Enriched mixtures of generalised (Gaussian process experts

Charles W.L. Gadd t
Dept. of Computer Science
Aalto University
Espoo, Finland
cwlgadd@gmail.com

Sara Wade *
School of Mathematics
University of Edinburgh
Edinburgh, United Kingdom
sara.wade@ed.ac.uk

Alexis Boukouvalas

PROWLER.io
Cambridge, United Kingdom
alexis@prowler.io

For the Alzheimer’s Disease Neuroimaging Initiative

Abstract

Mixtures of experts probabilistically divide
the input space into regions, where the as-
sumptions of each expert, or conditional
model, need only hold locally. Combined
with Gaussian process (GP) experts, this re-
sults in a powerful and highly flexible model.
We focus on alternative mixtures of GP ex-
perts, which model the joint distribution
of the inputs and targets explicitly. —We
highlight issues of this approach in multi-
dimensional input spaces, namely, poor scala-
bility and the need for an unnecessarily large
number of experts, degrading the predictive
performance and increasing uncertainty. We
construct a novel model to address these is-
sues through a nested partitioning scheme
that automatically infers the number of com-
ponents at both levels. Multiple response
types are accommodated through a gener-
alised GP framework, while multiple input
types are included through a factorised expo-
nential family structure. We show the effec-
tiveness of our approach in estimating a par-
simonious probabilistic description of both
synthetic data of increasing dimension and
an Alzheimer’s challenge dataset.

1 INTRODUCTION

The Gaussian process is a powerful and popular prior
for nonparametric regression, due to its flexibility, an-
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alytic tractability, and interpretable hyperparameters.
The GP assumes that the unknown function evaluated
at any finite set of inputs has a Gaussian distribution
with consistent parameters. It is fully specified by a
mean function and symmetric positive definite covari-
ance (or kernel) function, which together encapsulate
any prior knowledge and assumptions of the regression
function, such as smoothness and periodicity (see Ras-
mussen and Williams, 2005, for a thorough overview).

In GP regression, the outputs are modelled as noisy
observations of an unknown function, which is assigned
a GP prior. While GP regression has been success-
fully applied to various problems, it only allows for
flexibility in the regression function, assuming i.i.d.
Gaussian errors. Many datasets present departures
from this model, such as multi-modality or changing
error variance across the input space. Moreover, for
computational purposes, a stationary GP is typically
employed, which limits the model’s ability to recover
changing behaviour of the function across the input
space, e.g. different smoothness levels.

Density regression refers to the general problem of es-
timating the conditional density of the targets across
the input space, or equivalently, flexible estimation of
both the regression function and input-dependent er-
ror distribution. Mixtures of experts (Jacobs et al.,
1991) address the density regression problem by prob-
abilistically partitioning the input space. Each expert
is a conditional model, and a gating network maps ex-
perts to local regions of the input space. Scalability
is enhanced since each expert considers only its local
region, and simplifying assumptions of the regression
function need only hold locally in each region.

Experts may range from simple linear models to flex-
ible non-linear approaches. Specifically, GP experts
allow the model to infer local non-linearities character-
ized by different behaviours, such as smoothness and
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variability. In this work, we build upon alternative
mixtures of GP experts (Meeds and Osindero, 2006),
which employ mixtures to explicitly model the joint
distribution of the inputs and targets and GP experts
to capture their local relation. We highlight issues
of this approach for multi-dimensional inputs, namely,
poor scalability and the need for an unnecessary num-
ber of experts, and we construct a novel model based
on the enriched Dirichlet process (EDP, Wade et al.,
2011) to address these issues, that additionally extends
the model for multiple response and input types.

The paper is organised as follows. Related work is
reviewed in Section 2. In Section 3, we construct a
novel mixture of generalised GP experts, that utilises
a nested partitioning scheme to improve prediction and
uncertainty quantification. Section 4 describes poste-
rior inference. Section 5 illustrates the benefits in a
non-linear toy example and a case study to predict
cognitive decline in Alzheimer’s.

2 RELATED WORK

Mixtures of experts were first combined with GPs in
Tresp (2001), resulting in a flexible nonparametric ap-
proach for both the experts and gating networks. In-
finite mixtures of GP experts were subsequently in-
troduced (Rasmussen and Ghahramani, 2002), allow-
ing the number of experts to be determined by and
grow with the data; this is performed by employing
the Dirichlet process and kernel classifiers to model
the gating network. In the treed-GP (TGP, Gramacy
and Lee, 2008), an example of a finite mixture of GP
experts, the gating network is defined by partitioning
the input space into axis-aligned rectangular regions.
More flexible partitioning approaches have also been
proposed, such as Voronoi tessellations (Pope et al.,
2018).

In contrast to these discriminative approaches, the al-
ternative infinite mixture of GP experts (Meeds and
Osindero, 2006) is a generative model for the joint dis-
tribution of the inputs and targets. Advantages in-
clude the ability to handle missing data and answer
inverse problems, as well as more interpretable param-
eters of the local input model, which implicitly define
the gating network, easing prior specification. More-
over, computations are simplified, relying on the dif-
ferent available representations and established algo-
rithms for infinite mixtures of exchangeable data (e.g.
Neal, 2000; Kalli et al., 2011; Blei and Jordan, 2006).
In Meeds and Osindero (2006), the inputs are mod-
elled with a local multivariate Gaussian distribution,
and in multi-dimensions, complexity in the marginal of
the inputs may lead to an unnecessarily large number
of experts, degrading the predictive performance and

increasing uncertainty, due to small sample sizes for
each expert. This constraint is removed in Yuan and
Neubauer (2009) by using a Gaussian mixture for the
local input density; however, a finite approximation to
the infinite mixture is used at both levels. Moreover,
the local multivariate Gaussian scales poorly with the
input dimension D due to the computational cost of
dealing with the full D by D matrix.

To provide a unifying framework for multiple output
types, alternative infinite mixtures of generalised lin-
ear experts are developed in Hannah et al. (2011). In
this linear setting, Wade et al. (2014) highlights the is-
sues associated with an overly large number of experts,
causing a loss of predictive accuracy and increased un-
certainty, particularly as D increases. For mixtures of
GP experts, the greater flexibility of GPs over linear
experts exacerbates these problems. In the following,
we construct a novel mixture of GP experts to over-
come these issues, inspired by Wade et al. (2014), that
also provides a unifying framework for multiple input
and output types.

3 ENRICHED MIXTURES OF
GENERALISED GAUSSIAN
PROCESS EXPERTS

A mixture model for the joint density of the output
y € Y and D-dimensional input z € X assumes

foly.z) = / Dyl Op(al)dQ@, ). (1)

The three key elements are 1) the local expert
p(y|z,0), a family of densities on Y for 6 € O; 2) the
local input model p(z|¢), a family of densities on X
for ¢ € ¥; and 3) the mixing measure @, a proba-
bility measure on © x ¥. In the following, we define
these three key elements for our model.

3.1 Local Experts

We provide a framework for multiple output types by
defining the local expert p(y|z,6) to be an extension
of the generalised linear model (GLM) used in Han-
nah et al. (2011). Specifically, p(y|z, 6) belongs to the
exponential family, which in canonical form assumes

p(ylz,0) = exp (W ey, ¢>) ,

where the functions a, b, and ¢ are known and specific
to the exponential family with parameters 8 = (¢, v);
¢ is the scale parameter; and 7 is the canonical param-
eter with '(n) = p(z) = E[y|z] and g(u(z)) = m(x),
where ¢ is a chosen link function that maps u(x) to
the real line. In GLMs (McCullagh and Nelder, 1989),
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a linear function of x determines the canonical param-
eter, i.e. m(z) = a + x8.

Instead, we consider a general non-linear function and
assign a GP prior to the unknown function:

m(-)|Bo, A ~ GP(Bo, K»),

with constant mean function, E[m(z)] = Sy, and
kernel function K, with hyperparameters A, defin-
ing the covariance of the function at any two in-
puts, Covim(z),m(z.)] = Kx(x,x,). The parame-
ters of this generalized Gaussian process (GGP, Chan
and Dong, 2011) are § = (m(-), Bo, A, ¢). In many
examples, it is common to use a zero-centred GP,
which is made appropriate by subtracting the over-
all mean from the response. However, in our case,
we must include a constant mean, as the partition-
ing structure is unknown and the data cannot be cen-
tred for each expert. Additionally, by including A in
the set of mixing parameters 6, we can recover non-
stationary behaviour, e.g. different length-scales in
local regions of the input space. The GGP experts
used in Section 5 are 1) Gaussian with identity link,
p(y|z,0) = N(y|m(x),0?); and 2) Ordinal with probit
link for ordered categories [ =0, ..., L,

€l — m(%’)] :

g

P(y§l|x,9):<l>[

and cutoffs 0 = g < ¢1 < ... < €1,_1, which may be
fixed due to the nonparametric nature of the model
(Kottas et al., 2005). The ordinal model can be equiv-
alently formulated through a latent Gaussian response:

gj\m(m), o ~ N(m(x),a2),

1(y <0) ifl=0
pyli) =4 L1 <jy<eg) ifl=1,...,L—1 ,
1(Q>EL71) ifil=1L

with the ordered probit recovered after marginalisation
of the latent §. A list of GGP experts is provided in the
Supplementary Material (SM), for studies with other
output types.

3.2 Local Input Models

We assume a factorised exponential family structure
for the local input model. Specifically, it factorises
across d = 1,..., D, where each p(z4|tq) belongs to
the exponential family, that is,

p(zalta) = exp(¢j ta(za) — aa(Va) + ba(za)),

and t4, aq, and by are known functions specified by
the choice within the exponential family. The stan-
dard conjugate prior for i assumes independence of
g across d = 1,..., D with

T (Ya) o exp(ty Ta — Vaaa(¥a)),

and parameters 75 and vy determining the location
and scale of the prior, respectively. In this conjugate
setting, ¥ can be marginalised, and the local marginal
and predictive likelihood of the inputs are available
analytically (specific calculations are provided in the
SM). Examples used in Section 5 are the 1) Gaus-
sian for z4 € R, with local input model N(zg|ug, s3);
2) Categorical for x4 taking unordered values g =
0,1,...,Gy, with local input model Cat(x4|t4), where
Ya = (Ya0,---,VaG,) is a probability vector; and 3)
Binomial for x4 taking ordered values g = 0,1,...,Gy
with local input model Bin(z4|Gg,%q) for 14 € (0,1).

Advantages of this factorised exponential form include
improved scalability, inclusion of multiple input types,
and richer parametrisation. Indeed, the mixtures of
GP experts in Meeds and Osindero (2006); Yuan and
Neubauer (2009); Nguyen and Bonilla (2014) consider
only continuous inputs with a local multivariate Gaus-
sian density and conjugate inverse Wishart prior on
the covariance matrix. However, even for moderately
large D, this approach becomes unfeasible. Specifi-
cally, the computational cost of dealing with the full
covariance matrix is O(D?), which is reduced to O(D)
in our factorised form. Furthermore, Consonni and
Veronese (2001) highlight the poor parametrisation of
the Wishart prior; in particular, there is a single pa-
rameter to control variability. In our model, flexibil-
ity of the conjugate prior is enhanced, as it includes a
scale parameter v, for each of the D variances. We em-
phasize that although the inputs are locally indepen-
dent, globally, they may be dependent. For example,
a highly-correlated, elliptically-shaped Gaussian can
be accurately approximated with a mixture of several
smaller spherical Gaussians.

3.3 Mixing Measure

The Bayesian model is completed with a prior on the
mixing measure @, and the Dirichlet process (DP,
Ferguson, 1973) is a popular nonparametric choice.
Indeed, it is utilised in Rasmussen and Ghahramani
(2002); Meeds and Osindero (2006); Hannah et al.
(2011), among many others. Instead, we propose to
use the enriched Dirichlet process (EDP, Wade et al.,
2011) and highlight its advantages for improved pre-
diction, better uncertainty quantification, and more
interpretable clustering.

Dirichlet process. The parameters of the DP con-
sist of the concentration parameter o > 0 and the base
measure (g, a diffuse probability measure on © x .
The DP is discrete with probability one, and realisa-
tions place positive mass on a countably infinite num-
ber of atoms. When utilised as a prior for the mixing
measure Q ~ DP(«, Qp), this implies a countably in-
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Figure 1: Mixture of experts (MoE) with 1(a) DP prior
and 1(b) EDP prior on the mixing measure Q). Here,
Y; and Y; denote the observed and latent outputs in
cluster j, with X; denoting the inputs in cluster j for
the DP and X;; denoting the inputs in z-cluster I
nested in y-cluster j for the EDP.

finite mixture for the joint density in (1). For N data
points (Yn,2n), n = 1,..., N, this induces a random
partition of the data points into clusters, where data
points belong to same cluster if they are generated
from the same mixture component. Introducing the la-
tent variable z,, denoting the cluster allocation of data
point n, in order of appearance, and the parameters
(0;,9;) denoting the parameters of the j*® observed
cluster, the mixing measure () can be marginalised.
In this case, the model can be expressed as

. ind
Uns &)z = 4,05, 05~ p(ynlen, 0;)p(xnlvs),
where (0;,1;) ~ ud Qo. The law of allocation variables is
defined by the predictive distributions (Blackwell and

MacQueen, 1973):

ZNy1l21N ~ 5k+1

where k is the number of clusters and N; is the number
of data points allocated to cluster j. In this setting,
the number of clusters is determined by and can grow
with the data.

Enriched Dirichlet process. The EDP defines a
prior for the joint measure @ on ©® x ¥ by decom-
posing it in terms of the marginal Q9 and conditional
Qy)o(:|0). The parameters consist of the base mea-
sure Qg on © x ¥, with marginal QQyy and conditional
Qo y|9, and concentration parameters ay and o, (0) for
6 € ©. The EDP assumes 1) Qp ~ DP(apQog); 2)
Quy)o(:10) ~ DP(ay(0)Qoyo(-10)) for all & € ©; and
3) independence of Qy¢(-|¢) across € © and from
@Qy. When utilised as a prior for the mixing mea-
sure Q ~ EDP(ayg, ay(0), Qo), this induces a random
nested partition of data points in y-clusters and z-
subclusters within each y-cluster. The latent cluster
allocation of each data point consists of two terms
Zn = (Zy.n, Zon), Where z, , = j if the nth data point
belongs to jth y-cluster with parameter 6; and 2z, , =1
if the nth data point belongs to (th z-cluster with pa-
rameter ¢;; within the jth y-cluster. After marginal-
ising @, the model can be expressed as

1),05,; e 0;)p(xnliy;),

where 0; “ Qoo and ¥y;10; “ Qo ye(-[0;). The law
of allocation variables is defined by:

(y’ruxn”zn = (.]7 p(yn‘xna

Qg
o+ N

ZNt1|ziN ~ S(kt+1,1)+

j Nl‘
Ok +1) +Za¢J+N @b

k
Z Ay,j
= ag + N a¢7j+N

where k£ denotes the number of y-clusters of sizes N;
and k; denotes the number z-clusters within the ]th
y- cluster of sizes Ny ;. Further, hyperpriors on the
concentration parameters assume ag ~ Gam(ug, vp)
and oy ; = ayp(f;) are independent with g ; ~
Gam(uy, vy)-

A graphical comparison of the MoE with the DP and
EDP priors is provided in Figure 1. The DP mixture
of GGP experts allocates data points to similar groups
to obtain a good approximation to the joint density,
with similarity measured by the local expert and in-
put model. The local factorised exponential family for
the inputs is crucial for scaling to multi-dimensions
and inclusion of multiple input types. However, this
results in a rigid similarity measure between inputs,
and as D increases x tends to dominate the partition-
ing structure, typically requiring many small clusters
to capture increasing departures from the local input
model. This occurs despite the flexible nature of GPs,
often requiring only a few GP experts to approximate
the conditional of y given x, and results in degrada-
tion of regression and conditional density estimates,
wide credible intervals, and uninterpretable clustering
due to the small sample sizes for each expert. By re-
placing the DP with the EDP, the nested partition-
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Algorithm 1 Non-conjugate collapsed Gibbs sampler

Input: data (y,,2,)_

1
s 0 _2(0) 50 0 (0 (0
nitialize: (2405, 001 s Bt Aok Of O L

> by sampling from the prior.
for m=1to M do
for n=1to N do
Local updates to:

~(0
7o)

zflm)|z§m), . 7(1771)1, 2221 1), e ZJ(\?L_U
> extending and combining Algorithm 8 and Algo-
rithm 8 of Neal (2000) for the nested partition.
end for
Global split-merge y-cluster updates to: z;
> Metropolis-Hastings step to move an x- cluster to be

(Tn)

nested within a new or different y-cluster, with ’smart’
proposals.
Global split-merge x-cluster updates to: qu)N
> extending Jain and Neal (2004); Wang and Rus-
sell (2015) to split or merge x-clusters nested within
a common y-cluster, with ’smart-dumb’ proposals.
Sample y-cluster parameters (o "™, éi’f?k, Almy
> using Hamiltonian Monte Carlo (Duane et al.,
1987).
Sample concentration parameters (aém) aEZLl): &)
> with auziliary variable techniques (Escobar and
West, 1995).
Sample latent outputs gjiwf\;
> if present, through Gibbs sampling and CDF inver-
ston (Kotecha and Djuric, 1999).
end for

ing scheme allows the data to determine if the condi-
tional of y given = can be recovered with fewer experts.
The y-clustering is determined by similarity measured
through the local expert and a more flexible local in-
put model, which can itself be a mixture. Moreover, a
simple analytically computable allocation rule is main-
tained, allowing the construction of efficient inference
algorithms.

4 POSTERIOR INFERENCE

For inference, we resort to Markov chain Monte Carlo
(MCMC) and derive a collapsed Gibbs algorithm to
sample the latent allocation variables z1.n and unique
y-cluster parameters (), with the x-cluster parame-
ters (1);) marginalised. Additionally, we focus on the
case when the functions m;(-) can be marginalised;
this includes the Gaussian likelihood, but also the or-
dered probit, among others, through data augmenta-
tion. In the latter, the data is augmented with la-
tent Gaussian outputs 4.y, which have a determinis-
tic relationship with the observed outputs. Algorithm

1 gives an overview of the MCMC scheme.

Single-site Gibbs updates of the allocation vari-
ables can result in sticky chains, especially in high-
dimensions. To improve mixing, two novel split-merge
updates are developed to allow for global changes to
the allocation variables. The first set of moves pro-
poses to move an x-cluster to be nested within a new or
different y-cluster, with ‘smart’ proposals to increase
the acceptance probability. The second set proposes
to split or merge x-clusters nested within a common
y-cluster; ‘smart’ proposals are again employed but,
in this case, need to be paired with corresponding
‘dumb’ proposals (i.e. random allocations), in order to
increase the acceptance probability due to reversibil-
ity constraints of the Metropolis-Hastings algorithm
(Wang and Russell, 2015). The SM contains a full
description of the algorithm for the interested reader.

Predictions. From the M MCMC samples, we com-
pute predictions for the new output y. given z,. In the
Gaussian case, the posterior expectation of y, is ap-
proximated by

E[y* |I‘*, Y1:N, xl:N] =
K (m)

Z pk<m>+1 T )pip + Z "

x* mJ )(x*) ,

where C is the normalising constant; and for a new
cluster, the predictive mean is simply the prior ex-
pectation of f; )41, denoted by pg, while for an
existing cluster, the GP predictive mean in cluster j
is denoted by m A(m) (x). Thus, for each sample, the
expectation is a Weighted average of the GP predic-
tions from each cluster and a new cluster, with input-
dependent weights that flexibly measure the similarity
between the new input and the inputs of each cluster
through a mixture. Specifically, the weights of a new

cluster and existing cluster j, for j = 1,..., k(™) are,
respectively,
(m)
(m) @y
Prom 41 (T) =y ——h(x4),
k(m) 41 aém)+N
N(m) a(m,)
P (@) =3 Ty )+
apg  + N oy + N,
(m)
kZ Vx| o
=R R
Here, h(z.) is the marginal density of 2* and

h(z.|X;);) is the predictive marginal density of .
given Xj|;, which contains the x,, such that z, = (j,1).
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In contrast, for the DP, the weight of an existing clus-
ter in (2) is more rigidly defined based on a single pre-
dictive marginal density, arising from the factorised
exponential family. The predictive density or appro-
priate quantities for other output types are similarly
computed. The joint approach also allows calculation
of predictions based only on a subset of inputs, which
are useful for visualisation and for test cases with miss-
ing inputs. Full derivations are provided in the SM.

Clustering. The enriched MoE induces a nested
clustering of the data points into y-clusters and nested
z-clusters. This latent clustering may be of interest
to identify similar groups of data points and to im-
prove understanding of the model. The MCMC sam-
ples from the posterior over this nested clustering; to
summarise the samples, we obtain the point estimate
from minimising the posterior expected variation of
information (VI, Wade and Ghahramani, 2018), first
estimating the y-level partition and then the nested -
level partition. To visualise uncertainty in the cluster-
ing structure, we also compute the posterior similarity
matrix with elements p(zy.n = 2yn|Y1:~, T1:N) TEpPTE-
senting the posterior probability that two points are
clustered together and approximated by the fraction
of times this occurred in the chain.

5 EXAMPLES

We demonstrate the advantages of the enriched MoE
in two examples. Namely, improved predictive accu-
racy, smaller credible intervals, and more interpretable
clustering. The first demonstrates increasing improve-
ment over the DP as D increases, whilst the second
shows the range of applicability of our model for ordi-
nal outputs with multiple input types. Code to imple-
ment the model and reproduce the results is available
at github.com/cwlgadd/MixtureOfExperts. Prior
parameter specification, algorithm details and epoch
times are detailed in the SM.

5.1 Simulated Mixture of Damped Cosine
Functions

In the first example, N = 200 points are generated
with only the first input as a predictor. The true out-
put model is a highly non-linear regression obtained
as a mixture of two damped cosines (Santner et al.,
2003). The inputs are independently sampled from a
multivariate normal. The additional inputs, which re-
duce the data’s signal, are positively correlated among
each other but independent of the first input.

We consider our EDP model with automatic relevance
determination (ARD) squared exponential kernels for
the GP experts. Benchmarks include the DP model;

Permuted observation index
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Permuted observation index

Figure 2: Simulated example for D = 5. Left: Heat
map of the posterior similarity matrix (PSM), with
observations indices permuted based on hierarchical
clustering to improve visualisation. Right: VI clus-
tering estimate with data points (yy,, zn,1) coloured by
cluster membership. Rows correspond to DP and EDP
MoE, respectively. For the EDP, plots correspond to
the y-level clustering.

EDP model with linear experts; Lasso; GP; and TGP.
This example demonstrates the robustness and abil-
ity of the EDP model to recover an underlying sparse
data-generating structure, while the other methods fail
to do so. Additional experiments with isotropic ker-
nels are provided in the SM, showcasing the scalability
of the GP experts with respect to D.

The heat map of the posterior similarity matrix from
the DP MoE in Figure 2(a) highlights data points with
a high probability of clustering together in red; even
for D = 5, the need for a large number of clusters is
clearly evident. Indeed, the VI clustering estimate in
Figure 2(b) contains nine clusters for D = 5. Con-
versely, the corresponding plots for the y-level clus-
tering of the EDP in Figures 2(c)-2(d) highlight two
y-clusters. Figure 3(a) emphasizes this improvement
of the EDP in recovering the true number of y-clusters
for increasing D (red line), while also employing a large
number of x-clusters (red dashed line) to recover the
marginal of x, in line with the DP (black line). In-
stead, the EDP with linear experts requires several
y-clusters (pink line) for a local linear approximation
to the highly non-linear function; however, for higher
D it simply models the data as noise due to the inabil-
ity to recover the sparse structure with small sample
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sizes for each high-dimensional linear expert.

The improvement in the clustering leads to more ac-
curate predictions and tighter credible intervals. We
quantify the predictive accuracy in density regression
with the Ly error, that is the approximate L distance
between the estimated predictive response density and
true data generating density, averaged across test sam-
ples. These errors are depicted in Figure 3(b), along-
side the average length of the 95% credible intervals in
Figure 3(c). As expected, the Lasso, an effective tool
for sparse linear regression, performs quite poor in this
highly non-linear example. However, the GP and TGP
perform just as bad due to the inability to cope with
bimodality in the non-axis aligned clustering. While
the L; errors of the DP and EDP generally increase
with D (as expected due to the increased input noise),
the EDP is the most robust. Moreover, the EDP pro-
duces tighter credible intervals across D, compared to
the other methods, while maintaining similar coverage
(in the SM).

5.2 Alzheimer’s Challenge

Motivated by the Alzheimer’s Disease Big Data
DREAM Challenge (https://www.synapse.org/#!
Synapse:syn2290704/wiki/60828), this study aims
to predict cognitive scores 24 months after initial as-
sessment. This can potentially assist in early diagno-
sis of Alzheimer’s disease (AD) and provide person-
alised predictions with uncertainty for patients and
their families. Training data is extracted from the
Alzheimer’s Disease Neuro-Initiative (ADNI) database
(www.adni-info.org). We emphasise that the com-
petition test data can no longer be accessed, and the
test results presented here are based on a random
split of the data into training and test sets of sizes
N = 384 and N* = 383. The ordinal response y,
is the mini-mental state exam (MMSE) score at a 24
month follow-up visit; MMSE is an extensively used
clinical measure of cognitive decline, defined on a 30
point scale with lower scores reflecting increased im-
pairment. The D = 6 inputs include baseline age (in
fraction of years); gender; baseline MMSE; education;
APOE genotype, with values 0, 1, or 2, reflecting the
number of copies of the type 4 allele; and diagnosis at
baseline of cognitively normal (CN), early mild cogni-
tive impairment (EMCTI), late mild cognitive impair-
ment (LMCI), and AD, respectively. The winners of
this subchallenge were GuanLab (GL) and ADDT. GL
(Zhu and Guan, 2014) trained separate support vec-
tor machines (SVM) within each group of CN, MCI or
AD; SVMs provide non-probabilistic predictions, and
for comparison, we also train linear regression models
within group to obtain prediction intervals in GL2.
ADDT (Hwang et al., 2014) used robust regression

Table 1: Alzheimer’s challenge. Comparison of EDP
with DP and competition winners by 1) number of
clusters; 2) mean absolute test error; 3) empirical cov-
erage and 4) average length of 95% credible intervals.

k MAEw ECo; Clos

EDP 3 2.112 0.948 8.96

DP 7 2.149 0.950 9.10
GL 3 2.153 - -

GL2 3 2.208 0.945 11.06

ADDT 2.158 0.867  8.29

based on M-estimation, optimally combined diagnosis
and APOE4, and included interactions.

The EDP MOoE can flexibly recover non-linear trajec-
tories of the cognitive decline, while also clustering pa-
tients into input-dependent groups of similar trajecto-
ries. We employ ARD kernels to identify the relevant
inputs within each cluster and consider the ordered
probit GGP with fixed cutoffs 0 =g <e1 =1 < eg =
2... < g99 = 29. Table 1 summarises the test per-
formance of the methods via the mean absolute error
and empirical coverage and average length of the 95%
credible intervals. Compared to the DP, the EDP per-
forms slightly better in mean absolute test error and
has smaller uncertainty, reflected in a reduced average
credible interval length, while maintaining good cover-
age (=~ 0.95). This improvement is due to its ability to
capture the relationship between y and x with fewer
clusters, also leading to more interpretable clustering.
Indeed, the VI estimate of the y-clustering of the EDP
has only three clusters, while the DP has seven. Sim-
ilar to GL, the EDP identifies three clusters of mostly
CN, MCI, and AD individuals, with some adjustments
for other variables, particularly, MMSE scores.

The EDP MoE produces flexible nonparametric den-
sity estimates of MMSE follow-up scores that change
smoothly with the inputs. Specifically, Figure 4 shows
how the densities become less peaked with larger
variability for decreased baseline MMSE, increased
APOEA4, and increased severity in diagnosis. Instead,
GL and ADDT are not able to capture this behaviour,
e.g. with a minimum prediction interval length of 8
for ADDT, despite the high probability of follow-up
MMSE close to 30 for CN individuals with a baseline
MMSE of 30 in Figure 4. Also, note the apparent dif-
ference across APOE genotype for AD patients, with
an increased probability of progressing to severe de-
mentia for carriers in Figure 4. Thus, the EDP pro-
vides much improved uncertainty in predictions, which
is particularly important in clinical settings and in re-
lation to established cutoffs for MMSE. The SM con-
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Figure 4: Alzheimer’s challenge. Marginal predictive
density of MMSE 24-month follow-up scores for dif-
ferent combinations of MMSE baseline, APOE4, and
baseline diagnosis from the EDP mixture of experts.
Dashed lines indicate established cutoffs for MMSE:
> 25 suggests no dementia; 20 — 24 suggests mild de-
mentia; 13 — 19 suggests moderate dementia; < 12
suggests severe dementia.

tains a deeper discussion on the clustering and clinical
relevance of the findings.

6 DISCUSSION

Infinite mixtures of GP experts are flexible models,
that can capture non-stationary functions and depar-
tures from the typical homoscedastic normality as-

sumptions on the errors. In this work, we proposed
a novel enriched mixture of GGP experts, with lo-
cal independence of the inputs, to increase scalabil-
ity and allow inclusion of multiple input types, and a
nested partitioning scheme, to improve predictive ac-
curacy, uncertainty, and interpretability of the cluster-
ing. Moreover, through the generalised GP framework,
we can account for different output types.

A number of proposals extend mixtures of linear ex-
perts for high-dimensional inputs using regularisation
or variable selection, e.g. Peralta and Soto (2014);
Barcella et al. (2017). Here, we consider GP ex-
perts with ARD kernels, that allow determination
of the local relevance of each input, as well as with
isotropic kernels, that result in improved scalability
in high-dimensions. An important future research di-
rection will incorporate methods to scale the GP ex-
perts to higher-dimensions, while also allowing local
relevance determination, through dimension reduction
techniques (Snelson and Ghahramani, 2006). We also
note that high-dimensional examples with ARD ker-
nels will likely require careful hyperprior specification
on the length-scale parameters (van der Vaart and van
Zanten, 2009) to recover the sparse structure.

To scale to larger datasets, future research will also fo-
cus on fast approximate inference such as MAP tech-
niques (Raykov et al., 2016) that maintain a non-
degenerate likelihood, enabling out-of-sample predic-
tions and the use of standard tools such as cross-
validation. For large sample sizes, further compu-
tational gains can be made through sparse or low-
rank assumptions on the GP experts, (see e.g. Ras-
mussen and Williams, 2005, Chapter 8). Parallelisa-
tion (Chang and Fisher, 2013; Zhang et al., 2019) is
also relevant to scale with large N, and other ideas in
Zhang et al. (2019) may additionally be incorporated,
to increase the acceptance of new clusters in single-site
Gibbs, for high D and vague priors.
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