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Abstract

We revisit the challenge of designing online
algorithms for the bandit convex optimiza-
tion problem (BCO) which are also scal-
able to high dimensional problems. Hence,
we consider algorithms that are projection-
free, i.e., based on the conditional gra-
dient method whose only access to the
feasible decision set is through a linear
optimization oracle (as opposed to other
methods which require potentially much
more computationally-expensive subproce-
dures, such as computing Euclidean projec-
tions). We present the first such algorithm
that attains O(T3/*) expected regret using
only O(T) overall calls to the linear optimiza-
tion oracle, in expectation, where T is the
number of prediction rounds. This improves
over the O(T*/®) expected regret bound re-
cently obtained by Chen et al. (2019), and ac-
tually matches the current best regret bound
for projection-free online learning in the full
information setting.

1 INTRODUCTION

In this work we are interested in the design of efficient
algorithms for online learning Cesa-Bianchi and Lu-
gosi (2006); Hazan (2016); Bubeck et al. (2012) which
lie at the intersection of two families of algorithms,
each by its own studied quite extensively in recent
years with many new and exciting discoveries. The
first, is the family of online learning algorithms for the
bandit convexr optimization problem, and the second

!The authors are arranged according to the alphabet

Proceedings of the 23"International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

Ben Kretzu !
Technion - Israel Institute of Technology

is the family of so-called projection-free algorithms,
which is a term casually used to refer to algorithms
which are based on the conditional gradient method
(aka Frank-Wolfe method), a well known first-order
method for continuous optimization. These algorithms
are called projection-free since, as opposed to popular
first-order alternatives such as the projected / proxi-
mal / mirror gradient methods, which require in many
cases to solve computationally-expensive optimization
problems over the feasible domain (i.e., the projection
step, which for instance in case of Euclidean projec-
tion, amounts to minimizing a quadratic function over
the feasible set), the conditional gradient method only
requires to minimize a linear function over the feasible
set, which is in many cases much more efficient.

The bandit feedback model is well motivated by nat-
ural settings in which the online learner, upon mak-
ing his prediction, only observes the loss associated
with his prediction, and cannot infer the loss of dif-
ferent actions. The projection-free model is mostly
motivated by large-scale settings which involve high-
dimensional decision sets with non-trivial structure,
for which computing Euclidean / mirror projections,
which are required by standard algorithms (e.g., the
celebrated online gradient descent algorithm Zinke-
vich (2003) and its adaptation to the BCO setting
Flaxman et al. (2005)), is computationally impracti-
cal (e.g., convex relaxations for sets of low-rank matri-
ces or polytopes with special combinatorial structure,
see Jaggi (2013) and Hazan and Kale (2012) for many
examples). Thus, the combination of these two basic
ingredients, both concerning the possibility of applying
online algorithms to large-scale real-world problems, is
of interest.

A first attempt to combine these two ingredients was
recently made in Chen et al. (2019), who combined
the Online Frank-Wolfe method, suggested in Hazan
and Kale (2012), with the framework introduced in
Flaxman et al. (2005) for reducing BCO to the full-
information setting (also known as online convex opti-
mization (OCO)), to obtain an algorithm that achieves
expected regret of O(T*/%) (treating all quantities ex-
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cept for the number of prediction rounds T as con-
stants), using overall T' calls to the linear optimiza-
tion oracle of the feasible set. Unfortunately, this re-
gret bound is higher than both the expected regret
achieved by the original method of Flaxman et al.
(2005) (though Flaxman et al. (2005) uses Euclidean
projections), which is O(T3/*), and the regret ob-
tained by the current state-of-the-art projection-free
method (at least for arbitrary convex sets?) for the
full-information setting Hazan and Kale (2012), which
is also O(T3/4).

It is thus natural to ask whether there is a price to pay,
in terms of the worst-case expected regret bound, for
combining these two settings, or alternatively, whether
it is possible to obtain the best of both worlds, and get
a projection-free algorithm for BCO that matches the
state-of-the-art for the full-information setting.

In this work we show that the latter is the case, i.e., we
give a projection-free algorithm for BCO which attains
O(T?/*) expected regret bound, and uses overall only
O(T) calls to the linear optimization oracle, in expec-
tation, thus matching the current state-of-the-art for
projection-free algorithms even in the full-information
setting. See also Table 1.

In terms of techniques, as in Chen et al. (2019), our
method is also based on combining the BCO frame-
work of Flaxman et al. (2005) and the online Frank-
Wolfe method Hazan and Kale (2012). The main nov-
elty in our algorithm and analysis is based on the
simple idea of partitioning the prediction rounds into
non-overlapping equally-sized blocks. Surprisingly, by
carefully analyzing the variance of the gradient estima-
tor on each block, this simple trick allows us to strike
a better and crucial tradeoff between the accuracy to
which the subproblems of the Regularized-Follow-the-
Leader method (the meta online learning algorithm
on which our work, as well as Hazan and Kale (2012);
Chen et al. (2019), is based) could be solved (via the
conditional gradient method), and the overall regret
of the algorithm. This results in meeting the cur-
rent state-of-the-art bound for projection-free online
convex optimization over general sets (even with full
information of the loss functions), while maintaining
linear (in T') optimization oracle complexity.

1.1 Additional Related Work

As discussed, both the subject of designing projection-
free methods for continuous optimization and bandit
convex optimization have been studied extensively in

2for feasible sets with specific structure such as poly-
topes or smooth sets there are other algorithms that ob-
tain optimal regret bounds in 7' Garber and Hazan (2016);
Levy and Krause (2019).

recent years.

Projection-free Methods: the conditional gradient
method, which is the basic technique in most so-called
projection-free methods, dates back to the classical
works of Frank and Wolfe Frank and Wolfe (1956),
and Polak Levitin and Polyak (1966). The method
has regained interest in recent years, especially in the
context of large scale optimization and machine learn-
ing, see for instance Jaggi (2013); Jaggi and Sulovsky
(2010); Lacoste-Julien et al. (2013); Garber and Hazan
(2015); Dudik et al. (2012); Harchaoui et al. (2012);
Shalev-Shwartz et al. (2011); Laue (2012), just to
name a few. There is also a recent effort to prove
faster rates for simple variants of the method, usu-
ally under the assumption that the objective function
is strongly convex (or a slightly weaker assumption)
and assuming the feasible set admits certain structure
(e.g., polytope, strongly convex set, bounded positive
semidefinite cone, etc.), see for instance Garber and
Hazan (2016); Lacoste-Julien and Jaggi (2015); Gar-
ber and Hazan (2015); Garber (2016); Garber and
Meshi (2016); Allen-Zhu et al. (2017). Hazan and
Kale (2012) were the first to suggest an algorithm for
online convex optimization based on the conditional
gradient method. Their method makes a single call
to the linear optimization oracle on each round and
achieves a regret bound of O(T®/*) for convex loss
functions with bounded gradients (note that this is
worse than the optimal bound of O(v/T), achievable
for instance via the projection-based online gradient
descent method Zinkevich (2003)). To date, this regret
bound is the state-of-the-art for arbitrary compact and
convex feasible sets. Garber and Hazan (2016) pre-
sented projection-free algorithms for OCO with opti-
mal dependence on T (i.e., v/T), in case the feasible set
is a polytope. Very recently, Levy and Krause (2019)
suggested a regret-optimal algorithm for OCO in case
the feasible set is smooth, however, as opposed to pre-
vious works, with an algorithm that is not based on
the conditional gradient method.

Bandit Convex Optimization: following the work
Flaxman et al. (2005), which presented an algorithm
with O(T?3/*) expected regret bound for convex and
Lipschitz loss functions, several other works obtained
improved bounds, mostly under an additional smooth-
ness assumption on the losses, see for instance Saha
and Tewari (2011); Dekel et al. (2015); Yang and Mohri
(2016); Hazan and Levy (2014). In particular, in a re-
cent effort, a series of works accumulated to a regret-
optimal algorithm for BCO , achieving O(v/T) re-
gret Bubeck et al. (2015); Bubeck and Eldan (2016);
Bubeck et al. (2017); Hazan and Li (2016), where O
suppresses a polylogarithmic term of 7. Importantly,
all these works which improve upon the O(T°/4) bound
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Table 1: Comparison of regret bounds and optimization oracle complexity. Only dependence on T is stated.

METHOD FEEDBACK | PROJECTION-FREE? | ORACLE COMPLEXITY | E[regret]
Flaxman et al. (2005) Bandit X T projections T3/4
Hazan and Kale (2012) Full v T linear opt. steps T3/4
Chen et al. (2019) Bandit v T linear opt. steps T4/%
This work (Thm. 1) Bandit v T linear opt. steps T3/4

of Flaxman et al. (2005), are based on much more
complicated algorithms with running time either ex-
ponential in the dimension of the problem and T, or
polynomial with a high-degree polynomial, and hence
have impractical running times for large-scale prob-
lems. On the other-hand, in Flaxman et al. (2005),
the only non-trivial operation is that of computing a
Euclidean projection, which, as we show in this work,
can be roughly speaking, replaced with a linear opti-
mization step.

Finally, a special case of BCO in which all loss func-
tions are linear was also studied extensively due to its
special structure, see for instance Auer et al. (2002);
Abernethy et al. (2008); Dani et al. (2008); Hazan and
Karnin (2016).

We also refer the interested reader to the following
excellent introductory books on online learning and
online convex optimization Cesa-Bianchi and Lugosi
(2006); Bubeck et al. (2012); Hazan (2016).

2 PRELIMINARIES

2.1 Bandit Convex Optimization And
Assumptions

We recall that in the bandit convex optimization prob-
lem, an online learner is required to iteratively draw
actions from a fixed feasible set X C R™.3 After choos-
ing his action x; € K on round ¢ € [T] (T is assumed
to be known beforehand), he observes his loss given
by fi(x:), where f; : R — R is convex over R™ and
chosen by an adversary. Importantly, besides the value
f+(x¢), the learner does not gain any additional knowl-
edge of f:(+). In this work, we assume the adversary is
oblivious, i.e., the loss functions fi,..., fr are chosen
beforehand and do not depend on the actions of the
learner.

The goal of the learner is to minimize the expected
regret which is given by

T T
E[Rr] =Y Elfi(x:)] - mei,rclz fix). (1)
t=1 *Mim
3For convenience we assume the linear space of interest

is R™, however naturally, any finite-dimensional Euclidean
space will work.

In this work, in addition to assuming the loss functions
are convex, we also make some standard assumptions
that they are bounded by M in ¢, norm and have
subgradients upper-bounded by G in ¢ norm over the
feasible set IC, for some M,G > 0. That is, Vt €
[T] vx € K Vg € 9fi(x): || felloo = supxex [fe(x)| < M
and ||g|l2 < G. Also, as in Flaxman et al. (2005) we
make the standard assumption that the feasible set IC
is full dimensional, contains the origin, and that there
exist scalars r, R > 0 such that rB" C K C RB",
where B™ denotes the unit Euclidean ball centered at
the origin in R™.

2.2 Additional Notation And Definitions

We denote by S™ the unit sphere in R”, and we write
u ~ S™ and u ~ B"™ to denote a random vector u
sampled uniformly from S™ and B", respectively. We
denote by ||x|| the £5 norm of the vector x.

Finally, for a compact and convex set IC C R”, which
satisfies the above assumptions (i.e., rB" C K C RB"),
and a scalar 0 < § < r, we define the set K5 := (1 —
0/r)K ={(1—-4/r)x | x € K}. In particular, it holds
that s C K and for all x € K5, x + dB™ C K (see
Hazan (2016)).

We now recall some standard definitions from contin-
uous optimization. For all definitions we assume that
K is a convex and compact subset of R"™.

Definition 1. We say that f : R™ — R is G-Lipschitz
over K if ¥x,y € K: |f(x) — f(y)| < G|lx —y]-

Here we recall, that if f is convex over R™ with subgra-
dients upper-bounded by G in f3-norm over K, then f
is G-Lipschitz over K.

Definition 2. We say that f : R® — R is S-smooth
over K if Vx,y € K:

Fy) < Fo0)+ V) (y =)+ Sly — x|~
Definition 3. We say that f : R™ — R is a-strongly
convex over K if Vx,y € K:

Fly) = f(x) + V)T (y —x) + 5y — x|*.

Let x* be the unique minimizer of f, an a-strongly
convex function over K. From the above definition
and the first order optimally condition it follows that
vx € K:

Sl = X2 < £0) = F(x"). @)
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2.3 Basic Algorithmic Ingredients

In this section we introduce some basic and standard
algorithmic tools on which our algorithm is based.

2.3.1 Regularized Follow The Leader

One component of our algorithm is a variant of
Regularized-Follow-the-Leader (RFTL), which is a
well known algorithm for online convex optimization
(in the full information setting) Hazan (2016); Shalev-
Shwartz et al. (2012). The prediction in time t is ac-
cording to the following rule

)+ R

X; = argmin i

= angmin{ 35

where R(x) is a strongly convex function.

Lemma 1 (Lemma 2.3 in Shalev- Shwartz et al (2012))
For all ¢t € [T] let x} = argmm { ZZ 1 filx (x)}.

Then, Vx € K it holds that

Z ft Xt
t=1

(x)) < R(x) = R(x7)

T
Z ft Xt - fi Xt+1))

2.3.2 Smoothed Loss Functions

Another standard component of our algorithm is the
use of a smoothed version of each loss function. We
define the -smoothing of a loss function f by fs (x) =
Eu~gr [f(x + du)] . We now cite several useful lemmas
regarding smoothed functions.

Lemma 2 (Lemma 2.1 in Hazan (2016)). Let f : R® —
R be convex and G-Lipschitz over a convex and com-
pact set L C R™. Then f5 is convex and G-Lipschitz
over K5, and Vx € K it holds that | f5(x)— f(x)| < 6G.

Lemma 3 (Lemma 6.5 in Hazan (2016)). f5(x) is dif-
ferentiable and V f5(x) = Eysn [2f(x+ du)u].
Lemma 4 (see Bertsekas (1973)). Let f : R® — R
be convex and suppose that all subgradients of f are
upper-bounded by G in fy-norm over a convex and
compact set K C R™. Then, for any x € s it holds
that ||V f5()]| < G.

3 ALGORITHM AND ANALYSIS

As in Chen et al. (2019), our algorithm (see Al-
gorithm 1 below) is based on combining the BCO
framework of Flaxman et al. (2005) with the Online
Frank-Wolfe method of Hazan and Kale (2012). That
is, the algorithm applies the Regularized-Follow-the-
Leader meta-algorithm with Euclidean regularization

(see Section 2.3.1), and uses the bandit feedback to
construct unbiased estimates for the gradients of the
smoothed losses, by sampling points in a sphere around
the current iterate (see Section 2.3.2). In order to
avoid solving the RFTL optimization problem (which
with the standard linearization trick of the smoothed
losses and using Euclidean regularization, amounts to
minimizing a quadratic function over the set Ks), we
invoke the conditional gradient method (see Algorithm
2), to solve this problem only to sufficient approxi-
mation using only linear optimization steps over the
feasible domain Cs.

Very importantly, different from Chen et al. (2019), we
partition the T prediction rounds into non-overlapping
blocks of size K (K is a parameter determined in the
analysis), where on each block the iterate of the algo-
rithm remains unchanged (though we use fresh sam-
ples for exploration on each round within a block).
Essentially without loosing generality we assume that
T/K is an integer. This partition into blocks is im-
portant since as we show in the analysis, it allows us
to solve the RFTL objective via the conditional gra-
dient method with better accuracy, without incurring
any substantial price in the regret or the overall linear
oracle complexity.

It is also important to note that our algorithm is struc-
tured in a way that on each block m in the run of the
algorithm, the point x,,_1 used for prediction, only
takes into account the loss function revealed up to (and
including) block m — 2 (note x,,—1 is an approximate
minimizer of Fm,l(x), which in turn depends only on
the estimates g1,...,8m—2). Thus, in principle, Al-
gorithm 1 does not have to wait after each block m
until the new iterate x,, is computed for the following
block m + 1 via Algorithm 2. While Algorithm 1 uses
Xm_1 for prediction on block m, it can run Algorithm
2 in parallel, to simultaneously compute the next iter-
ate X,, (which is independent of the gradient estimates
obtained in block m).

While this self-induced delay in information usage is
not important for the theoretical complexity analysis,
we believe it is of practical importance, since otherwise
without this delay, Algorithm 1 would have to stop
after each block and wait for Algorithm 2 to finish its
computation, which can be potentially prohibitive in
high-frequency prediction settings.

Finally, note that while the conditional gradient
method is run over the shrunk set s, solving the lin-
ear optimization problem over s is identical, up to
scaling, to solving it over the original set /.

In the following, for any iteration (or block) m of the
outer-loop in Algorithm 1, we denote by L, the overall
number of iterations performed by the do-while loop of
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Algorithm 1: Block Bandit Conditional Gradient
Method
Data: horizon T, feasible set I with parameters
r, R, block size K, step size 1, smoothing
parameter § € (0,7], tolerance parameter €
Result: yi,y2,...,y7
Xq < arbitrary point in ICs, x1 < Xg
for mzl,...,}; do
define F,,(x) :=n> i, 'xTg + |x — xq 2
if m > 1 then
run Algorithm 2 with set Ks, tolerance e,
initial vector X,,_1, and function ﬁ'm (x).
Execute in parallel to the following for loop

over s
end

for s=1,...,
u, ~ S™ pt=(m—-1)K+s
play y: ¢ X;m—1 + du; and observe f;(y:)
gt < %ft(}’t)ut

end

. K

gm Zszl g(m—1)K+s

if m > 1 then

| X, < output of Algorithm 2

end

K do

end

Algorithm 2: Conditional Gradient with Stopping

Condition

Data: feasible set ICs, error tolerance e, initial vector
X;n, Objective function Fm(x)

Result: x,,;

Z] < Xin, T < 0

do
T—T17+1 .
v, € argmin{VF,,(z,)" - x}
xEKs
or = argmin{ F\, (2, + (v, —2,))} > Line-search
o€[0,1]
Zrt1 =Zr + 0, (Ve — 27) >z €K

while VF,,,(z
Xout < Zr

Dz —v.) > €

Algorithm 2, when invoked on iteration m. In partic-
ular, note that ZT/ X L; is the overall number of calls
to the linear optimization oracle of I throughout the
run of Algorithm 1.

Theorem 1 (Main theorem). For all ¢ > 0 such that

1/4

L < 1, settmg n = i‘j\I}T—* 0 = cT—i7 € =
16R2 K = T% in Algorithm 1, guarantees that

the expected regret is upper-bounded by

2
cG*R +4RnM)T%,
c

nM

E[Rr] < <3cG + iG +6GR+4

and that the expected overall number of calls to the

linear optimization oracle is upper-bounded by

T
us 3 Ge G?c?
L, | < —— | T.
7; - ( + 2nM + 4n2M2>
In particular, if (%Af)z < T
then, setting ¢ = 1/ ”Aé”, we  have
E[Ry] < (82vnrG +6GR +4GR\ /25 ) T4,

n
3 1 G 1 G
<1+§ wnr TAZ) T.

and E [E; 1 Lm} <

3.1 Analysis

For the purpose of the analysis, we define the auxil-
lary sequence {xz, }m | as x%, = argminyex, Fn(x),
where F,,(-) is as defined in Algorithm 1. Note that
this sequence corresponds to running the RFTL algo-
rithm in blocks of length K, with respect to the feasible
set ICs (see Section 2.3.1).

The following lemma, which is crucial to obtain our
improved regret bound, shows that the squared norm
of the gradient estimator over a block of size K, as a
first approximation, grows only linearly with the block
size K.

Lemma 5. For any iteration (block) m of the outer-
loop in Algorithm 1 it holds that

2
(T) + K2G2.

Proof. Fix some block m. For convenience, we denote
Tm = {(m—-1)K +1,--- ,mK} (ie., the set of all
rounds included in block m). It holds that

2
S e

LIIt€Tm

D llgel*+ >

-
gi 8
L t€Tm (i,3)ETR i35

S el

Lt€Tm (1,5)ETZ ,i#j

E[|gnl]” <E[l&gnl’] < K

E [lgnll*] =

=E

E [giTga} .

Since, conditioned on the iterate x,,—1, Vi # j 8i, g;
are independent random vectors, we have

ElY IIth]

t€Tm

E [Elg] [%m—1]Elgj[xm—1]] -

E [lgmI?]

>

(6,5) €T3 i#7

+

Using Lemma 4 we have that for all t € 7y,
[Elgexm 1]l IVfs(xm-1)ll < G. Since
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M, we also have |g|| <
, and thus,

maxxe || f1(X)]| %4
S (yollllwl] < =5~

E{z e+ 3

tETm (4,4)ETZ ,i#]

<K<n(]5w)2+(K )G2<K(

E [E[gﬂxm—l]E[gﬂxm—l]]

"M) + KGR

)

Finally, the inequality E [||gm]> < E [[I&m %] stated

in the lemma follows from using Jensen’s inequality.
O

The following lemma combines the RFTL regret bound

with the unbiased gradient estimates of the smoothed

loss functions, and upper-bounds the expected regret

of Algorithm 1.

Lemma 6. Let € > 0. Suppose that throughout the run

of Algorithm 1, for all blocks m = 1,..., ? it holds

that Fy, (X )—E, (x*,) < €. Then, the expected regret

of the algorithm is upper-bounded by

nGvKnM
)

M\? AR
+ (n5> +2nKG2> T+

E[Rr] < <36G +ORGr + Gyfe + X2

n

Define x* € argmin Zthl fi(x), x* = (1 —-4§/r)x*, Vt:
xeK

m(t) := [£]. Recall that throughout any block m,
Algorithm 1 predicts according to x,,_1.

Proof. Tt holds that

Rr] = ZE[ft(Yt)] - th x

T

:Z [fe(ye)] — ZE[ft (Xm(t)—1) +ZE[ft (X (t)—1)]

—th(i*)'*‘th(i*)—th(x*)~ 3)

ft is G-Lipschitz, and thus we have that

ZE[ft yi)] — ZE[ft(Xmu)—ﬂ]
E[fe(Xm(t)—1 + 6ue) — fe(Xm)—1)]

E[G ||dus|]] < 0GT. (4)

gft(i*) i i

|(1—68/r)x" —x"|| < SRGT/r. (5)

Il
M~
Q

Now, we need to obtain an upper bound on
Zle E[f(Xm(t)—-1)] — Zle fi(x*). We will first take

a few preliminary steps. Define for all m € [%]
]:m:{xhglw"a

Xm—1, &m—1 }- the history of all pre-
dictions and gradient estimates. Throughout the se-
quel we introduce the short notation Vi s.,¢)—1 =

V fr6 Xim()—1)-

Since g; is an unbiased estimator

of vft,é(x'rn(t)—l) - ﬁt,é,m(t)—la then E[gt|fm] =
@t,é,m(t)q Since x}, = argmin {Fm(x) =
xes

Ny 'x g2—|—||x—x1\|2},wehavethatE[ | Fm

I =
x},. From both observations Vx € K5 and Vm € [£],
it holds that

E [gn (i —%)| = E [E[gnlFa]T (x5 — )]

—K Z

t=(m—1)K+1

E (gl Fmw] (K — %)

mK

- 5

t=(m—1)K+1

E [@Zé,m(t)fl(xrn(t) - X)] .

) = b
n

1 as the (linear) loss functions, we have

Using Lemma 2 with the regularizer R(X

and {g,),x},/
that Vx € Ks,

* * 1
AT * AT * * 2
ng(xmfx) S ng(xmfxm-&-l)‘i'ﬁnxfle .
m=1 m=1

Since for all m, Fm(x) is 2-strongly convex and
Fn(x},) < F(x},1), using Eq. (2) we have that

||X:n_xjn+1||2 < ert-&-l(x;) - F77L+1(X:7z+1)
= Fin(x5,) = Fn(Xppp) + 08 (X5 — Xp41)
< nllgmlllxn =Xl (6)
From the above inequality we obtain [|x;, — x5, | <

N||&m|l.  From these three observations and the
Cauchy-Schwarz inequality, we have

t=1

T
ks N 4R?
<n Y Eflgnl?] + —
m=1 77
2
<o (MM | kT 1 M 7
(@) g n

Inequality (a) is due to Lemma 5. Using Lemma
4 we have that for all ¢ € [T], ||Vfis(xi)]] <
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Also, using Eq. (2) w.r.t. Fr
Fm—l(Xm—l) - Fm—l(X*

m—1

) < e, we have that

T

ZE WtT,a,m(t)—l(Xm(t) 11— X, m(t)— 1)}

t=1
< GZ]E [||x (-1 —

S|

t=1
<GK i [\/Fm 1(Xm—1) — Fipe1 (x5, 1)}
<ore )

Using Eq. (6), we have

T
ZE [VtT,a,m(t)—1(an(t)—1 - x:@(t))]

T
<GB [Ixhy1 -

t=1

S|

E[llgm-1l]

— + KG) . 9)

Inequality (b) is due to Lemma 5 and the fact that
for all a,b € R* it holds that va+b < y/a + Vb.
One last step before we will achieve the target bound,
we require an upper bound on the regret w.r.t. the o-
smoothed losses. Combining the results of Eq. (7), (8)
and (9), using the convexity of fm;, ftyg(x) — ftﬁ(;(y) <
Vft—i; (x)(x —y), we obtain

B

(E [ft,é(xm(t)—l)} - ft,é(i*))

~~
Il

AT
M=

E [@Z(s,m(t)q(xm(t)fl - i*)}

o~
Il
=

E [vtT,é,m(t)ﬂ(X

Il
E

m(t)—1 — X:m(t)fl)

~
I
—

<
*4

+ X:n,(t))

+ Vt,é,m(t)—l(xjn(t) - i*)]
(G\/+ — (Gf+ ) + 277KGQ> T

4R?
S (10)

§,m(t)— 1( :‘n(t)—li

1 and our assumption,

Using Lemma 2 and the above equation, we have

T T

S E[feEm-1)] = Y fux) =

t=1 t=1

T

> E [FeGkm-1) = Frosmen-1)] + (Fes(®) = fu(%"))

i( [ftaxm(t )] frs(% ))Sﬁ

mMGVEK — nn?M?
5 e

+ (25G+Gﬁ+

Combining the last equation with Eq.
Eq. (3), we obtain the required bound. O

The following lemma is used to upper-bound the num-
ber of iterations required by the conditional gradient
method, Algorithm 2, to terminate on each invocation.
Lemma 7. Let € > 0. Given a function F(x), 2-smooth
and 2-strongly convex, and x; € Kj such that hy :

F(x1) — F(x*), where x* = argmin F'(x), Algorithm
xXEKs
2 produces a point x7,41 € Ky such that F(xp41) —

F(x*) < ¢ after at most L = max{lGR (h1 —

€), 2(hy — e)} iterations.

Proof. For any iteration 7 of Algorithm 2, define h, :=
F(x,;) — F(x*) and denote V., := VF(x,). From the
choice of v, and the convexity of F(-), it follows that
V(% = vy) 2V] (%, — xY)
>F(x,)— F(x*)=h, (12)
Now, we establish the convergence rate of Algorithm
2. It holds that

hei1 =F(%r41) — FI(x7)
=F(x; + 0. (v: —x;)) — F(x").
For our analysis we define the step-size 6, =
min {% 1} Since o, is chosen via line-
search, we have that
=F(x; +0.(v; —x;)) — F(x¥)
<F(x; 4 6:(v; —x;)) — F(x").

Since F'(x) is 2-smooth it holds that

hT—‘,—l

F<XT + &T(VT - X‘r)) S F(X‘r) + &TVI(VT - XT)

+02 v — %1%,
and we obtain

hry1 <h; +62(2R)* — 6,V (%, — v,).
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We now consider several cases.

Case 1: If V. (x, — v,) < € for some 7 < L, the algo-
rithm will stop after less than L iterations. Moreover,
from Eq. (12) we have h, < e.

Case 2: Else, V] (x, —v,) > ¢ for all 7 < L. We have
two cases:

Case 2.1: If V] (x
have

; —V,) > 8R? then 6, = 1 and we

hri1 <h; +62(2R)* — 6V (x, — V)
T _
<h — w

Case 2.2: Else, V. (x, — v,;) < 8R2, and then ¢, =
VI(x,—v,)

srz > and we have

hri1 <h, +62(2R)? — 6,V (x

T o 2
<h-r _ v‘r (XT VT)
4R

T_VT)

From both cases, we have

T —
hT+1 < hT - mln{ <VT (XT

. V! (xi —
< _ 1
<hy TzznlnnT{ ( iR

ghl—Tmin{(Zl;)z,;}. (13)

Thus, for all cases, after a maximum of L iterations,
when

R2

L= max{lﬁ (hy —e), %(hl - 6)},

we obtain hy 1 < e. O

We can now finally prove our main theorem, Theorem
1.

Proof of Theorem 1. We first upper bound the ex-
pected overall number of calls to the linear optimiza-
tion oracle throughout the run of the algorithm, and
then we upper-bound the expected regret.

Let z,, - be the iterate of Algorithm 2 after completing
7 — 1 iterations of the do-while loop, when invoked on
iteration (block) m of Algorithm 1. Also, for all m, 7,
define hy, » = Fm(zm,T) — Fm(xfn) Recall that for
any iteration m of Algorithm 1, we have z,, 1 = Xy, _1.

Using the triangle inequality and the fact F, (x*, 1) >

F(x2,), we have

Elhms1,1] = E[F 1 (Zmi1,1)
< E[ﬁm(xm) - Fm(XTn

- Fm-&-l (Xjn+1)]

)+ llgm | lIxm — x4 -

Since b, 1, = Fm(xm) — Fm(x
angle inequality, we have

*.) < €, using the tri-

Elhm1.1] < €+ nE[l|&m lllxm — x5, + x5,
<e+nE[lgm (Ixm — x5, 1 + lIx7,

Xptl]
X1 l1)]-

Since F, (x) is 2-strongly convex and h, 1, < €, using
Eq. (2), we have that [|x,, —x%,|| < /e. Also, from

|
m
Eq. (6), we have ||x}; — x5 1| < n|gm|. Thus, we
have

Elhm+1,1] <€ +nve E[|gnll] + n*Ellgml|]-

Using Lemma 5 and the fact that for all a,b € R it
holds that that va +b < v/a + Vb, we have

E[hmnt1,1] <e+nv/e (\/E (”M) + KG)

)

2
+7 (K (né%) +K2G2> . (14)
Using Lemma 7 with hy =~y < € +
e (VE (H5) + KG) 4+ (K (4)” + K2G2) for

m =1,..., %, we have that on each iteration (block)
m, the number of calls to the linear optimization oracle

is L,,, < max { 167 (hima—€), 2(hm,1 e)} Plugging

in €, we have L,, < 1‘112%2 (hm,1 —e¢). Following Eq. (14)
we have

LB ] - o)

€

1 2 M

GR /e (\/[»((né >+KG)
16R2 nM\?

=g (K (5> +K2G2>

3 Ge G2c2 1

= (2« = ) 7=,

(0 \4 2nM = 4nZ2M?2

Equality (c) is due to plugging-in ), §, €, K. Thus, over-
all on all blocks, we obtain

T

L 3 Ge
< [ Z

> L < <4+2nM+

m=1
We now turn to upper-bound the expected regret of
the algorithm. Using Lemma 6 we have that

E[L,] <

G202
4n2 M2 > T

VEnM
E[Rr] < (35G+6RG/r+G\f 4 1GVERM e
M2 AR?
+n (”) +2nKGQ>T+R
o n
2R M\ s
= 3G+iG+6GR+4CG 4 g B M
(d) nM c

Equality (d) is due to plugging-in 7, d, €, K. O
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