Supplementary Material

Integrals over Gaussians under Linear Domain Constraints

A ALGORITHMS

Algorithm 2 Elliptical slice sampling for a linearly constrained standard normal distribution

```
1 procedure LineSS(\mathbf{A}, \mathbf{b}, N, \mathbf{x}_0)
                ensure all(\mathbf{a}_{m}^{\mathsf{T}}\mathbf{x}_{0}+b_{m}>0 \ \forall m)
                                                                                                                                                                                                   // initial vector needs to be in domain
2
 3
                                                                                                                                                                                                                                   // initialize sample array
               for n = 1, ..., N do
 4
                        \boldsymbol{\nu} \sim \mathcal{N}(0, \mathbf{1})
 5
                        \mathbf{x}(\theta) = \mathbf{x}_0 \cos \theta + \boldsymbol{\nu} \sin \theta
                                                                                                                                                                                                                                                 // construct ellipse
 6
                        \begin{aligned} & \boldsymbol{\theta} \leftarrow \mathbf{sort}(\{\theta_{j,1/2}\}_{j=1}^{M}) \text{ s.t. } \mathbf{a}_{j}^{\mathsf{T}}(\mathbf{x}_{0}\cos\theta_{j,1/2} + \boldsymbol{\nu}\sin\theta_{j,1/2}) = 0 & \text{# } 2 \\ & \boldsymbol{\theta}_{\mathrm{act}} \leftarrow \{[\theta_{l}^{\min}, \theta_{l}^{\max}]\}_{l=1}^{L} \text{ s.t. } \ell(x(\theta_{l}^{\min/\max} + d\boldsymbol{\theta})) - \ell(x(\theta_{l}^{\min/\max} - d\boldsymbol{\theta})) = \pm 1 \\ & u \sim [0, 1] \cdot \sum_{l} \ell(\theta_{l}^{\max} - \theta_{l}^{\min}) \end{aligned} 
                                                                                                                                                                                                                           /\!\!/ 2M intersections, Eq. (2)
 7
 8
                                                                                                                                                                                                                                                        // Set brackets
 9
                        \theta_u \leftarrow \text{transform } u \text{ to angle in bracket}
10
                        \mathbf{X}[n] \leftarrow \mathbf{x}(\theta_u)
                                                                                                                                                                                                                                       // update sample array
11
                        \mathbf{x}_0 \leftarrow \mathbf{x}(\theta_u)
                                                                                                                                                                                                                                      // set new initial vector
12
                end for
13
               return X
15 end procedure
```

Algorithm 3 Subset simulation for linear constraints

```
1 procedure SubsetSim(\mathbf{A}, \mathbf{b}, N, \rho = \frac{1}{2})
2
          \mathbf{X} \sim \mathcal{N}(0, \mathbf{1})
                                                                                                                                                     // N initial samples
          \gamma, \hat{\rho} = \text{FINDSHIFT}(\rho, \mathbf{X}, \mathbf{A}, \mathbf{b})
 3
                                                                                                                                                  # find new shift value
         \log Z = \log \hat{\rho}
                                                                                                                                                   # record the integral
 4
          while \gamma > 0 do
               \mathbf{X} \leftarrow \text{LinESS}(\mathbf{A}, \mathbf{b} + \gamma, N, \mathbf{x}_0)
                                                                                                      // draw new samples from new constrained domain
 6
               \gamma, \hat{\rho} \leftarrow \text{FINDSHIFT}(\rho, \mathbf{X}, \mathbf{A}, \mathbf{b})
                                                                                                                                                 # find new shift value
 7
              \log Z \leftarrow \log Z + \log \hat{\rho}
                                                                                                      // Update integral with new conditional probability
8
          end while
         return \log Z, shift sequence
11 end procedure
12 function FINDSHIFT(\rho, X, A, b)
                                                                                    // find shift s.t. a fraction \rho of X fall into the resulting domain.
         \gamma \leftarrow \text{SORT}(-\min_m(\mathbf{a}_m^\intercal \mathbf{x}_n + b_m)_{n=1}^N)
                                                                                                                                   // sort shifts in ascending order
         \gamma \leftarrow (\gamma[\lfloor \rho N \rfloor] + \gamma[\lfloor \rho N \rfloor + 1])/2
14
                                                                                                            # Find shift s.t. \rho N samples lie in the domain
         \hat{\rho} \leftarrow (\# \mathbf{X} \text{ inside})/N
15
                                                                                                                            # true fraction could deviate from \rho
         return \gamma, \hat{\rho}
16
17 end function
```

B DETAILS ON EXPERIMENTS

B.1 Synthetic experiments

1000-d integrals We further consider three similar synthetic integrals over orthants of 1000-d correlated Gaussians with a fixed mean and a randomly drawn covariance matrix. Table 1 shows the mean and std. dev. of the binary logarithm of the integral estimator averaged over five runs of HDR using 2⁸ samples per nesting for integration, as well as the average CPU time¹.

Table 1: Integrals of Gaussian orthants in 1000-d

#	$\langle \log_2 \hat{Z} \rangle$	std. dev.	$t_{\scriptscriptstyle \mathrm{CPU}}[10^3\mathrm{s}]$
1	-162.35	4.27	8.86
2	-160.54	2.09	7.40
3	-157.62	3.19	7.64

B.2 Bayesian optimization

Probability of minimum After having chosen N_R representer points, the approximate probability for $\mathbf{x}_i, i = 1, ..., N_R$ to be the minimum, Eq. (6) can be rephrased in terms of Eq. (1) by writing the $N_R - 1$ linear constraints in matrix form. This $(N_R - 1) \times N_R$ matrix is a $(N_R - 1) \times (N_R - 1)$ identity matrix with a vector of $-\mathbf{1}$ added in the \mathbf{i}^{th} column,

$$\mathbf{M} = \begin{bmatrix} \mathbf{1}_{(i-1)\times(i-1)} & -\mathbf{1}_{i-1} & \mathbf{0}_{(i-1)\times(N_R-i)} \\ \mathbf{0}_{(N_R-i)\times(i-1)} & -\mathbf{1}_{N_R-i} & \mathbf{1}_{(N_R-i)\times(N_R-i)} \end{bmatrix}.$$

Then the objective Eq. (6) can be written as

$$\begin{split} \hat{p}_{\min}(\mathbf{x}_i) &= \int \mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \prod_{j \neq i}^{N_R} \Theta([\mathbf{M}\mathbf{f}]_j) \ d\mathbf{f} \\ &= \int \mathcal{N}(\mathbf{u}, \mathbf{0}, \mathbf{1}) \prod_{j \neq i}^{N_R} \Theta\left(\left[\mathbf{M} \left(\boldsymbol{\Sigma}^{1/2} \mathbf{u} + \boldsymbol{\mu}\right)\right]_j\right) \ d\mathbf{u} \end{split}$$

where we have done the substitution $\mathbf{u} = \mathbf{\Sigma}^{-1/2}(\mathbf{f} - \boldsymbol{\mu})$, and hence $\mathbf{f} = \mathbf{\Sigma}^{1/2}\mathbf{u} + \boldsymbol{\mu}$. Writing the constraints in matrix form as in Section 2, $\mathbf{A}^{\mathsf{T}} = \mathbf{M}\mathbf{\Sigma}^{1/2}$ and $\mathbf{b} = \mathbf{M}\boldsymbol{\mu}$.

Derivatives In order to compute a first-order approximation to the objective function in entropy search, we need the derivatives of \hat{p}_{\min} w.r.t. the parameters μ and Σ . The algorithm requires the following derivative, where $\lambda = \{\mu, \Sigma\}$,

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}\,\lambda}\log p_{\mathrm{min}} \approx \frac{1}{\hat{p}_{\mathrm{min}}}\frac{\mathrm{d}\,\hat{p}_{\mathrm{min}}}{\mathrm{d}\,\lambda} \\ &= \frac{1}{\hat{p}_{\mathrm{min}}}\int\,d\mathbf{f}\,\,\frac{\mathrm{d}\,\mathcal{N}(\mathbf{f},\boldsymbol{\mu},\boldsymbol{\Sigma})}{\mathrm{d}\,\lambda}\prod_{j\neq i}^{N_R}\Theta([\mathbf{M}\mathbf{f}]_j) \\ &= \frac{1}{\hat{p}_{\mathrm{min}}}\mathbb{E}\left[\frac{\mathrm{d}\log\mathcal{N}(\mathbf{f},\boldsymbol{\mu},\boldsymbol{\Sigma})}{\mathrm{d}\,\lambda}\right], \end{split}$$

using $\frac{\mathrm{d}\mathcal{N}(\mathbf{f},\boldsymbol{\mu},\boldsymbol{\Sigma})}{\mathrm{d}\lambda} = \mathcal{N}(\mathbf{f},\boldsymbol{\mu},\boldsymbol{\Sigma}) \frac{\mathrm{d}\log\mathcal{N}(\mathbf{f},\boldsymbol{\mu},\boldsymbol{\Sigma})}{\mathrm{d}\lambda}$. Hence all we need is to compute the derivatives of the log normal distribution w.r.t. its parameters, and the expected values thereof w.r.t. the integrand. The required derivatives are

$$\frac{\mathrm{d} \log \mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\mathrm{d} \mu_i} = \left[\boldsymbol{\Sigma}^{-1}(\mathbf{f} - \boldsymbol{\mu})\right]_i,$$

$$\frac{\mathrm{d}\log\mathcal{N}(\mathbf{f},\boldsymbol{\mu},\boldsymbol{\Sigma})}{\mathrm{d}\boldsymbol{\Sigma}_{ij}} = \frac{1}{2}\left[\boldsymbol{\Sigma}^{-1}(\mathbf{f}-\boldsymbol{\mu})(\mathbf{f}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1} - \boldsymbol{\Sigma}^{-1}\right]_{ij}$$

and the second derivative

$$\begin{split} &\frac{\mathrm{d}^2 \, \mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\mathrm{d} \, \mu_i \, \mathrm{d} \, \mu_j} \\ &= \mathcal{N}(\mathbf{f}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \, \Big(\big[\boldsymbol{\Sigma}^{-1} (\mathbf{f} - \boldsymbol{\mu}) (\mathbf{f} - \boldsymbol{\mu})^\mathsf{T} \boldsymbol{\Sigma}^{-1} - \boldsymbol{\Sigma}^{-1} \big]_{ij} \Big) \end{split}$$

Hence we only need $\mathbb{E}_{p_{\min}}[(\mathbf{f} - \boldsymbol{\mu})]$ and $\mathbb{E}_{p_{\min}}[(\mathbf{f} - \boldsymbol{\mu})(\mathbf{f} - \boldsymbol{\mu})^{\mathsf{T}}]$ to compute the following gradients,

$$\begin{split} \frac{\mathrm{d}\log p_{\min}}{\mathrm{d}\,\mu_i} &\approx \frac{1}{\hat{p}_{\min}} \mathbb{E}_{\hat{p}_{\min}} \left[\left[\mathbf{\Sigma}^{-1} (\mathbf{f} - \boldsymbol{\mu}) \right]_i \right], \\ \frac{\mathrm{d}\log p_{\min}}{\mathrm{d}\,\mathbf{\Sigma}_{ij}} &\approx \\ \frac{1}{\hat{p}_{\min}} \mathbb{E}_{\hat{p}_{\min}} \left[\frac{1}{2} \left[\mathbf{\Sigma}^{-1} (\mathbf{f} - \boldsymbol{\mu}) (\mathbf{f} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} - \mathbf{\Sigma}^{-1} \right]_{ij} \right], \end{split}$$

and the Hessian w.r.t.
$$\mu$$
,

$$\frac{\mathrm{d}^2 \log p_{\min}}{\mathrm{d}\,\mu_i \,\mathrm{d}\,\mu_j} = 2 \frac{\mathrm{d}\log \hat{p}_{\min}}{\mathrm{d}\,\mathbf{\Sigma}_{ij}} - \frac{\mathrm{d}\log p_{\min}}{\mathrm{d}\,\mu_i} \frac{\mathrm{d}\log p_{\min}}{\mathrm{d}\,\mu_j}.$$

 $^{^{1}}$ On 6 CPUs, the wall clock time was \sim 20 min per run.