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A APPENDIX

A.1 Proof of theorem 2

Theorem 2 states:

Theorem. The complete conditional distributions of the augmented model presented in Section 3.1 are given by

p(wilfi, vi) =Ty (willlR(fis yi)ll2) s
p(fly,w) =N (flp. 2),

where ¥ = (diag (2w o y(y)) + K’l)fl and p = % (9(y) + w o B(y) + K~ 'pg), o denotes the Hadamard product
and the function h(-) is given by the form of likelihood (see Eq.5).

Proof: For the full conditional on f:

p(fly,w) occp(ylf,w)p(f)

X exp [g(y)Tf +(B(y) o w)Tf . deiag(fy(y) ow)f — ;fTK_lf}
o [(9@) +By)ow)T f - fT |diag(y(y)ow) + iK} f} .

We get immediately a multivariate normal distribution with —%E_l = —diag(y(y) o w) + %K “land 371y = g(y) +
(B(y) o w). Which corresponds to the result shown in equation (11).

For the augmented variable w;:

p(wilyi, fi) ocp(yil fi, wi)p(wi)
ocexp (—[|h(ys, fi)ll3ws) o (w;0)
=Ty (Wil (yi, fill2)-

Note that the equation 9 gives the normalization constant directly o(||h(y;, f;)||3) directly. QED.

A.2 Computation of the moments and cumulants for the augmentation variable

Given the general class of distribution 7, (w|c) described in Section 3.1, moments and cumulants can be easily computed:
The k-th moment of a distribution can be computed by taking the k-th derivative of the moment generating function (equiv-
alent to a negative Laplace transform) at ¢ = 0. For example for the first moment:
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More generally the k-th moment my, is defined as :

mi :(—1)k

c2
And the cumulants kj, are computed using the cumulant generating function (log of the moment generating function)

k d¥logp(t)

e =(=1" — %

t=c2

A.3 Algorithm for the sparse case

Algorithm 3 Augmented Stochastic Variational Inference

Input: Data (X, y), GP model p(y|f,u), kernel k
Output: Approximate posterior g(u) = N (u|m, S)
Find inducing points inputs Z via k-means
Compute kernel matrices : Kz, k = Kxz K 21
for iterationt = 1,2, ..., do
# Local updates:
Sample minibatch B C {1,...,n}
for i € Bdo
¢i = /Eqp) (M fis 4i)?]
@i = g, [wil = =¢'(c)/p(c})
end for
# Natural gradient updates (CAVI):

8 = (x" diag (2 0 () + K1)

m =8 (K o+ k" (9(y) +@ o Bly)))

{m, S} « (1 - p®W){m, S} + p®{m, 5}
end for

p® is an arbitrary learning rate respecting the Robbins-Monroe condition.

A.4 ELBO Analysis

A4.1 Full ELBO

N
ELBO =Y "Eq(f, u,) log p(yil fi, wi)]

i=1
N

—KL[g(N)llp(£)] = > KL{g(w;)|[p(w;)]

=1

E, [log p(yi| fi, wi, 0)] =1og C(0) + g(yi, O)Eq(yy [f] — Eq(py [P(fir 4:)?] gy lwi]
=log C(0) + g(yi, 0)m; — (a(yi) — B(ys)mi +v(yi) (mf + Su)) w;

KL =3 1oz (g1 = N 410K 8)+ (g = ) Ity )

KL[g(wi)l[p(wi)] = = Eq(u,) [cfwi] —logo(c}) = —cfmi —logp(c})

Note that we can take the derivatives of the ELBO and set them to O to recover exactly the updates in algorithm 1.
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A.4.2 Analysis of the optima

By setting ¢? as a function of m and S (and setting g, to 0O for simplicity) we can get an ELBO only depending of the
variational parameters of f.

1
ELBO(m,S)=C +g'm + 5 log|S| —tr(K~'8) —m K 'm | + Zlog o(m? + Si;)
 ——

ELBO; ¢ ELBO,

It is easy to show that ELBO; is jointly concave in m and S with a short matrix analysis. However ELBO- is more complex
: m2+ S;; is jointly convex in m and S, ¢(r) is by definition convex as well, however ¢(m? + S;;) is neither jointly convex
or concave in m and S. It is therefore impossible to guarantee that there is a global optima, however the CAVI updates
guarantee us a local optima.

A4.3 ELBO Gap

For a fixed ¢( f) we can compare the ELBO of the original model L:4(¢(f)) and the augmented model L4 (q(f)g(w)).
It is then straightforward to compute the difference between the two :

AL =Lsta(q(f)) = Laug(a(fa(w))
=Eqy(s) [logp(y, ) —logq(f) — Eqw) [p(y, f,w) —log q(f)q(w)]]

p(y, f,w)
=Eq(f)aw) —logip(% 7 + log q(w)

=Ey(f)qw) [~ logp(wly, f) + log g(w)]
=Eq(u) [log g(w) — Eq(p) log p(wly, )]
= — CQEq(w) [w] 4+ Eq(w) [log PG(w|1,0)] — log o(c?)
+Eq(p) [f*] Eqo) [w] = Eqq) log PG(w]1, 0)] + Eq(5) [log o(f?)]
= —c?m —log p(c®) + Ey(p) [f2] m + Eq(p) [log o(f?)]

—c2uw
Replacing with the optimal ¢*(w) = eTC%(W) with ¢ = Eg () [ f?]

AL* = —logp(c?) + Eqy(y) [log (%]

A4.4 Sparse ELBO

When using the inducing points approach the ELBO becomes:

N
ELBO = " Ey(f, u, w0 log p(yilfis i, wi)]

i=1

N
— KL[g(uw)[lp(u)] = Z KL[g(wi)|[p(w:)]
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Eq [logp(yﬂfi,wi, 9)] ZIOgC(Q) + g(yi, G)Eq(f,u) [f] q(f w) [ (fzvyz) ] q(w;) [WZ]
=10g0(9) 9(yi, 0) (5 'm); — (a(ys) — Blyi) (s m); +v(ys) ((k"m); + (k7 Sk)ii)) @i
KLig(H) (/)] == [10g f;' CN (K + (g —m) K (g — )

KL[g(w:)[p(w:)] = —Eq(w,-) [cFwi| —logp(c}) = —ciw; — log ()

A.5 Proof of equivalence between Jaakkola bound and data augmentation

Jaakkola and Jordan (2000) proposed an approach purely based on optimization. They are assuming log p(y|f) contains
a part convex in f2: log p(y|f) = 108 Peonvex (f) + 108 Pron—conves (f>y). Using convexity properties they are creating a
bound with a Taylor expansion to the first order around an additional variable ¢?:

dlog p.(c)
dc?

log pe(f) > log pe(c) + (f* =)

Putting it back in the full ELBO, they are now getting a quadratic part in f, analytically differentiable, and they just need
to optimize the additional variables {c;}. Merkle (2014) shows that any completely monotone function is log-convex,
i.e. log o(r) is convex. Therefore we can replace log p.(c) by log () to recover our model in the context of variational

inference. Note that the converse does not hold, therefore the complete monotonicity is a stronger assumption.

A.6 Likelihoods used for the experiments

We detail all likelihoods used for the experiments and their formulation as in equation (4).

Laplace Likelihood : Laplace(y|f, 3) = % exp (—@>

B
Logistic Likelihood : p(y|f) = o(yf) = ev//>

2cosh([71/2)

T'(v/2)\/mv
Matern 3/2 Likelihood : p(y|f) = (1 + V?’(yf) exp (—3(””>

p

—(+1)/
Student-T Likelihood : p(y|f) = L-+1/2) (1 + =t )2)

Likelihood | () | 9(.0) | lIn(y. 1,013 | o(w) | B) [ 1) | o(r)
Laplace (28)7t 0 (y— f)? y2 2y 1 o—T/B
Logistic 271 y/2 f? 0 0 1 cosh™ ! (\/r/2)
Student-T | I'((v +1)/2)/(T'(v)y/7v) 0 (y — f)? Y2 2y 1 (14 Z)=(+D/2
Matern 3/2 4p/\/3 0 (y — f)?2 % 2 1+ @)e*@/f’
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A.7 Extra figures

A.7.1 Autocorrelation plots
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Figure 4. Auto-correlation plots for differents with lags from 1 to 10
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A.7.2 HMC Results

€Mgtep 1 2 5 10
Time/Sample (s) 0.037 0.045 0.077 0.133
0.01 Lag 1 0.999 0.993 0978 0.963
Gelman 3.14 1.02 1.00  2.05
Time/Sample (s) 0.036 0.046 0.080 0.12
0.05 Lag 1 0.999 0.998 0.931 0.948
Gelman 1.72 1.18 1.01 3.25
Time/Sample (s) 0.033 0.042 0.073 0.13
0.1 Lag 1 0.997 0.996 0.998 0.994
Gelman 1.11 1.04 1.27 271
Table 3. HMC results for the Laplace likelihood
€Mgtep 1 2 5 10
Time/Sample (s) 0.675 0.110 0.177 0.251
0.01 Lag 1 0.999 0.999 0.997 0.993
Gelman 3.14 1.74 1.11 1.02
Time/Sample (s) 0.148 0.192 0.336 0.573
0.05 Lag 1 0.997 0993 0962 0.857
Gelman 1.10 1.02 1.00 1.00
Time/Sample (s) 0.142 0.193 0.337 NA
0.1 Lag 1 0993 0976 0.864 NA
Gelman 1.03 1.01 1.00 NA
Table 4. HMC results for the Student-T likelihood
€/Mstep 1 2 5 10
Time/Sample (s) 0.009 0.013 0.021 0.041
0.01 Lag 1 0.999 0.999 0.998 0.994
Gelman 3.19 1.68 1.12 1.02
Time/Sample (s) 0.011 0.014 0.025 0.41
0.05 Lag 1 0.998 0.994 0.968 0.871
Gelman 1.11 1.03 1.00 1.00
Time/Sample (s) 0.011 0.014 0.024 0.048
0.1 Lag 1 0.994 0979 0.875 0.532
Gelman 1.02 1.01 1.00 1.00

Table 5. HMC Results for the Logistic likelihood
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A.7.3 ELBO difference
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Figure 5. Converged negative ELBO and averaged negative log-likelihood on a held-out dataset in function of the RBF
kernel lengthscale, training VI with and without augmentation.
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A.7.4 Convergence speed
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Figure 6. Supplementary convergence plots



