outputs under the pro-

posed allocation with z∗y,n = h′, e.g. Ỹ∗j contains
the Nj−Nl|j outputs with the Nl|j points removed
from y-cluster j. The notation k∗x,2+ represents
the number of x-clusters within a y-cluster with
more than one x-cluster under the proposed par-
tition, i.e. k∗x,2+ = kx,2+− 1(kj = 2) + 1(kh = 1).

2. Move 2: an x-cluster (nested within a y-
cluster with more than one x-cluster) is uni-
formly selected with probability k−1x,2+ and
moved to be nested within a new y-cluster.
In this case, we propose new parameters
(σk+1, β0,k+1, λk+1, αψ,k+1) for the new y-cluster
from the prior. The acceptance probability is
min(1, p), where

p =
Γ(Nj −Nl|j)Γ(Nl|j)

Γ(Nj)

∗ Γ(αψ,j +Nj)Γ(αψ,k+1)

Γ(αψ,j +Nj −Nl|j)Γ(αψ,k+1 +Nl|j)

∗ αθ
αψ,k+1

αψ,j

kx,2+
kx,1

h(Ỹ ∗k+1|σ2
k+1, β0,k+1, λk+1)∑k

h=1 h(Ỹl|j |Ỹ ∗h , σ2
h, β0,h, λh)

,

where k∗x,1 = kx,1 + 1 + 1(kj = 2) represents the
number of x-clusters within a y-cluster with only
one x-cluster under the proposed partition.

3. Move 3: an x-cluster (nested within a y-cluster
with only one x-cluster) is uniformly selected with
probability k−1x,1 and moved to be nested within a
different y-cluster selected with probability pro-
portional to the conditional marginal likelihood.
Specifically, suppose x-cluster l in y-cluster j
is first selected, then it is moved to be nested
within y-cluster h with probability proportional to
h(Ỹj |Ỹh, σ2

h, β0,h, λh) . Let z∗1:N denote the pro-
posed allocations defined by moving x-cluster l
in y-cluster j to be nested within y-cluster h for
h ∈ {1, . . . , j − 1, j + 1, . . . , k}. The acceptance
probability is min(1, p), where

p =
Γ(Nh +Nj)

Γ(Nh)Γ(Nj)

Γ(αψ,j +Nj)Γ(αψ,h +Nh)

Γ(αψ,h +Nh +Nj)Γ(αψ,j)

1

αθ

αψ,h
αψ,j

∗ kx,1
k∗x,2+

∑
h′ 6=j h(Ỹj |Ỹh′ , σ2

h′ , β0,h′ , λh′)

h(Ỹj |σ2
j , β0,j , λj)

,

The second set of split-merge updates consists of the
pair of ’smart-split’ and ’dumb-merge’ moves and the
pair of ’dumb-split’ and ’smart-split’ moves, inspired
from Wang and Russell (2015), but tailored for the
nested clustering structure of the EDP to propose
global updates to the x-clusters. In this split moves,
one x-cluster is selected and split into two x-clusters,
still contained within the same y-cluster. In the merge
moves, two x-clusters, within the same y-cluster are
merged. The ’smart’ moves propose clustering alloca-
tions that are more likely and are paired with the cor-
responding ’dumb’ moves, with random cluster alloca-
tions, to increase the probability of the reverse move
and acceptance of the smart moves. In the first pair of
moves, a smart-split or dumb-merge is proposed with
probability 1/2, and in the second pair of moves, a
dumb-split or smart-merge is proposed with probabil-
ity 1/2 (unless, there are only singleton x-clusters or
only one x-cluster within each y-cluster). Again, we
define kx,2+ as the number of x-clusters within a y-
cluster with more than one x-cluster, i.e. the number
x-clusters than may be merged, and additionally de-
fine

kx,1+ =

k∑
j=1

k∑
l=1

1(Nl|j > 1),

as the number of x-clusters with more than one data
point, i.e. the number x-clusters than may be split.

The global updates to the x-clusters are described
in the following steps:

• Smart-Split/Dumb-Merge: with probability
1/2, one of the following two moves is proposed.

1. Smart-Split: x-cluster l within y-cluster j is
selected among the kx,1+ x-clusters contain-
ing more than one data point with probabil-
ity proportional to 1/h(Xl|j). The proposed
allocation z∗1:N is constructed sequentially by
reallocating the data points currently allo-
cated to x-cluster l within y-cluster j, in or-
der of observation, to x-cluster l or a new
x-cluster kj + 1 with sequential probabilities

z∗n|z∗1:n−1 =


(j, l) w.p.

∝ h(xn|X∗l|j,n−1)

(j, kj + 1) w.p.
∝ h(xn|X∗kj+1|j,n−1)

for n such that zn = (j, l), where X∗l|j,n−1 de-

notes the set of xn′ such that z∗n′ = (j, l) for
n′ < n, and similarly, X∗kj+1|j,n−1 denotes

the set of xn′ such that z∗n′ = (j, kj + 1) for
n′ < n. Note that through sequential alloca-
tion, there is a positive probability that all
points may be allocated to one cluster, and
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in that case the move is accepted with prob-
ability one, i.e. we remain at the current al-
location. The probability of proposing the
smart-split z∗1:N from z1:N is

qSS(z∗1:N |z1:N )

=
h(Xl|j)

−1∑
(j′,l′):Nl′|j′>1 h(Xl′|j′)−1∏

n:zn=(j,l)

2h(xn|X∗z∗x,n|j,n−1)

h(xn|X∗l|j,n−1) + h(xn|X∗kj+1|j,n−1)
,

where the factor of 2 is is needed as the pro-
posed state z∗1:N is equivalent when the labels
l and kj+1 are interchanged. The acceptance
probability is min(1, p), where

p =
αjΓ(N∗l|j)Γ(N∗kj+1|j)h(X∗l|j)h(X∗kj+1|j)

Γ(Nl|j)h(Xl|j)

1

k∗x,2+kj

∑
(j′,l′):Nl′|j′>1 h(Xl′|j′)

−1

h(Xl|j)−1
∗

∏
n:zn=(j,l)

h(xn|X∗l|j,n−1) + h(xn|X∗kj+1|j,n−1)

h(xn|X∗z∗x,n|j,n−1)
,

where k∗x,2+ is equal to kx,2+ + 2 if x-cluster
l was the only cluster within y-cluster j, i.e.
kj = 1, and k∗x,2+ is equal to kx,2+ + 1 other-
wise.

2. Dumb-Merge: x-cluster l within y-cluster
j is selected uniformly among the kx,2+ x-
clusters contained within a y-cluster with
more than one x-cluster with probability
1/kx,2+ and a second x-cluster l′ 6= l within
y-cluster j is selected uniformly among the
kj−1 remaining x-clusters within y-cluster j
with probability 1/(kj − 1). The probability
of proposing the dumb-merge z∗1:N from z1:N
is

qDM(z∗1:N |z1:N ) =
2

kx,2+(kj − 1)
,

where the factor of 2 is needed as the pro-
posed state z∗1:N can also be reached by first
selecting x-cluster l′ within y-cluster j and
then selecting x-cluster l within y-cluster
j. The acceptance probability is min(1, p),
where

p =
Γ(N∗l|j)h(X∗l|j)

αjΓ(Nl|j)Γ(Nl′|j)h(Xl|j)h(Xl′|j)

kx,2+(kj − 1)
h(X∗l|j)

−1∑
(j′,l′):N∗

l′|j′>0 h(X∗l′|j′)
−1 ∗

∏
n:z∗n=(j,l)

h(xn|Xzx,n|j,n−1)

h(xn|Xl|j,n−1) + h(xn|Xl′|j,n−1)
.

• Dumb-Split/Smart-Merge: with probability
1/2, one of the following two moves is proposed.

1. Dumb-Split: x-cluster l within y-cluster j is
uniformly selected among the kx,1+ x-clusters
containing more than one data point with
probability 1/kx,1+. The data points in x-
cluster l within y-cluster j are then randomly
reallocated to x-cluster l or a new x-cluster
kj + 1 with probability 1/2. Note that again
there is a positive probability that all points
may be allocated to one cluster, and in that
case the move is accepted with probability
one, i.e. we remain at the current allocation.
The probability of proposing the dumb-split
z∗1:N from z1:N is

qDS(z∗1:N |z1:N ) =
1

kx,1+

2

2Nl|j
=

1

kx,1+

1

2Nl|j−1
,

where the factor of 2 is is needed as the pro-
posed state z∗1:N is equivalent when the labels
l and kj+1 are interchanged. The acceptance
probability is min(1, p), where

p =
αjΓ(N∗l|j)Γ(N∗kj+1|j)h(X∗l|j)h(X∗kj+1|j)

Γ(Nl|j)h(Xl|j)

kx,1+2Nl|j−1
1

k∗x,2+
∗

(
h(Xl|j)∑

h6=l h(X∗(l,h)|j)

+
h(Xl|j)∑

h6=kj+1 h(X∗(kj+1,h)|j)

)
.

2. Smart-Merge: x-cluster l within y-cluster
j is selected uniformly among the kx,2+ x-
clusters contained within a y-cluster with
more than one x-cluster with probability
1/kx,2+. A second x-cluster l′ 6= l within
y-cluster j is selected among the kj − 1 re-
maining x-clusters within y-cluster j with
probability proportional to h(X(l,l′)|j), where
X(l,l′)|j denotes the set of xn under the
merger of x-clusters l and l′. The probability
of proposing the smart-merge z∗1:N from z1:N
is

qSM(z∗1:N |z1:N ) =
1

kx,2+

(
h(X(l,l′)|j)∑
h 6=l h(X(l,h)|j)

+
h(X(l,l′)|j)∑
h6=l′ h(X(l′,h)|j)

)
,

which is the sum of the probability of first
selecting l and then l′ and vice versa, as
the proposed state z∗1:N is equivalent under
these proposals. The acceptance probability
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is min(1, p), where

p =
Γ(N∗l|j)h(X∗l|j)

αjΓ(Nl|j)Γ(Nl′|j)h(Xl|j)h(Xl′|j)

1

k∗x,1+

1

2
N∗
l|j−1

kx,2+ ∗

(
h(X∗l|j)∑

h6=l h(X(l,h)|j)

+
h(X∗l|j)∑

h 6=l′ h(X(l′,h)|j)

)−1
,

where k∗x,1+ is equal to kx,1+ + 1 if two sin-
gleton clusters are merged; kx,1+ if one of
merged clusters is a singleton; and kx,1+ − 1
if neither cluster is a singleton.

Cluster parameters. The parameters for each clus-
ter are conditionally independent across j = 1, . . . , k
with full conditional

π(σ2
j , β0,j , λj |Ỹj) ∝ h(Ỹj |σ2

j , β0,j , λj)π(σ2
j )π(β0,j)π(λj),

which is not available in closed form. We use Hamilto-
nian Monte Carlo (Duane et al., 1987) to sample from
the full conditional.

Mass parameters. The concentration parameters
αθ and αψ,1:k are updated using the auxiliary variable
technique of Escobar and West (1995). For αθ, sample
an auxiliary variable ξ ∼ Beta(αθ + 1, N); set v̂θ =
vθ − log(ξ) and

ûθ =

{
uθ + k − 1 w.p. Nv̂θ

Nv̂θ+uθ+k−1
uθ + k w.p. uθ+k−1

Nv̂θ+uθ+k−1
;

and sample α ∼ Gam(ûθ, v̂θ). Similarly, for αψ,j ,
for j = 1, . . . , k, sample an auxiliary variable ξj ∼
Beta(αψ,j + 1, Nj); set v̂ψ,j = vψ − log(ξj) and

ûψ,j =

{
uψ + kj − 1 w.p.

Nj v̂ψ,j
Nj v̂ψ,j+uψ+kj−1

uψ + kj w.p.
uψ+kj−1

Nj v̂ψ,j+uψ+kj−1
;

and sample αψ,j ∼ Gam(ûψ,j , v̂ψ,j).

Latent outputs. The latent outputs are indepen-
dent across cluster j = 1, . . . , k, with full conditional

π(Ỹj |Yj ,σ
2
j , β0,j , λj)

∝ h(Ỹj |σ2
j , β0,j , λj)

∏
n:zn=j

p(yn|ỹn).

In the Gaussian case, p(yn|ỹn) = 1(yn = ỹn), and
this step is not needed. For the other probit-type

models, the full conditional of the latent outputs in
cluster j is a truncated multivariate Gaussian, which
is sampled through a Gibbs algorithm combined with
cumulative distribution function inversion techniques
(Kotecha and Djuric, 1999).

4 PREDICTIONS

Letting ζ = (z1:N , σ
2
1:k, β0,1:k, λ1:k, αθ, αψ,1:k, ỹ1:N ) de-

note the model parameters and latent variables, the
MCMC algorithm provides samples ζ(m), for m =
1, . . . ,M , from the posterior. In the Gaussian exam-
ple, the posterior density at y∗ given a new x∗ is given
by

f(y∗|x∗, y1:N , x1:N )

=

∫
f(y∗|x∗, y1:N , x1:N , ζ)

π(ζ|y1:N , x1:N )f(x∗|x1:N , ζ)

f(x∗|x1:N )
dζ

≈ 1

f(x∗|x1:N )

M∑
m=1

f(y∗|x∗, y1:N , x1:N , ζ(m))f(x∗|x1:N , ζ(m))

≈ C−1
(

M∑
m=1

p
(m)

k(m)+1
(x∗)h(y∗)

+

k(m)∑
j=1

p
(m)
j (x∗)h(y∗|Y(m)

j , β
(m)
0,j , λ

(m)
j , σ

2 (m)
j )

 ,

with

f(x∗|x1:N ) ≈ C :=

M∑
m=1

p
(m)

k(m)+1
(x∗) +

k(m)∑
j=1

p
(m)
j (x∗).

In this case, we have a weighted average of the GP
predictive densities across clusters and the marginal
likelihood h(y∗) for a new cluster. Note that the
marginal likelihood h(y∗) for a new cluster is unavail-
able in closed form as it requires integration over the
parameters (β0, λ, σ

2). However, we can compute a
simple Monte Carlo estimate of this quantity by sam-
pling from the prior,

h(y∗) ≈
1

S

S∑
s=1

N(y∗ | βs0, σ2 s +Kλs(x∗, x∗)),

with (σ2 s, βs0, λ
s) i.i.d. samples from the prior.

For other types of outputs through probit models, we
can similarly use the MCMC output to compute pre-
dictive quantities of interest at a test input x∗. For
example, considering the ordered probit with ordered
categories l = 0, . . . , L and fixed cutoffs 0 = ε0 < ε1 <
. . . < εL−1, we first note that we can compute the
expectation and density of the latent continuous ỹ∗
given the test input x∗, as in the Gaussian example.
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The posterior probability that y∗ = l given the test
input x∗ is

P(y∗ = l|x∗, y1:N , x1:N )

=

∫
P(y∗ = l|x∗, y1:N , x1:N , ζ)

π(ζ|y1:N , x1:N )f(x∗|x1:N , ζ)

f(x∗|x1:N )
dζ

≈C−1
(

M∑
m=1

p
(m)

k(m)+1
(x∗)P(y∗ = l|x∗)

+

k(m)∑
j=1

p
(m)
j (x∗)P(y∗ = l|x∗, Ỹ(m)

j , σ
2 (m)
j , β

(m)
0,j , λ

(m)
j )

 .

For cluster j of sample m, the probability that y∗ = l
is

P(y∗ = l|x∗, Ỹ(m)
j , σ

2 (m)
j , β

(m)
0,j , λ

(m)
j )

=P(εl−1 < ỹ∗ ≤ εl|x∗, Ỹ(m)
j , σ

2 (m)
j , β

(m)
0,j , λ

(m)
j )

=Φ

 εl − m̂(m)
j (x∗)√

K̂
(m)
j (x∗, x∗) + σ

2 (m)
j

−
Φ

 εl−1 − m̂(m)
j (x∗)√

K̂
(m)
j (x∗, x∗) + σ

2 (m)
j

 ,

with ε−1 = −∞, εL = ∞ and m̂
(m)
j (x∗) and

K̂
(m)
j (x∗, x∗) denoting the GP predictive mean and

kernel functions in cluster j of sample m. For a new
cluster, the marginal probability P(y∗ = l|x∗) is un-
available in closed form as it requires integration over
the parameters (β0, λ, σ

2). We can again employ a
Monte Carlo approach to estimate this quantity,

P(y∗ = l|x∗) ≈
1

S

S∑
s=1

Φ

(
εl − βs0√

Kλs(x∗, x∗)) + σ2 s

)
−

Φ

(
εl−1 − βs0√

Kλs(x∗, x∗)) + σ2 s

)
,

with (σ2 s, βs0, λ
s) i.i.d. samples from the prior.

An advantage of jointly modelling the outputs and
inputs includes the possibility to compute the pre-
dictive distribution of y∗ based only on a subset of
inputs, say only based on a single input x∗d. In
this case, the weights would only involve the local
predictive marginal likelihood of x∗d for each clus-

ter h(x∗d|X(m)
l|j,d), j = 1, . . . , k(m) and l = 1, . . . , k

(m)
j ,

and for a new cluster h(x∗d). However, the local
expectation would need to be integrated with re-
spect to predictive marginal likelihood of x∗−d =

(x∗1, . . . , x∗d−1, x∗d+1, . . . , x∗D) in each nested cluster-
ing. For example, in the Gaussian case,

E[y∗|x∗d, y1:N , x1:N ] ≈

C−1d

 M∑
m=1

p
(m)

k(m)+1
(x∗d)µβ +

k(m)∑
j=1

p
(m)
j,1 (x∗d)Ex∗−d [m̂

(m)
j (x∗)]

+

k(m)∑
j=1

k
(m)
j∑
l=1

p
(m)
j,l (x∗d)Ex∗−d [m̂

(m)
j (x∗)|X(m)

l|j,−d]

 ,

where expectations are taken with respect to h(x∗−d)

and h(x∗−d|X(m)
l|j,−d), i.e.

Ex∗−d [m̂
(m)
j (x∗)] =∫
m̂

(m)
j (x∗)

∏
d′ 6=d

h(x∗d′)dx∗−d,

Ex∗−d [m̂
(m)
j (x∗)|X(m)

l|j,−d]

=

∫
m̂

(m)
j (x∗)

∏
d′ 6=d

h(x∗d′ |X(m)
l|j,d′)dx∗−d,

with

p
(m)

k(m)+1
(x∗d) =

α
(m)
θ

α
(m)
θ +N

h(x∗d);

p
(m)
j,1 (x∗d) =

N
(m)
j

α
(m)
θ +N

α
(m)
ψ,j

α
(m)
ψ,j +N

(m)
j

h(x∗d)

p
(m)
j,l (x∗d) =

N
(m)
j

α
(m)
θ +N

N
(m)
l|j

α
(m)
ψ,j +N

(m)
j

h(x∗d|X(m)
l|j,d),

with Cd =
∑M
m=1 p

(m)

k(m)+1
(x∗d) +

∑k(m)

j=1 p
(m)
j,1 (x∗d) +∑k(m)

j=1

∑k
(m)
j

l=1 p
(m)
j,l (x∗d).

5 EXAMPLES

In the following subsections, we provide further de-
tails and insights on the results of the corresponding
examples presented in the manuscript.

5.1 Simulated Mixture of Damped Cosine
Functions

In the main text we consider a simulated example
in which points are generated from a highly non-
linear regression obtained as a mixture of two damped
cosines (Santner et al., 2003). This is coupled with a
distribution over the inputs, which are independently
sampled from a multivariate normal. In the following
sections we present additional supplementary details
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Figure 1: Simulated ARD example. Comparison of the
EDP MoE with the DP MoE, Lasso, GP, and TGP in
terms of the VI distance between the true and esti-
mated clustering (with dashed lines for the size of the
credible ball), average epoch time (in seconds), and
the coverage of the 95% credible intervals (CI).

on this example, where only the first input is a predic-
tor in the damped cosine functions and an automatic
relevance determination (ARD) kernel is employed to
recover the sparse structure. Following this we present
an alternative isotropic kernel example, in which the
damped cosine functions used the input mean as the
predictor. This additional example demonstrates the
scalability of our method to larger dimension D.
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(f) D = 10: y-cluster 2

Figure 2: Simulated ARD example. Heat map of the
posterior similarity matrix for the x-clustering within
the two estimated y-clusters for the enriched MoE.
Rows correspond to increasing D = 1, 5, 10, whilst
columns correspond to y-cluster. To improve visualisa-
tion, observations are permuted based on hierarchical
clustering.

Automatic relevance determination kernel

In the first example of the article, a data set of 200
points is generated from a mixture of two damped co-
sine functions by:

yn|xn
ind∼ p (xn,1) N

(
exp {β1,0xn,1} cos (β1,1πxn,1) , σ2

1

)
+ (1− p (xn,1))N

(
exp {β2,0xn,1} cos (β2,1πxn,1) , σ2

2

)
,

(2)

with mixture weights, p (xn,1), equal to

τ1 exp
{
− τ12 (xn,1 − µ1)

2
}

τ1 exp
{
− τ12 (xn,1 − µ1)

2
}

+ τ2 exp
{
− τ22 (xn,1 − µ2)

2
} .

The damped cosines are parametrised by β1 =
(0.1, 0.6)

′
, β2 = (−0.1, 0.4)

′
with σ1 = 0.15, σ2 = 0.05.
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(h) EDP conditional, D = 5
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(i) EDP marginal, D = 5
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Figure 3: Simulated ARD example. Top row: the true data generating predictive density plot. Bottom three
rows: the predictive mean (black line) and predictive density (red) plots for the DP (first two columns) and EDP
(last two columns) for a grid of x∗,1 values, with additional inputs conditioned on their sample means (first and
third columns) or marginalised (second and last column), with increasing D = 1, 5, 10 (rows).
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Figure 4: Simulated ARD example. Coverage for
the DP and EDP mixture of experts with increasing
D = 1, 5, 10. Each horizontal line depicts the 95%
credible interval based on the unions of highest poste-
rior density. This line is blue if the sampled truth lies
inside the interval, and red otherwise. The percentage
of samples lying inside the interval is the empirical
coverage.

The mixture model is parametrised by τ1 = τ2 = 0.8,
µ1 = 5 and µ2 = 3. The inputs are independently sam-
pled from a multivariate normal xn ∼ N(µ,Σ), centred
at µ = (4, . . . , 4), with standard deviation of 2 along
each dimension, that is Σh,h = 4. The covariance ma-
trix Σ assumes with the additional inputs positively
correlated among each other, with Σh,l = 3.5 for h 6= l,
h > 1 and l > 1 , but independent of the first input,
with Σ1,l = 0 for l > 1.

For both the DP and EDP mixtures of GP experts,
we employ the same prior choices, based on identified
reasonable ranges for the parameters. For the ARD
squared exponential kernels of the GPs, we utilise a
Gamma(3, 1) prior on the first input dimension length-
scale, Gamma(10, 1/2) prior on the other input di-
mension length-scales and a Gamma(2, 1.5) prior on
the magnitude. The constant means β0 of the GPs
have a N(0, 0.52) prior. The variance σ2

y has a log-

Table 1: Simulated ARD example. The number of
clusters in the VI estimated x-clustering within the
two estimated y-clusters for the enriched model, as D
increases.

y-cluster
D

1 5 10 15 20

1 1 5 6 7 7
2 1 6 7 8 7

N(log (0.01) , 0.52). For the DP, the mass parame-
ter has hyper-parameters (ua = 1, va = 1), and for
the EDP, the mass parameters have hyper-parameters
(uθ = 1, vθ = 1) and (uψ = 1, vψ = 1). A Gaussian in-
put model is used with hyperparameters of the conju-
gate normal-inverse gamma set to u0,d = x̄d, cd = 1/4,
bx,d = 1, and ax,d = 2.

Posterior inference for both models is performed with
5000 total iterations and a burn-in of 1000. Average
epoch times (in seconds) after burn-in are reported
in Figure 1(b). When fewer experts are identified
through the nested clustering of the EDP (e.g. D > 2
in our example), average epoch time is reduced for the
EDP compared with the DP. Each run was performed
independently and in parallel using the high perfor-
mance computing resources provided by commented
for blind review.

The VI distance between the true and estimated (y-
level) clustering is depicted in Figure 1(a), with dashed
lines representing the size of the 95% VI credible balls.
For the DP, the distance increases greatly with D, and
the true clustering is far from the credible ball. The
behaviour of the y-level clustering of the EDP is more
robust to increasing D, Figure 1(b), while the x-level
clustering requires an increasing number of clusters.
Figure 2 depicts the heat map of the posterior simi-
larity matrix for the x-clustering within the two esti-
mated y-clusters, and Table 1 reports the number of
x-clusters in the VI estimated x-clustering within the
two estimated y-clusters.

We plot the estimates for the predictive response den-
sity and mean against the first input over a dense grid.
These are presented in Figure 3, for different choices of
D. In the first and third columns the additional inputs
are fixed to their sample means (approximately 4) for
the DP and EDP models, respectively. Further, in the
second and fourth columns the additional inputs are
marginalised.

Finally, coverage plots are presented in Figure 4. Cen-
tered around the true values (sampled from the data
generating distribution of equation (2)), these plots
show the 95% highest posterior density credible inter-
vals for randomly sampled inputs (in some cases this
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may be a union of intervals). When the sample of the
truth lies within our credible interval the line is blue,
otherwise it is red. The increasing uncertainty of the
DP for increasing D is clearly visible from Figure 4,
while the EDP retains smaller credible intervals, with
similar coverage. Figure 1(c) summarises the coverage
across the competing models. All GP-based methods
show a decrease in coverage with increasing D. In
order to cope with the additional noisy inputs, length-
scale priors with heavier tails may be required to ef-
fectively identify the relevant inputs.

5.1.1 Isotropic kernel

In this second example, N = 200 points are again gen-
erated from a highly non-linear regression obtained as
a mixture of two damped cosines (2) (Santner et al.,
2003). However, in this case the mixture weights and
damped cosine functions depend on the inputs through
their average across dimensions. These inputs are in-
dependently sampled from a positively-correlated mul-
tivariate normal, and for all GP experts an isotropic
squared exponential kernel is used. This kernel favours
scalability of the GP experts with respect to D.

The damped cosines are now parametrised by β1 =
(0.1, 0.6)

′
, β2 = (−0.1, 0.4)

′
with σ1 = 0.15, σ2 = 0.05.

The mixture model is parametrised by τ1 = τ2 = 1.2,
µ1 = 2 and µ2 = 6. The inputs are independently
sampled from a multivariate normal xn ∼ N(µ,Σ),
centred at µ = (4, . . . , 4), with standard deviation of 2
along each dimension, that is Σh,h = 4. The covariance
matrix Σ assumes with the additional inputs positively
correlated among each other, with Σh,l = 3.5 for h 6= l,
h > 1 and l > 1, but independent of the first input,
with Σ1,l = 0 for l > 1.

For both the DP and EDP mixtures of GP ex-
perts we employ the same prior choices, based
on identified reasonable ranges for the parameters
which change empirically with D. For the isotropic
squared exponential kernels of the GPs, we utilise a
Gamma(1.252/1.5

√
p, 5/6) prior on the length-scales

and a Gamma prior on the magnitude with expecta-
tion 3/(log(p) + 1) and variance 0.5. The constant
means β0 of the GPs have a N(0, 0.52) prior. The vari-
ance σ2

y has a log-N(log (0.01) , 1). For the DP, the
mass parameter has hyper-parameters (ua = 1, va =
1), and for the EDP, the mass parameters have hyper-
parameters (uθ = 1, vθ = 1) and (uψ = 1, vψ = 1). A
Gaussian input model is used with hyperparameters of
the conjugate normal-inverse gamma set to u0,d = x̄d,
cd = 1/4, bx,d = 1, and ax,d = 2.

Figure 5 depicts the heat map of the posterior sim-
ilarity matrix and VI clustering estimate for the DP
and for the y-level clustering of the EDP with D = 5;

Permuted observation index

P
er

m
ut

ed
 o

bs
er

va
tio

n 
in

de
x

(a) DP PSM

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

−2
−1

0
1

2

x_avg

y

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●
●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

(b) DP clustering

Permuted observation index

P
er

m
ut

ed
 o

bs
er

va
tio

n 
in

de
x

(c) EDP PSM

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

−2
−1

0
1

2

x

y

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●
●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●●

●

●
●
●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

(d) EDP clustering

Figure 5: Simulated isotropic example with D = 5
dimensional inputs. Left : Heat map of the poste-
rior similarity matrix (PSM), with observations in-
dices permuted based on hierarchical clustering to im-
prove visualisation. Right: VI clustering estimate with
data points (yn, x̄n,·) coloured by cluster membership.
Rows correspond to the DP and EDP MoE, respec-
tively. For the EDP, plots correspond to the y-level
clustering.

the over-partitioning of the DP is evident even for
D = 5. Figure 6(a) emphasizes the improvement of
the EDP over the DP in recovering the true cluster-
ing for increasing D. It also highlights the inability of
model with linear experts to recover the true nonlin-
ear structure for large D, due to the small sample sizes
associated to each local linear approximation. The VI
distance between the true and estimated (y-level) clus-
tering is depicted in Figure 6(b), with dashed lines rep-
resenting the size of the 95% VI credible balls. For the
DP, the distance increases greatly with D, and the true
clustering is far from the credible ball. The behaviour
of the y-level clustering of the EDP is more robust to
increasing D, while the x-level clustering requires an
increasing number of clusters.

We compute the estimates for the predictive response
density over a dense grid of y∗ values against the mean
of the test inputs across the input dimension. The dif-
ference between these estimated and the true densities
is summarised by the L1 error in Figure 7 for increas-
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Figure 6: Simulated isotropic example. Comparison of
the EDP with the DP and the EDP model with linear
experts, in terms of the number of clusters in the VI
estimate and the VI distance between the true and
estimated clustering (with dashed lines for the size of
the credible ball).
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Figure 7: Simulated isotropic example. Comparison of
the EDP with the DP, EDP model with linear experts,
Lasso, GP, and TGP, in terms of the approximate L1

distance between the estimated and true conditional
densities.

ing D, and compared with the EDP model with linear
experts, GP, and TGP. Figure 8 plots the predictive
densities for different choices of D, for a more detailed
comparison. The second and third rows correspond to
the DP and EDP models respectively. An improve-
ment with the EDP is visible, particularly in produc-
ing smooth estimates that avoid the sharp piecewise
behavior due to the over-partitioning of the DP.

5.2 Alzheimer’s Challenge

Training data for the challenge is extracted from
the Alzheimer’s Disease Neuro-Initiative (ADNI)
database1. This data set consists of six inputs: age
(in fraction of years), gender, the baseline mini mental-
state exam (MMSE) score, the number of years an in-
dividual has spent in education, APOE genotype (re-
coded to reflect the number of copies of the type 4
allele), and the clinical diagnosis assessed at the base-
line. The output is the MMSE score taken at a 24
month follow-up visit, and the task is to predict the
cognitive decline in a patient over this period.

We again employ the same prior choices for both
mixtures of GP experts models, based on identified
reasonable ranges for the parameters. We consider
an ARD squared exponential kernel for the GP with
Gamma(al,d, bl,d) priors on the length-scales with al =
(3, 2, 3, 5, 3, 2), and bl = (3/20, 5, 1, 1, 5, 4), in order
of the inputs listed above. Additionally, we specify a
Gamma(am, bm) prior on the magnitude with am = 2
and bm = 1. These parameters were selected to re-
flect our prior knowledge on the relationship between
follow-up MMSE and the inputs and based on the
range of the inputs. The GP is assumed to have a
prior constant mean with a N(20, 7.52) prior. The vari-
ance σ2

y has a Gamma(ay, by) prior with ay = 1.5 and
by = 0.5.

For the DP, the mass parameter has hyper-parameters
(ua = 1, va = 1), and for the EDP, the mass param-
eters have hyper-parameters (uθ = 1, vθ = 1) and

1The ADNI was launched in 2003 by the National Insti-
tute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies
and non-profit organizations, as a $ 60 million, 5-year
public- private partnership. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biolog-
ical markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease
(AD). Determination of sensitive and specific markers of
very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clini-
cal trials. The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and Univer-
sity of California-San Francisco. ADNI is the result of ef-
forts of many co-investigators from a broad range of aca-
demic institutions and private corporations, and subjects
have been recruited from over 50 sites across the U.S. and
Canada. The initial goal of ADNI was to recruit 800 adults,
ages 55 to 90, to participate in the research, approximately
200 cognitively normal older individuals to be followed for
3 years, 400 people with MCI to be followed for 3 years
and 200 people with early AD to be followed for 2 years.
For up-to-date information, see www.adni-info.org.
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(f) DP , D = 200
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(g) EDP, D = 1
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(h) EDP, D = 50
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Figure 8: Simulated isotropic example. First row: the true data generating predictive density (red) evaluated at
a grid of y∗ values against the mean of test inputs across the input dimension. Bottom rows: predictive density
for the DP (second row) and EDP (third row) with increasing D = 1, 50, 200 (rows). Here each D corresponds
to separate training and test sets and the x-axis shows the mean across covariates. In each plot the training
samples are shown as scatter points (black).

(uψ = 1, vψ = 1). The parametric local model for
xn is the product of a normal density for age, a cate-
gorical density for gender, and four binomial densities
for baseline MMSE, education, APOE4, and diagno-
sis. The input hyperparameters are u0 = 72, c = 2,
bx = 10, and ax = 2 for age; γ2 = (1, 1) for gen-
der; γ3 = (5, 1) for MMSE; γ4 = (3, 2) for education;
γ5 = (1, 3) for APOE4; γ6 = (1, 1) for diagnosis. Pos-
terior inference for both models is performed with 5000
total iterations and a burn-in of 1000.

For comparison with the best performers of this sub-
challenge, the GuanLab and ADDT teams, we imple-
mented the models using publicly available packages
in R. For the GuanLab model, we used the svm func-

tion of the e1071 package (Meyer et al., 2018). For
the ADDT model, we used the rlm function of the
MASS package (Venables and Ripley, 2002). For both
mixtures of experts, posterior medians, i.e. the point
estimate under the absolute error loss, are used to pre-
dict MMSE scores, which are appropriate due to the
heavy left tail of the predictive densities.

Heat maps of the posterior similarity matrices are pro-
vided in Figure 9, and visualizations of the VI cluster-
ings through side-by-side bar plots of MMSE baseline,
MMSE follow-up, education, diagnosis, APOE4, gen-
der and age are provided in Figure 11, with colours rep-
resenting clusters. Interestingly, the enriched model
identifies three clusters consisting mostly of cogni-
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Figure 9: Alzheimer’s challenge. Heat map of the pos-
terior similarity matrix for the DP and EDP MoE.
To improve visualisation, observations are permuted
based on hierarchical clustering.

20 21 22 23 24 25 26 27 28 29 30
MMSE

al
lo

ca
tio

n 
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Cogntively normal

20 21 22 23 24 25 26 27 28 29 30
MMSE

al
lo

ca
tio

n 
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) early MCI
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(c) late MCI
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(d) Alzheimer’s disease

Figure 10: Alzheimer’s challenge. The allocation prob-
abilities for a new test point as a function of baseline
MMSE and diagnosis of CN in (a), eMCI in (b), lMCI
in (c), and AD in (d), with other inputs marginalised.
Allocation probabilities are based on the estimated VI
clustering and coloured by cluster membership for each
of the estimated VI clusters from the enriched model
in Figure 11.

tively normal (black), mild cognitive impairment (red),
and AD (green) individuals, similar to the GuanLab
model, with slight modifications considering the other
variables, particularly, MMSE baseline and follow-up
scores. For example, one late MCI individual is allo-
cated to the AD (green) cluster in Figure 11(d) due to
the observed sharp drop in MMSE from 27 at baseline
to 8 at follow-up. Additionally, we observe that the
relative proportion of individuals in the red and green
clusters increases with higher APOE4, but does not

(marginally) depend on gender and age.

The DP, on the other hand, further subdivides clusters
due to multimodality in education. Similarly, for the
enriched model, the VI estimate of x-clustering within
each VI estimated y-cluster, contains two x-clusters
due to multimodality in education. Figure 12 depicts
the heap map of the posterior similarity matrix for the
x-clustering within each estimated y-cluster and also
shows the VI estimate of x-clustering within each VI
estimated y-cluster for education, with each estimated
x-clustering containing two clusters.

We can further appreciate the difference between the
deterministic clustering of the GuanLab model and the
stochastic clustering of the enriched model in Figure
10, which shows the allocation probabilities of a new
test point for MMSE baseline scores of 20-30 and di-
agnosis of CN (Figure 10(a)), eMCI (Figure 10(b)),
lMCI (Figure 10(c)), AD (Figure 10(d)), with other
inputs marginalised. As opposed to the GuanLab
model which classifies new individuals based on di-
agnosis, we observe that CN individuals with baseline
MMSE ≥ 27 have the highest probability of being allo-
cated to the black cluster, while this baseline MMSE
cutoff is increased to 28 and 30 for eMCI and lMCI
individuals, respectively. Below these respective cut-
offs, CN, eMCI, and lMCI individuals have the high-
est probability of being allocated to the red cluster
(apart from lMCI individuals with baseline MMSE of
20 that are allocated to the green cluster with highest
probability). Instead, AD individuals have the highest
probability of belonging to the red cluster for baseline
MMSE ≥ 25 and to the green cluster otherwise. We
note that for CN individuals with low MMSE baseline
(not observed), there is a small probability of alloca-
tion to a new (blue) cluster.

Figure 13 shows how the predictive densities of MMSE
follow-up scores change given different combinations
of baseline MMSE, diagnosis, and APOE4. For CN
individuals, the differences between APOE4 type are
minor and the posterior mass is very concentrated
on high follow-up MMSE scores given high base-
line MMSE scores. More evident differences between
APOE4 type are visible for more severe diagnosis, and
in general, we observe a greater decrease in follow-up
scores with more uncertainty for more severe dementia
and increased APOE4. In particular, for AD patients
that are carriers of APOE4, there is a visible proba-
bility of progressing to severe dementia (MMSE≤ 12),
that increases with decreased baseline MMSE.
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Figure 11: Alzheimer’s challenge. A visualization of the VI clustering estimate through side-by-side bar plots
coloured by cluster membership. The first two rows correspond to enriched model and the second two correspond
to the joint model.
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Figure 12: Alzheimer’s challenge. First row: heat
maps of the posterior similarity matrices for the x-
clustering within each y-cluster for the enriched model.
Second row: a visualization of the VI x-clustering es-
timate within each y-cluster through side-by-side bar
plots for education. Colour corresponds to the y-
cluster, while shading corresponds to the x-cluster.
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(a) CN and APOE4=0
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(b) CN and APOE4=2
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(c) eMCI and APOE4=0
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(d) eMCI and APOE4=2
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(e) lMCI and APOE4=0
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(f) lMCI and APOE4=2
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(g) AD and APOE4=0
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Figure 13: Alzheimer’s challenge. Predictive distribu-
tion of MMSE 24-month follow-up for different com-
binations of MMSE baseline, diagnosis, and APOE4,
with other inputs marginalised for the enriched model.
Columns represent APOE4 types of 0 and 2, whilst
rows represent diagnosis. Dashed lines indicate estab-
lished cutoffs for MMSE: ≥ 25 suggests no dementia;
20−24 suggests mild dementia; 13−19 suggests mod-
erate dementia; ≤ 12 suggests severe dementia.


