Supplementary Material

Integrals over Gaussians under Linear Domain Constraints

A

ALGORITHMS

Algorithm 2 Elliptical slice sampling for a linearly constrained standard normal distribution

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

procedure LINESS(A,b, N, xq)
ensure all(a], xo + b, > 0 Vm)
X=1]
forn=1,..., Ndo
v~ N(0,1)
x(0) = xg cosf + vsin 6
O.ct {[Hf“i“L, gmax| 1L 8.t £(x(0
U ~ [07 1] . Zl (9[11121)(_ Hlmln)
0,, < transform u to angle in bracket
X[n] < x(0y)
xg < x(6y)
end for
return X

end procedure

// initial vector needs to be in domain
/ initialize sample array

J/ construct ellipse

0+ sort({ﬁj’l/g}jﬂil) s.t. a} (xocos; /o +vsinb; /s) =0 // 2M intersections, Eq. (2)
m.

+ d9)> - Z(m(@l fn/max _ d@)) ==l /| Set brackets

/| update sample array
/| set new initial vector

Algorithm 3 Subset simulation for linear constraints

© 0 N o o A W N =

=
= o

13
14
15
16
17

procedure SUBSETSIM(A,b, N,p = 1)
X~ N(0,1)
v, p = FINDSHIFT(p, X, A, b)
log Z =log p
while v > 0 do
X < LINESS(A,b + v, N,xq)
v, p + FINDSHIFT(p, X, A,b)
log Z < log Z + log p
end while
return log Z, shift sequence
end procedure

function FINDSHIFT(p, X, A, b)
7 < SORT(—min,,(al x, + bm)gzl)
v < (Y[leN]] +~[lpN] +1])/2
p + (#X inside) /N
return v, p
end function

// N initial samples
/ find new shift value
J/ record the integral

/| draw new samples from new constrained domain
// find new shift value
// Update integral with new conditional probability

// find shift s.t. a fraction p of X fall into the resulting domain.

/| sort shifts in ascending order
// Find shift s.t. pN samples lie in the domain
J/ true fraction could deviate from p

Integrals over Gaussians under Linear Domain Constraints

B DETAILS ON EXPERIMENTS

B.1 Synthetic experiments

1000-d integrals We further consider three simi-
lar synthetic integrals over orthants of 1000-d corre-
lated Gaussians with a fixed mean and a randomly
drawn covariance matrix. Table 1 shows the mean and
std. dev. of the binary logarithm of the integral esti-
mator averaged over five runs of HDR using 28 samples
per nesting for integration, as well as the average CpPU
time?.

Table 1: Integrals of Gaussian orthants in 1000-d

(logy Z) std. dev. tepy[103s]
1 —-162.35 4.27 8.86
2 —160.54 2.09 7.40
3 —157.62 3.19 7.64

B.2 Bayesian optimization

Probability of minimum After having chosen Np
representer points, the approximate probability for
x;, i = 1,..., Ng to be the minimum, Eq. (6) can be
rephrased in terms of Eq. (1) by writing the N — 1
linear constraints in matrix form. This (Ng — 1) X Ng
matrix is a (Ng — 1) X (Ng — 1) identity matrix with
a vector of —1 added in the i*” column,

-1
N

06Gi—1)x(Nr—i)

M — { Lo 1)x(@-1)
L(Np—i)x(Nr—i)

O(Np—i)x(i-1)
Then the objective Eq. (6) can be written as

/Nf,u, H@ ([Mf];

J#i

/Nu 0,1) H@([(1/2u+u>L_> du

J#i

pmll’l

where we have done the substitution u = £~/ (f—p),
and hence f = X72u + p. Writing the constraints in

matrix form as in Section 2, AT = MX"? and b = M.

Derivatives In order to compute a first-order approx-
imation to the objective function in entropy search, we
need the derivatives of Py, w.r.t. the parameters u
and X. The algorithm requires the following derivative,
where A = {u, X},

LOn 6 cpus, the wall clock time was ~20min per run.

d] 1 d ﬁmin
Og Pmin = —
dA P Pmin dA

_ 1 /ddef“’ H@ ([MF]
Pmin i

1 [dlog N (f, . E)
EP) ’

ﬁmin
using w = N(f,u,Z)W. Hence all
we need is to compute the derivatives of the log normal
distribution w.r.t. its parameters, and the expected
values thereof w.r.t. the integrand. The required deriva-
tives are

dlog N'(f, 1, X)

= [Z7F - p)].
m (= (F-p)],,
dlog N'(f, 1, X) | — -1 -1
= T = (X (f - f—p)TZ " —X ..
T S [Z 71— W)~) I,
and the second derivative
d® N(f, p, T)

d pid p,
= N, E) ([E7(F— p)(F - wTE" =71

Hence we only need E,_, [(f—p)] and E,, . [(f—p)(f—
©)T] to compute the following gradients,

dlogpmin 1 1
d/-j/l ﬁmin Epmin Hz (f “’)} l:l ’
dlogpmin ~
dz; =
1 1 . _ _ _
5B |5 [E7 (F—m)(f -T2 - 27,1,

and the Hessian w.r.t. p,

d2 logpmin _
d i dp

d IOg ﬁmin

d IOg Pmin d log Pmin
ax,; '

dp dp;

