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Abstract

We characterize the minimum noise ampli-
tude and power for noise-adding mechanisms
in (e, d)-differential privacy for single real-
valued query function. We derive new lower
bounds using the duality of linear program-
ming, and new upper bounds by analyzing
a special class of (e, §)-differentially private
mechanisms, the truncated Laplacian mecha-
nisms. We show that the multiplicative gap
of the lower bounds and upper bounds goes to
zero in various high privacy regimes, proving
the tightness of the lower and upper bounds.
In particular, our results close the previous
constant multiplicative gap in the discrete set-
ting. Numeric experiments show the improve-
ment of the truncated Laplacian mechanism
over the optimal Gaussian mechanism in all
privacy regimes.

1 Introduction

Differential privacy, introduced by [Dwork et al.| (2006b]),
is a framework to quantify to what extent individual
privacy in a statistical dataset is preserved while re-
leasing useful aggregate information about the dataset.
Differential privacy provides strong privacy guarantees
by requiring the near-indistinguishability of whether an
individual is in the dataset or not based on the released
information. For more motivation and background of
differential privacy, we refer the readers to the survey
by [Dwork| (2008)) and the book by [Dwork and Roth
(2014).

Since its introduction, differential privacy has spawned
a large body of research in differentially private data-
releasing mechanism design, and the noise-adding mech-
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anism has been applied in many machine learning al-
gorithms to preserve differential privacy, e.g., logistic
regression (Chaudhuri and Monteleoni [2008)), empirical
risk minimization (Chaudhuri et al., |2011; |Wang et al.,
2018), online learning (Jain et al.| 2012)), statistical risk
minimization (Duchi et al. 2012), statistical learning
(Dziugaite and Roy}, |2018), deep learning (Shokri and
Shmatikov} 2015; [Abadi et al.l |2016; Phan et al.l [2016)
distributed optimization (Agarwal et al.;|2018), hypoth-
esis testing (Sheffet, 2018, matrix completion (Jain
et al., [2018]), expectation maximization (Park et al.|
2017)), and principal component analysis (Chaudhuri
et al 2012} Ge et al., [2018)).

The classic differential privacy is called e-differential
privacy, which imposes an upper bound e€ on the mul-
tiplicative distance of the probability distributions of
the randomized query outputs for any two neighbor-
ing datasets. The standard approach for preserving e-
differential privacy is adding a noise with the Laplacian
distribution to the query output. Introduced by |[Dwork
et al.[ (2006al), the approximate differential privacy is
(e, §)-differential privacy, and the common interpreta-
tion of (e, §)-differential privacy is that it is e-differential
privacy “except with probability ¢” (Mironovl}, 2017).
The standard approach for preserving (e, d)-differential
privacy is the Gaussian mechanism, which adds a Gaus-
sian noise to the query output.

To fully make use of the differentially private mecha-
nisms, it is important to understand the fundamental
trade-off between privacy and utility (accuracy). For
example, within the class of noise-adding mechanisms,
given the privacy constraint € and §, we are interested
in deriving the minimum amount of noise added to
achieve the highest accuracy and utility while preserv-
ing the differential privacy. In the literature, there have
been many works on optimal differential privacy mech-
anism design and characterizing the privacy and utility
tradeoff in differential privacy. For a single count query
function under e-differential privacy, |Ghosh et al.[(2009)
show that the geometric mechanism is universally op-
timal under a Bayesian framework, and |Gupte and
Sundararajan| (2010) derived the optimal noise proba-
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bility distributions under a minimax cost framework.
Geng and Viswanath| (2016b|) show that the optimal
noise distribution has a staircase-shaped probability
density function for single real-valued query function
under e-differential privacy, and (Geng et al.| (2015) gen-
eralized the result to two-dimensional query functions.
Soria-Comas and Domingo-Ferrer| (2013) also indepen-
dently derived the staircase-shaped noise probability
distribution under a different optimization framework.

Geng and Viswanath (2016a) show that for a single
integer-valued query function under (e, 0)-differential
privacy, the discrete uniform noise distribution and
the discrete Laplacian noise distribution are asymp-
totically optimal within a constant multiplicative gap
in the high privacy regions. Balle and Wang| (2018)
improved the classic analysis of the Gaussian mecha-
nism for (e, §)-differential in the high privacy regime
(e = 0), and developed an optimal Gaussian mecha-
nism whose variance is calibrated directly using the
Gaussian cumulative density function instead of a tail
bound approximation. |Geng et al.| (2019) derive the
optimal noise-adding mechanism for single real-valued
query function under (0, d)-differential privacy, and
show that a uniform noise distribution with probability
mass at the origin is optimal for a large class of cost
functions.

1.1 Owur Contributions

In this work, we characterize the minimum noise ampli-
tude and power for noise-adding mechanisms in (e, 6)-
differential privacy for single real-valued query function.
Our contributions are three-fold:

First, we analyze a new class of (e, 0)-differentially
private noise-adding mechanisms, truncated Laplacian
mechanisms. Applying the truncated Laplacian mech-
anism, we derive new achievable upper bounds on
minimum noise amplitude and noise power in (¢, 0)-
differential privacy for single real-valued query function.
The key insights from the new mechanisms design are
that the noise probability density function shall decay
as fast as possible while being e-differentially private
when the noise is small, and then sharply reduce to zero
when the noise is big, to avoid a heavy tail distribution
which would incur a high cost.

Second, we derive new lower bounds on the minimum
noise amplitude and minimum noise power. The key
technique is to discretize the continuous probability
distribution and the loss function, and transform the
continuous functional optimization problem to linear
programming. Applying the lower bound result in
Geng and Viswanath| (2016al) for integer-valued query
function, which is based on the duality of linear pro-
gramming, we derive new lower bounds for real-valued

query functions under (e, §)-differential privacy.

Third, we show that the multiplicative gap of the lower
bounds and upper bounds goes to zero in various high
privacy regimes, proving the tightness of the lower and
upper bounds, and thus establish the optimality of
the truncated Laplacian mechanism for minimizing the
noise amplitude and noise power under (e, §)-differential
privacy. In particular, our result closes the previous
constant multiplicative gap between the lower bound
and the upper bound (using discrete uniform distribu-
tion and discrete Laplacian distribution) in |Geng and
Viswanath| (2016a).

Comprehensive numeric experiments show the improve-
ment of the truncated Laplacian mechanism over the
optimal Gaussian mechanism in |Balle and Wang] (2018)
by significantly reducing the noise amplitude and noise
power in all privacy regimes.

1.2 Organization

The paper is organized as follows. In Section [2| we
give some preliminaries on differential privacy, and
derive the (e, §)-differential privacy constraint on the
additive noise probability distribution and define the
minimum noise amplitude and noise power under (¢, §)-
differential privacy. Section [3] presents the truncated
Laplacian mechanism for preserving (e, ¢)-differential
privacy, and derives new upper bounds for minimum
noise amplitude and noise power. Section [ derives new
lower bounds on the minimum noise magnitude and
noise power. Section |5 shows that the multiplicative
gap between the lower bounds and the upper bounds
goes to zero in various privacy regimes, and thus proves
the tightness of the new lower and upper bounds. Sec-
tion [6] conducts comprehensive numeric experiments to
compare the performance of the truncated Laplacian
mechanism with the optimal Gaussian mechanisms, and
demonstrates the improvement in all privacy regimes.
Section [7] discusses some additional properties of the
truncated Laplacian mechanism and concludes this

paper.
2 Problem Formulation

In this section, we first give some preliminaries on
differential privacy, and then define the minimum noise
amplitude V;* and minimum noise power V5* for (e, d)-
differentially private noise-adding mechanisms.

Consider a real-valued query function ¢ : D — R,
where D is the set of all possible datasets. The real-
valued query function ¢ will be applied to a dataset,
and the query output is a real number. Two datasets
Dy,D5 € D are called neighboring datasets if they
differ in at most one element, i.e., one is a proper
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subset of the other and the larger dataset contains just
one additional element Dwork| (2008). A randomized
query-answering mechanism /C for the query function
q will randomly output a number with probability
distribution depending on query output ¢(D), where
D is the dataset.

Definition 1 ((e, d)-differential privacy (Dwork et al.l
2006a)). A randomized mechanism K gives (e,0)-
differential privacy if for all data sets D1 and Do dif-
fering on at most one element, and for any measurable
set S C Range(K),

PriK(Dy) € S] <ef PriK(Dy) € S]+6. (1)
The sensitivity of a real-valued query function measures
how the query changes for neighboring datasets.

Definition 2 (Query Sensitivity). The sensitivity of
q is defined as
A=

max

poax lq(D1) — q(D2)],

for all D1, Dy differing in at most one element.

A standard approach for preserving differential privacy
is query-output independent noise-adding mechanisms,
where a random noise is added to the query output.
Given a dataset D, a query-output independent noise-
adding mechanism K will release the query output
t = q(D) corrupted by an additive random noise X
with probability distribution P:

K(D)=t+X.

We derive the differential privacy constraint on the
noise probability distribution P in Lemma [T} which is
essentially an extension of Equation (18) in |Geng and
Viswanath| (2016a) to the continous case.

Lemma 1. Given the query sensitivity A and privacy
parameters € and J, the noise probability distribution
P preserves (e, 0)-differential privacy if and only if

P(S) —eP(S+d) <4,V |d <A, measurable set S C R.
(2)

Proof. The differential privacy constraint on K is
that for any t;,t; € R such that |¢t; — t2| < A (cor-
responding to the query outputs for two neighboring

datasetsEI),

P(S —t1) < e“P(S —t2) + I,V measurable set S C R,
(3)

Tn this work we impose no prior on the query function
other than the query sensitivity A. For any ¢1,%2 € R such
that |t1 —t2| < A, there may exist two neighboring datasets
D1 and DQ with q(Dl) = tl and q(DQ) = t2.

where Vt € R, S+t is defined as the set {s+t|s € S}.

Since has to hold for any measurable set S and any
[t;1 — t2| < A, equivalently, we have

P(S) <eP(S+d)+4,V |d| <A, measurable set S C R.

O

Let P, s denote the set of noise probability distributions
satisfying the (e, d)-differential privacy constraint (2).
Given P € P s, the expected noise amplitude and noise
power are [, o |z|P(dz) and [ _p 2*P(dx). The goal
of this work is to characterize the minimum expected
noise amplitude and noise power under (¢, ¢)-differential
privacy. More precisely, define

Vi© = inf / |z|P(dz) (min noise amplitude),
'PEPE’J zER

V) = inf 22P(dz) (min noise power).

R X power)

In this work, we characterize V{* and V5 in terms of
A, €, 6 by deriving tight lower bounds V{°% VJ°¥ and
upper bounds V;"P VPP such that Vv < Vi < VPP
and ‘/Qlow < ‘/2* < V'2UPP.

In the next section, we present the new upper bounds
V*PP and Vy"PP. The lower bounds V{°% and V{°¥ are
presented in Section [4]

3 Upper Bound: Truncated Laplacian
Mechanism

In this section, we present a new class of (e,0)-
differentially private noise-adding mechanism, trun-
cated Laplacian mechanism. Applying the truncated
Laplacian mechanism, we derive new achievable (and
tight) upper bounds V;*? and V4""” on minimum noise
amplitude V{* and minimum noise power V5" in Theo-
rem 2l and Theorem [3

Before presenting the exact form of the truncated Lapla-
cian mechanism, we first discuss some key ideas and
insights behind the new mechanism design.

The standard Laplacian distribution for preserving e-
differential privacy has a symmetric probability density
Note that for any = > 0,
the probability density decay rate, f(J; (f)A), is exactly
€. |Geng and Viswanath| (2016b)) show that the decay
rate e€ is optimal under e-differential privacy. Indeed,
if the decay rate is higher, it is no longer e-differentially
private; if the decay rate is lower, it will incur a higher
cost. However, under (e, §)-differential privacy, Lapla-
cian distribution is not optimal as it has a heavy tail
distribution.

|z|e

function f(z) = s5e™ 2 .
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(e, §)-differential privacy relaxes the e-differential pri-
vacy constraint, and it allows that for a set of points
with a probability mass J, the decay rate can exceed
€. The Gaussian mechanism is widely used in (e, §)-
differential privacy, and for z > 0, i;cs probability den-

xz_

— 2
) . £(x) _ 5 IY-CES TN
sity decay rate is soAy = —mmr — € 0 =
o

€

2
e%e%gp, which is exponentially increasing with re-
spect to z. When z is big, the decay rate can be very
high. While the Gaussian mechanism addresses the
long tail distribution to some extent by having higher
decay rate for large x, the decay rate is smaller than

e when z is small.

Motivated by the observation that under (e,0)-
differential privacy, the decay rate shall be as high
as possible without exceeding e€, except for a set of
points with a probability mass ¢ (for those there is
no limit on the decay rate), we derive a symmetric
truncated Laplacian distribution where the probability
density decay rate is exactly e€, except for a set of
points with probability mass § where the decay rate is
infinite.

Definition 3 (Truncated Laplacian Distribution).
Given the privacy parameters 0 < § < %, € > 0 and the
query sensitivity A > 0, the probability density function
of the truncated Laplacian distribution Prrayp s defined
as:

x|

‘ .
Be=x, forxze[-AA
fTLap(x) = f . [ ] (4)
0, otherwise
where
A
A= —,
€
A et —1
A= —log(1
og(l+ —+=),
1 1
B = =
M- ?) 25(1- i)

frLap is a valid probability density function, as

L]
JTLap(z) > 0 and fmeR JTLap(z)dz = fOA 2Be” x dx =
2AB(1—e %) =1.

We discuss the key properties of the symmetric proba-
bility density function frpap(x):

e The decay rate in [0, A — A] is exactly e€, i.e.,

sl = e, Vo e [0,A— Al

e The probability mass in the interval [A — A, A] is
d, 1.e., Priap([A — A, A]) = 0.

Figure 1: Noise probability density function frrap, of
the truncated Laplacian mechanism. frrap is a sym-
metric truncated exponentinal function with a proba-
bility mass ¢ in the last interval with length A in the
support of frrap, i.e., the interval [A — A, A]. The

decay rate % is exactly e for z € [0, A — A).
The parameters A and B are then derived by solv-

ing the equations that [ _p friap(z)dz = 1 and

f,ffA fTLap(x)dz =9.

e The decay rate % is oo for z € (A —

A, A, as frrap(x) =0 for x € (A4, +00).

Definition 4 (Truncated Laplacian mechanism).
Given the query sensitivity A, and the privacy param-
eters €,0, the truncated Laplacian mechanism adds a
noise with probability distribution Prrqp, defined in
to the query output.

Theorem 1. The truncated Laplacian mechanism pre-
serves (e, d)-differential privacy.

Proof. Equivalently, we need to show that the trun-
cated Laplacian distribution Prrap, defined in (4) sat-
isfies the (¢, ¢)-differential privacy constraint (2)).

We are interested in maximizing Prrap(S) —
e“Prrap(S + d) in and show that the maximum
over S C R is upper bounded by 4. Since frrap(x) is
symmetric and monotonically decreasing in [0, +00),
without loss of generality, we can assume d > 0 and
thus d € [0, A].

To maximize Prrap(S) — e“Prrap(S + d), S shall not

contain points in (—oo, —5], as

fTLaP(‘T) < fTLap(aC + d),VI’ c (700’ 7%]

S shall not contain points in [—%, A— Al as

A
JrLap(®) < €€ frrap(z +d), Vo € [_E’A — Al

Therefore, Prrap(S) — €Prrap(S + d) is maxi-
mized for some set S C [A — A,+00). Since
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frLap (%) is monotonically decreasing in [A — A, +00),
Prrap(S) — €“Prrap(S + d) is maximized at S = [A —
A, +00) and the maximum value is fA —atd f(z)dz <

fA,A fTLap( )dﬂf =9.

We conclude that Prrap satisfies the (e, §)-differential
privacy constraint . O

Next, we apply the truncated Laplacian mechanism
to derive new upper bounds on the minimum noise
amplitude V;* and noise power V5.

Theorem 2 (Upper Bound on Minimum Noise Ampli-
tude).

o pune A log(1+ 55
vy 2p O ) )
20

Proof. We can compute the expected noise amplitude
for the truncated Laplacian distribution Prr.p defined

in via
A x
VPP = fTLap(x)|x|d$:2/ Be X zdx
TE 0

A log(1+ ¢ 71)
=—(1-—=2)

€ 26

Since the truncated Laplacian mechanism preserves
(e, 8)-differential privacy, this gives an upper bound
on the minimum noise amplitude V;* under (e, d)-
differential privacy. U

In Theorem [2] the upper bound VPP is composed of
two parts. The first part is £, which is the noise ampli-
tude of the Laplacian mechambm under e-differential
privacy. The second part reduces the noise by a por-

. log(1+<55%)
tion of — =<2

25
differential privacy.

due to the d-relaxation in (e, d)-

We analyze the asympotic properties of V}"*? in the
high privacy regimes as € — 0,9 — 0:

e Given €, limg_,o V{'*? = %. The truncated Lapla-
cian mechanism will be reduced to the standard
Laplacian mechanism as 6 — 0,.

. leen 8, lime_yo V{'PP = Indeed, when ¢ — 0,

45
S5 1 0, and thui

. e€—1y2

u A 6231 _ 23 )
VP~ :(1—65—_1)

25
A Ae A
T e 2 Tew 4

2Note that the additive error terms in the analysis be-
low can be more precisely characterized using the Taylor
expansion: log(1+4 ) = x4 O(z?), and €* = 1 +z + O(z?).

As € — 0, the truncated Laplacian distribution is
reduced to a uniform distribution in the interval

[~ £, &] with probability density £

e In the regime 6 = ¢ — 0, the upper bound

A log(l+ 55

Vlupp = ?(1 — - )
2e
log(1+ =
€ 2¢
A 3

In Section [5| we show that the constant factor
(1—2log %) is actually tight and the upper bound
VPP matches the lower bound V{°¥ defined in
Theorem [4l

Theorem 3 (Upper Bound on Minimum Noise Power).
Define

u 2A2 L log ( ) + log( )
Ver > (1— 66_1 ).
20
(7)
We have

upp
Vi < VTP,

Proof. We can show that V,'P? is the noise power under
the truncated Laplacian mechanism, and thus V,"*7 i

an upper bound for V5. Please see the supplementary
manuscript for the complete proof. O

It turns out that the upper bounds V;"* and V,"*? in
Theorem [2] and Theorem [3] are tight. We derive new
lower bounds for V;* and V5" in the next section, and
show that the multiplicative gap between the lower
bounds and the upper bounds goes to zero in the high
privacy regions in Section [5}

4 Lower Bound

In this section, we derive new lower bounds V/** and
V4o on the minimum noise amplitude V;* and mini-
mum noise power V5, respectively. The key technique
is to discretize the continuous probability distribution
and the loss function, and transform the continuous
functional optimization problem to linear program-
ming, and then apply the discrete result from |Geng
and Viswanath| (2016a)).

Geng and Viswanath| (2016a)) derived lower bounds for
an integer-valued query function under (e, 0)-differential
privacy. For integer-valued query functions, they formu-
late a linear programming problem with the objective
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of minimizing the additive noise. They studied the
dual problem and constructed a dual feasible solution
which gives a lower bound. Extending this result to
the continuous setting, we show a similar lower bound
for real-valued query function under (e, ¢)-differential
privacy.

First, we give a lower bound for (e, d)-differential pri-
vacy for integer-valued query function due to|Geng and
Viswanath| (2016a).

Define

To avoid integer rounding issues, assume that there

exists an integer n such that 22;3 abf = %

Lemma 2 (Theorem 8 in |Geng and Viswanath
(2016a)). Consider a symmetric cost function L(-) :
Z — R, where Z denotes the set of all integers. Given
the privacy parameters €, and the discrete query sen-
sitivity A € Zt, if a discrete probability distribution P
satisfies

P(S) = eP(S+d) <6,VSCZNVdeZ,|d <A (8)

and the cost function L(-) satisfies

nz_: b (2L(iIA) — L(1 + (i — 1)A) — L(1 +iA)) > £(1),
- )
then we have
Sz L(i)P(i) > 2% ab*L(1 4+ kA).  (10)
k=0

Theorem 4 (Lower Bound on Minimum Noise Ampli-
tude). Define

n—1
Vllow = 2a Z bEEA
k=0

:2“((?:1;2

l
Vl* > Vl ow_

_(n- Dbn) A. (11)

1-5

We have

Proof. Given P € P, ;, we can derive a lower bound
on the cost by discretizing the probability distributions
and applying the lower bound for integer-valued
query functions in Lemma [2]

We first discretize the probability distributions P.
Given a positive integer NV > 0, define a discrete prob-
ability distribution Py via

PN (Z) = 7)([

(2i — 2i +1))),Vi € Z.

1, 2
2N 2N

For the noise cost function ||, define the corresponding
discrete cost function Ly via

0, 1=
Ly(i) & 2%(21'— 1), i>1
Ln(—i), i <0

It is ready to see that
[ alPn) 2 BBt
z€R

As the continuous probability distribution P satisfies
(e, 0)-differential privacy constraint with the query
sensitivity A, the discrete probability distribution Py
satisfies the discrete (e, 0)-differential privacy constraint
. ) with query sensitivity A = N, i.e., Py satisfies

Pn(S) — Py (S +d) < 6,¥S CZ,|d| < N.

We can verify that the condition @[) in Lemmal holds
for £ and Py with query sensitivity A = N when N
is sufficiently large. Indeed, when N > a + 2,

z_: bi[2LN(iN) — Ly(14 (i — 1)N) — Ln(1 4 iN)]
— Ln(1)
A N-2

= onl Ty

~1)>0.

The corresponding lower bound in for £ N and 75N
is

n—1 n—1
23 ab*Ly(1+kN) —QZabkA (2kN +1)
k=0
n—1 A n—1 A
_ k 2 k
=2 ab"(kA+ ) = 2aAZb E+ o
k=0 =0
n—1
b—b" (n—1)b"
> ki = -
72aAZbk 2a<(1_b)2 b >A
k=0
Vlow

Therefore, for any P € P s, we have
[ lalPo) = SiePuiLuti) 2 Vi
z€R

and thus V;* > Vv, O
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Similarly, we derive the lower bound for the minimum
noise power V5.

Theorem 5 (Lower Bound on Minimum Noise Power).
Define

n—1
ViU =2 ab" kA

k=0
2aA2 b(1 — b1 n—1)b"
20% o ML= (b
T 1-b (1-10) 1-b
b2( _bn—2) 9
- (n—1)"b"]. 12

(- 1) (12

We have
‘/2 Vlow.

Proof. The proof is similar to the proof of Theorem
[ Please see the supplementary manuscript for the
complete proof. O

5 Tightness of the Lower and Upper
Bounds

In this section, we compare the lower bounds
View View and the upper bounds VPP V,;**? (derived
from the truncated Laplacian mechamsm) for the min-
imum noise amplitude and noise power under (e, d)-
differential privacy. We show that they are close in the
high privacy regions and the multiplicative gap goes
to zero, which proves the tightness of these lower and
upper bounds and thus establishes the near-optimality
of the truncated Laplacian mechanism.

Theorem 6 (Tightness of Lower bound and Upper
bound on Minimum Noise Amplitude).

) Vlow
Vlow €
lim L > =1- < 2
6%‘/1“]717766—1 2+O(6)
Vlow
i L —1.

Proof. 1. ¢ is fixed, and € — 0:

When e — 0, the upper bound V"’ — £ and the

lower bound Vllow — 26@A = 92628 § DA =
(& — )A. Therefore,

40 2
vier (45— 5)
Iy yomp = = m =12
40

Note that 1 — 2§ — 1, as § — 0, and thus the mul-
tiplicative gap between V/°* and V"’ converges to
zero.

2. e is fixed, and § — 0:

When 6 — 0, the upper bound V;"** — %. For the
lower bound Vl"w we have

1—e"¢

a —r 5 N
b" — 0,
nb" — 0,

and thus V¥ — %

=7 as 0 — 0. Therefore,

ylow eAl € €
lim —2o= > b = =1—-+0().
SOV = A T e g 7O

Therefore, the multiplicative gap between V]°” and
V{*PP converges to zero as € — 0.

3.e=0—0:

In this regime, V{"” ~ 2(1 — 2log2) as shown in
Section For the lower bound V{°¥, since ZZ;Ol ab® =

5, we have

11— 1 1-0
=—-=bt"=1- .
Ty 727 %
Ase=8§—0,1 2a = i+fe - — 3, and thus
2 2
lim " =1 — 1_ g,
50 3 3
lg§
=0 2).
n=0(%2)

Note that a = ©(24) as § — 0.

Therefore, as e =6 — 0,

w (@ )

Therefore, V;* is lower bounded by V/°* =~ (1 —
QIOg%)é in the regime ¢ = § — 0. Since it is also
upper bounded by V;'P? ~ £(1 — 2log 2), we conclude

low

that lim.—s5_.¢ % = 1.

Note that our result closes the constant multiplicative
gap in the discrete setting (see Equation (67) and (69)
in |Geng and Viswanath| (2016a)). O
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Similarly, we show that the lower bound and the upper
bound on the minimum noise power are also tight.

Theorem 7 (Tightness of Lower bound and Upper
bound on Minimum Noise Power).

‘/'21011) )
Viow e2(1+¢f) €
lim —2 =1--+40().
530 VPP = (e —1)2 5 HOE)
Vlow
2 —=1.

lim 2
=350 VP

6 Comparison with the Optimal
Gaussian Mechanism

In this section we conduct numeric experiments to
compare the performance of the truncated Laplacian
mechanisms with the optimal Gaussian mechanism
described in Balle and Wang| (2018]).

A classic result on the Gaussian mechanism is that
for any €, € (0,1), adding a Gaussian noise with

\v/2log(1.25/46)

standard deviation o = ¥—=———A preserves (¢, J)-
differential privacy [Dwork and Roth| (2014). Balle and|
developed the optimal Gaussian mecha-
nism whose variance is calibrated directly using the
Gaussian cumulative density function instead of a tail
bound approximation.

1.0 l— 0.66

- 0.60
-0.54
-0.48
0.2 -0.42
0.0 -0.36

0.10 - 0.30

I- 0.24

0.
10 0.00

Figure 2: Ratio of the Noise Amplitude of the Trun-
cated Laplacian Mechanism and the Optimal Gaussian
Mechanism.

We plot the ratio of the noise amplitude of truncated
Laplacian mechanism and the optimal Gaussian mech-
anism in Fig. 2| and plot the ratio of the noise power
of truncated Laplacian mechanism and the optimal
Gaussian mechanism in Fig. [3| where ¢ € [107%,10]
and § € [1075,0.1]. Note that compared with the op-
timal Gaussian mechanism, the truncated Laplacian
mechanism significantly reduces the noise amplitude
and noise power in all privacy regimes. The improve-
ment is not very surprising, as the truncated Laplacian
mechanism universally improves the probability density

decay rate (for both small and big noises) and thus
leads to smaller noise amplitude and noise power in
expectation.

Figure 3: Ratio of the Noise Power of the Truncated
Laplacian Mechanism and the Optimal Gaussian Mech-
anism.

7 Conclusion and Discussion

In this work, we characterize the minimum noise am-
plitude and noise power for noise-adding mechanisms
in (¢, d)-differential privacy for single real-valued query
function. We derive new lower bounds using the duality
of linear programming, and derive new upper bounds
by proposing a new class of (e, §)-differentially private
mechanisms, the truncated Laplacian mechanisms. We
show that the multiplicative gap of the lower bounds
and upper bounds goes to zero in various high pri-
vacy regimes, proving the tightness of the lower and
upper bounds and thus establishing the optimality of
the truncated Laplacian mechanism. In particular, our
results close the previous constant multiplicative gap in
\Geng and Viswanath| (2016a)). Comprehensive numeric
experiments show the improvement of the truncated
Laplacian mechanism over the optimal Gaussian mech-
anism in Balle and Wang] (2018) in all privacy regimes.

Note that the range of the truncated Laplacian noise is
bounded between [— A, A]. Therefore, for two neighbor-
ing datasets, the randomized output ranges will have
some non-overlapped set. While the truncated Lapla-
cian mechanism can strictly preserve (e, §)-differential
privacy, with a small probability up to § (correspond-
ing to the probability that the output is in the non-
overlapped set), an adversary can distinguish the two
neighboring datasets. To address this concern, one
can improve over the truncated Laplacian mechanism
and impose an arbitrarily light tail distribution over
[A,+00) to ensure that the output space is the same
for all possible datasets.
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