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Abstract

Integrals of linearly constrained multivariate
Gaussian densities are a frequent problem
in machine learning and statistics, arising
in tasks like generalized linear models and
Bayesian optimization. Yet they are notori-
ously hard to compute, and to further compli-
cate matters, the numerical values of such in-
tegrals may be very small. We present an effi-
cient black-box algorithm that exploits geome-
try for the estimation of integrals over a small,
truncated Gaussian volume, and to simulate
therefrom. Our algorithm uses the Holmes-
Diaconis-Ross (HDR) method combined with
an analytic version of elliptical slice sampling
(Ess). Adapted to the linear setting, ESS al-
lows for rejection-free sampling, because in-
tersections of ellipses and domain boundaries
have closed-form solutions. The key idea of
HDR is to decompose the integral into easier-
to-compute conditional probabilities by using
a sequence of nested domains. Remarkably,
it allows for direct computation of the loga-
rithm of the integral value and thus enables
the computation of extremely small proba-
bility masses. We demonstrate the effective-
ness of our tailored combination of HDR and
ESS on high-dimensional integrals and on en-
tropy search for Bayesian optimization.

1 INTRODUCTION

Multivariate Gaussian densities are omnipresent in
statistics and machine learning. Yet, Gaussian proba-
bilities are hard to compute—they require solving an
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integral over a constrained Gaussian volume—owing
to the intractability of the multivariate version of the
Gaussian cumulative distribution function (CDF). The
probability mass that lies within a domain £ C RP
restricted by M linear constraints can be written as

M

Z:P(XGE)Z/RD

© (@l x+by) dN(x;0,1),
1
(1)

with the Heaviside step function ©(z) =1 if z > 0 and
zero otherwise. We take the integration measure to be
a standard normal without loss of generality, because
any correlated multivariate Gaussian can be whitened
by linearly transforming the integration variable.

Gaussian models with linear domain constraints oc-
cur in a myriad of applications that span all disci-
plines of applied statistics and include biostatistics
(Thiébaut & Jacqmin-Gadda, 2004), medicine (Chen
& Chang, 2007), environmental sciences (Wani et al.,
2017), robotics and control (Fisac et al., 2018), ma-
chine learning (Su et al., 2016) and more. A common
occurrence of this integral is in spatial statistics, such
as Markov random fields (Bolin & Lindgren, 2015), the
statistical modeling of spatial extreme events called
max-stable processes (Huser & Davison, 2013; Genton
et al., 2011), or in modeling uncertainty regions for
latent Gaussian models. An example for the latter is
to find regions that are likely to exceed a given ref-
erence level, e.g., pollution levels in geostatistics and
environmental monitoring (Bolin & Lindgren, 2015),
or in climatology (French & Sain, 2013). Another area
where integrals like Eq. (1) are often encountered is
in reliability analysis (Au & Beck, 2001a; Melchers &
Beck, 2018; Andersen et al., 2018; Straub et al., 2020).
A key problem there is to estimate the probability of a
rare event to occur (e.g., a flood) or for a mechanical
system to enter a failure mode.

In machine learning, there are many Bayesian mod-
els in which linearly constrained multivariate normal
distributions play a role, such as Gaussian processes
under linear constraints (Lépez-Lopera et al., 2017;
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Loépez-Lopera et al., 2019; Agrell, 2019; Da Veiga &
Marrel, 2012), inference in graphical models (Mulgrave
& Ghosal, 2018), multi-class Gaussian process classi-
fication (Rasmussen & Williams, 2006), ordinal and
probit regression (Lawrence et al., 2008; Ashford &
Sowden, 1970), incomplete data classification (Liao
et al., 2007), and Bayesian optimization (Hennig &
Schuler, 2012; Wang et al., 2016), to name a few.

This practical relevance has fed a slow-burn research
effort in the integration of truncated Gaussians over
decades (Geweke, 1991; Genz, 1992; Joe, 1995; Vijver-
berg, 1997; Nomura, 2014). Gassmann et al. (2002) and
Genz & Bretz (2009) provide comparisons and attest
that the algorithm by Genz (1992) provides the best
accuracy across a wide range of test problems, which
has made it a default choice in the literature. Genz’s
method applies a sequence of transformations to trans-
form the integration region to the unit cube [0, 1]P and
then solves the integral numerically using quasi-random
integration points. Other methods focus on special-
ized settings such as bivariate or trivariate Gaussian
probabilities (Genz, 2004; Hayter & Lin, 2013), or on
orthant probabilities (Miwa et al., 2003; Craig, 2008;
Nomura, 2016; Hayter & Lin, 2012). Yet, these meth-
ods are only feasible for at most a few tens of variables.
Only recent advances have targeted higher-dimensional
integrals: Azzimonti & Ginsbourger (2017) study high-
dimensional orthant probabilities and Genton et al.
(2018) consider the special case where the structure of
the covariance matrix allows for hierarchical decompo-
sition to reduce computational complexity. Phinikettos
& Gandy (2011) employ a combination of four variance
reduction techniques to solve such integrals with Monte
Carlo methods. Botev (2016) constructs an exponential
tilting of an importance sampling measure that builds
on the method by Genz (1992) and reports effectiveness
for D <100. A different approach has been suggested
by Cunningham et al. (2011): They use expectation
propagation to approximate the constrained normal
integrand of Eq. (1) by a moment-matched multivariate
normal density. This allows for fast integration, at the
detriment of guarantees. Indeed, the authors report
cases in which EP is far off the ground truth integral.

Closely related to integration is simulation from lin-
early constrained Gaussians, yet these tasks have rarely
been considered concurrently, except for Botev (2016)
who proposes an accept-reject sampler alongside the
integration scheme. Earlier attempts employ Gibbs
sampling (Geweke, 1991), or other Monte Carlo tech-
niques (Cong et al., 2017). Koch & Bopp (2019) re-
cently introduced an algorithm for exact simulation
from truncated Gaussians. Their method iteratively
samples from transformed univariate truncated Gaus-
sians that satisfy the box constraints.

In our work, we jointly address the sampling and the
normalization problem for linearly constrained domains
in a Gaussian space, making the following contribu-
tions:

e We present an adapted version of elliptical slice sam-
pling (ESs) which we call LIN-ESS that allows for
rejection-free sampling from the linearly constrained
domain L. Its effectiveness is not compromised even
if the probability mass of £ is very small (cf. Section
2.1).

e Based on the above LIN-ESS algorithm, we introduce
an efficient integrator for truncated Gaussians. It
relies on a sequence of nested domains to decompose
the integral into multiple, easier-to-solve, conditional
probabilities. The method is an adapted version
of the Holmes-Diaconis-Ross algorithm (Diaconis
& Holmes, 1995; Ross, 2012; Kroese et al., 2011)
(cf. Section 2.2).

e With increasing dimension D, the integral value
Z can take extremely small values. HDR with a
LIN-ESS sampler allows to compute such integrals
efficiently, and to even compute the logarithm of the
integral.

o With LIN-ESS, sampling is sufficiently efficient to also
compute derivatives of the probability with respect
to the parameters of the Gaussian using expectations.

We provide a PYTHON implementation available at
https://github.com/alpiges/LinConGauss.

2 METHODS

We first introduce an adapted version of elliptical slice
sampling, LIN-ESS, which permits efficient sampling
from a linearly constrained Gaussian domain of arbi-
trarily small mass once an initial sample within the
domain is known. This routine is a special case of ellip-
tical slice sampling that leverages the analytic tractabil-
ity of intersections of ellipses and hyperplanes to speed
up the ESS loop. LIN-ESS acts at the back-end of the
integration method, which is introduced in Section 2.2.

For further consideration, it is convenient to write the
linear constraints of Eq. (1) in vectorial form, ATx + b,
where A € RP*M  x ¢ RP and b € RM. The integra-
tion domain £ C RP is given by the intersection of the
region where all the M constraints exceed zero. For
example, orthant probabilities of a correlated Gaus-
sian M (w,X) can be written in the form of Eq. (1)
by using the transformation x = Lz + u, where L is
the Cholesky decomposition of X. Typically, we ex-
pect M > D, i.e., there are at least as many linear
constraints as dimensions. This is because if M < D,
there exists a transformation of x such that D — M
dimensions can be integrated out in closed form, and
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an M-dimensional integral with M constraints remains.
However, there are situations in which integrating out
dimensions might be undesired. This is the case, e.g.,
when samples from the untransformed integrand are
required.

2.1 Sampling from truncated Gaussians

Elliptical slice sampling (ESS) by Murray et al. (2010)
is a Markov chain Monte Carlo (McMC) algorithm to
draw samples from a posterior when the prior is a mul-
tivariate normal distribution N (u, X). Given an initial
location xg € RP, an auxiliary vector v ~ N (p, X) is
drawn to construct an ellipse x(6) = xg cos € + v sin 6
parameterized by the angle 6 € [0, 27]. In the general
case, the algorithm proceeds similarly to regular slice
sampling (Neal, 2003), but on the angular domain. A
likelihood threshold is defined, and rejected proposals
(in 0) with likelihood values below the threshold are
used to adapt the bracket [Omin, Omax]| to sample from,
until a proposal is accepted that serves as new xq (see
Murray et al. (2010) for details).

ESS is designed for generic likelihood functions. The
special form of the likelihood in Eq. (1) can be leveraged
to significantly simplify the ESs algorithm:

1. The selector £(x) := [[Y_, ©[al,x + b,,] can take
only the values 0 and 1. Hence there is no need for
a likelihood threshold, the domain to sample from
is always defined by ¢(x) = 1 for x(#) on the ellipse.

2. The intersections between the ellipse and the linear
constraints have closed-form solutions. The angu-
lar domain(s) to sample from can be constructed
analytically, and LIN-ESS is thus rejection-free. The
typical bisection search of slice sampling becomes a
simple analytic expression.

With these simplifications of ESS, each sample from
L requires exactly one auxiliary normal sample v ~
N(0,1) € RP and a scalar uniform sample u ~
Uniform[0, 1] to sample from the angular domain. Fig.
1 illustrates the process of drawing a sample from the
domain of interest (blue shaded area) using our ver-
sion of ESS. Given the two base vectors xg € £ and
v, the ellipse is parameterized by its angle 6 € [0, 27].
The intersections between the ellipse and the domain
boundaries ATx +b = 0 can be expressed in closed
form in terms of angles on the ellipse as solution to the
set of equations AT(xq cosf +vsinf) +b = 0. For the
m*™ constraint, this equation typically has either zero
or two solutions,

b al v
6,, =+ _m t _"m- 2
1/2 arccos ( . ) + arctan (7" aInXo> (2)

with r = /(al.x0)2 + (ahv)2. A single solution occurs
in the case of a tangential intersection, which is unlikely.

Figure 1: Sampling from a constrained normal space
using ESS. Xg is a previous sample from the domain £
and, with the auxiliary v, defines the ellipse. From all
intersections of the ellipse and zero lines (or hyperplanes
in higher dimensions), the active intersections at the
domain boundary are identified (s). These define the
slice from which a uniform sample is drawn (X ).

Not all intersection angles lie on the domain boundary
and we need to identify those active intersections where
£(x(0)) switches on or off. To identify potentially multi-
ple brackets, we sort the angles in increasing order and
check for each of them if adding/subtracting a small
Af causes a likelihood jump. If there is no jump, the
angle is discarded, otherwise the sign of the jump is
stored (whether from 0 to 1 or the reverse), in order to
know the direction of the relevant domain on the slice.
Pseudocode for LIN-ESS can be found in Algorithm 2
in the appendix.

The computational cost of drawing one sample on the
ellipse is dominated by the M inner products that need
to be computed for the intersections, hence the com-
plexity is O(M D). This is comparable with standard
ESS for which drawing from a multivariate normal dis-
tribution is O(D?), but the suppressed constant can
be much smaller because there is no need to evaluate
a likelihood function in LIN-ESS. This version of ESS is
a rejection-free sampling method to sample from a
truncated Gaussian of arbitrarily small mass—except
that it requires an initial point within the domain from
where to launch the Markov chain. How to obtain such
a sample will be discussed in Section 2.2.2.

2.2 Computing Gaussian probabilities
2.2.1 The Holmes-Diaconis-Ross algorithm

The Holmes-Diaconis-Ross algorithm (HDR) (Diaconis
& Holmes, 1995; Ross, 2012; Kroese et al., 2011) is
a specialized method for constructing an unbiased es-
timator for probabilities of the form P(x € £) under
an arbitrary prior measure x ~ po(x) and a domain
L ={x s.t. f(x) > 0} with a deterministic function
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Algorithm 1 The Holmes-Diaconis-Ross algorithm
applied to linearly constrained Gaussians

1 procedure HDR(A, b, {y1,...,77}, N)

2 X~ N(0,1) J/ N samples
3 logZ =0

4 fort=1...T do

5 L = {x : min,,(al x, + by) +7: > 0},
6

;

8

9

/ initialize log integral value

// find samples inside current nesting
log Z < log Z + log(#(X € L;)) —log N
choose xg € L;
X < LINESS(A,b + v, N,xo)
10 /| draw new samples from constrained domain
11 end for
12 return log Z
13 end procedure

f : RP — R. If this domain has very low proba-
bility mass, P(L) is expensive to compute with di-
rect Monte Carlo because most samples are rejected.
HDR mitigates this by using a sequence of T nested
domains RP = Lo D L1 DLy D ...D Ly = ,C,
s.t. Ly = ﬂ§:1 L;. The probability mass of the do-
main of interest can be decomposed into a product of
conditional probabilities,

Z = P(L) = P(Co) [[ P(LlLir). (3)

t=1

If each of the conditional probabilities P(Lyy1|Lt)
is closer to 1/2, they all require quadratically fewer
samples, reducing the overall cost despite the lin-
ear increase in indidivual sampling problems. Not-
ing that P(Ly) = 1 and introducing the shorthand
pt = P(Li|Li—1), Eq. (3) can be written in logarithmic
form as log Z = Zthl log ps.

HDR does not deal with the construction of these
nested domains—a method to obtain them is dis-
cussed in Section 2.2.2. For now, they are assumed
to be given in terms of a decreasing sequence of pos-
itive scalar values {71,...,77}, where 70 = 0. Each
shifted domain £; can then be defined through its
corresponding shift value ~;. In the general setting,
this is £; = {x s.t. f(x) + v > 0}; in our spe-
cific problem of linear constraints, x € L; if ¢;(x) =
H%Zl O(al,x + by, + ) = 1. Any positive shift v
thus induces a domain £; that contains all domains Ly
with 7 < ¢, and that engulfs a larger volume than
L. The T shift y7 = 0 identifies £ itself.

Given the shift sequence {v1,...,7r}, the HDR algo-
rithm proceeds as follows: Initially, N samples are
drawn from Ly, the integration measure, in our case a
standard normal. L corresponds to vy = oo which is
ignored in the sequence. The conditional probability

p1 = P(L1]Lo) is estimated as the fraction of samples
from Lq that also fall into £;. To estimate the sub-
sequent conditional probabilities p; for ¢ > 1 as the
fraction of samples from L;_; falling into £;, standard
HDR uses an MCMC sampler to simulate from £;_q. If
the sequence of nestings is chosen well and initial seeds
in the domain £;_; are known, these samplers achieve
a high acceptance rate. This procedure is repeated un-
til ¢t = T. With the estimated conditional probabilities
D¢, the estimator for the probability mass is then

T
log Z = Z log p¢. (4)
t=1

In our adapted version of HDR, the LIN-ESS algorithm
(cf. Section 2.1) comes into play, which achieves a
100% acceptance rate for simulating from the nested
domains. In order to simulate rejection-free from Ly,
LIN-ESS requires an initial sample from the domain Ly,
which is obtained from the previous iteration of the
algorithm. Every location sampled requires evaluating
the linear constraints, hence the cost for each subset
in HDR is O(NM D). Pseudocode for this algorithm is
shown in Algorithm 1, where LINESS is a call to the
LIN-ESS sampler (cf. Section 2.1 and Algorithm 2 in the
appendix) that simulates from the linearly constrained
domain.

2.2.2 Obtaining nested domains

As the final missing ingredient, the HDR algorithm re-
quires a sequence of nested domains or level sets defined
by positive shifts v, t = 1,...,T. In theory, the nested
domains should ideally have conditional probabilities
of p; = 1/2 Vt (then each nesting improves the precision
by one bit). Yet, in a more practical consideration, the
computational overhead for constructing the nested
domains should also be small. In practice, the shift
sequence is often chosen in an ad hoc way, hoping
that conditional probabilities are large enough to en-
able a decently accurate estimation via HDR (Kanjilal
& Manohar, 2015). This is not straightforward and
requires problem-specific knowledge.

We suggest to construct the nestings via subset sim-
ulation (Au & Beck, 2001a) which is very similar to
HDR. It only differs in that the conditional probabilities
p: are fixed a priori to a value p, and then the shift
values 7; are computed such that a fraction p of the
N samples drawn from £;_q falls into the subsequent
domain L;.

The construction of the nested domains is depicted in
Fig. 2. To find the shifts, IV samples are drawn from
the integration measure initially (cf. Fig. 2, left). Then
the first (and largest) shift v, is determined such that
a fraction p of the samples fall into the domain L.
This is achieved by computing for each sample by how
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Figure 2: Finding the level sets in subset simulation for linear constraints. Left: Draw standard normal samples
and find the shift v; for which a fraction p of the samples lie inside the new domain (orange lines); center: Use
LIN-ESS to draw samples from the subsequent domain defined by v, (now in dark blue) and find ~, (orange lines)
similarly; right: Proceed until the domain of interest (shaded area) is reached. Details in text.

much the linear constraints would need to be shifted
to encompass the sample. For the subsequent shifts, N
samples are simulated from the current domain £;, and
the next shift +; is again set s.t. | Np| samples fall into
the next domain £;y; (Fig. 2, center). This requires an
initial sample from L; to launch the LIN-ESS sampler,
which is obtained from the samples gathered in the
previous nesting £;_1 that also lie in £;, while all other
samples are discarded to reduce dependencies. This
nesting procedure is repeated until more than |Np]
samples fall into the domain of interest £ (cf. Fig. 2,
right). We set p = 1/2 to maximize the entropy of the
binary distribution over whether samples fall in- or
outside the next nested domain, yet in reliability anal-
ysis a common choice is p = 0.1 (Au & Beck, 2001b),
which has the advantage of requiring less nestings (to
the detriment of more samples). Pseudocode can be
found in Algorithm 3 in the appendix.

In fact, subset simulation itself also permits the esti-
mation of the integral Z, without appealing to HDR:
Since the subsets are constructed such that the con-
ditional probabilities take a predefined value, the
estimator for the integral is e = pT~lpr where
pr = P(Lr|Lr-1) € [p,1] is the conditional proba-
bility for the last domain. For p = /2 the number of
nestings is roughly the negative binary logarithm of
the integral estimator 7' ~ — log, Zss (cf. Fig. 3). The
main reason not to rely on subset simulation alone is
that its estimator Zss is biased, because the samples
are both used to construct the domains and to estimate
Z. We thus use HDR for the integral estimation and
subset simulation for the construction of the level sets.

Both subset simulation and HDR are instances of a wider
class of so-called multilevel splitting methods which
are related to sequential Monte Carlo (SMC) in that
they are concerned with simulating from a sequence of
probability distributions. sMC methods (aka. particle

filters) were conceived for online inference in state space
models, but can be extended to non-Markovian latent
variable models (Naesseth et al., 2019). In this form,
sMcC methods have gained popularity for the estimation
of rare events (Del Moral et al., 2006; Bect et al., 2017;
Cérou et al., 2012).

2.2.3 Derivatives of Gaussian probabilities

Many applications (e.g. Bayesian optimization, see
below) additionally require derivatives of the Gaussian
probability w.r.t. to parameters A of the integration
measure or the linear constraints. The absence of such
derivatives in classic quadrature sub-routines (such as
from Genz (1992)) has thus sometimes been mentioned
as an argument against them (e.g. Cunningham et al.,
2011)). Our method allows to efficiently compute such
derivatives, because it can produce samples. This lever-
ages the classic result that derivatives of exponential
families with respect to their parameters can be com-
puted from expectations of the sufficient statistics. To
do so, it is advantageous to rephrase Eq. (1) as the
integral over a correlated Gaussian with mean g and
covariance matrix X with axis-aligned constraints (or
constraints that are independent of A). The deriva-
tives w.r.t. a parameter A can then be expressed as an
expected value,

az _ E [dlog]\/'(x,,u,}:)} ’ (5)

dA dA

where the expectation is taken with respect to the
transformed integrand Eq. (1). Since LIN-ESS permits
us to simulate from the integrand of Eq. (1), derivatives
can be estimated via expectations. We demonstrate in
Section 3.2 that this is a lot more efficient than finite
differences, which requires Z to be estimated twice,
and at considerably higher accuracy.
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3 EXPERIMENTS

To shed light on the interplay of subset simulation, HDR,
and LIN-ESS, we consider a 500-dimensional synthetic
integration problem with a closed-form solution. Fur-
ther 1000-d integrals can be found in Section B.1. We
then turn to Bayesian optimization and demonstrate
our algorithm’s ability to estimate derivatives.

3.1 Synthetic experiments

As an initial integration problem we consider axis-
aligned constraints in a 500-dimensional space. Since
this task amounts to computing the mass of a shifted
orthant under a standard normal distribution, it allows
comparison to an exact analytic answer. The goal
of this setup is two-fold: 1) to demonstrate that our
method can compute small Gaussian probabilities to
high accuracy, and 2) to explore configurations for the
construction of nested domains usin% subset simulation.
The domain is defined by ¢(x) = [[,_, ©(zq + 1). The
true mass of this domain is 3.07 - 10738 = 271246,
Estimating this integral naively by sampling from the
Gaussian would require of the order of 103® samples
for one to fall into the domain of interest. With a
standard library like numpy . random.randn, this would
take about 10® ages of the universe.

Subset simulation First, we compute the shift se-
quence {71, ...,7r} using subset simulation for various
numbers of samples N per subset and a fixed condi-
tional probability of p = 1/2. Since the contributing
factor of each nesting is p = 1/2, the integral estimate
is roughly 2~7 for our choice of p (cf. Section 2.2.2).
The relation between the number of subsets 7" and the
estimated integral value Zss is visualized in Fig. 3. It
shows the sequences of shift values for increasing sam-
ple sizes and the resulting integral estimate log, ZS.
The T*" nesting has shift value v = 0 and is the only
subset with a conditional probability that deviates from
the chosen value of p, yet T' is a good indicator for the
value of the negative binary logarithm of the estimated
integral. Hence we use the same axis to display the
number of subsets and — log, Zes. The plot highlights
the bias of subset simulation: For small sample sizes,
e.g. N =248, the integral is severely underestimated.
This bias is caused by the dependency of the subset
construction method on the samples themselves: Since
we are using a MCMC method for simulating from the
current domain, samples are correlated and do not fall
into the true next subset with probability exactly p.
This is why we only accept every 10*" sample to dimin-
ish this effect when constructing the subsets. For the
subsequent HDR simulation, we accepted every second
sample from the ESS procedure.

We choose powers of 2 for the number of samples per

1()g.)Z 2e 1@ 3@ |8
2+ - 160 320 64

b 1280 2568 5120 g
A =
?\ [a\]
1) 1428

12

0 0

[ !
0 100 200 300
# subsets; —logy Zss

Figure 3: Shift values v against number of subsets T’
for different sample size per nesting N (small dots).
The connected dots show —log, Zgs vS. logy N. The
ground truth is indicated by the vertical line. This plot
emphasizes the connection between 7" and —log, Z for
p = 1/2 (see text for details).

subset and observe that as of 16 samples per subset,
the subset sequence is good enough to be handed to
HDR for more accurate and unbiased estimation. This
low requirement of 16 samples per nesting also means
that subset simulation is a low-cost preparation for
HDR, and causes only minor computational overhead.

Holmes-Diaconis-Ross Fig. 4 shows the results
achieved by HDR for the nine subset sequences obtained
with 2! to 2° samples per subset and for different num-
bers of samples per nesting for HDR. The top left panel
of Fig. 4 shows the binary logarithm of the HDR integral
estimator. The bad performance for the subsets created
with 2, 4, or 8 samples per nesting indicates that a good
nesting sequence is essential for the effectiveness of HDR,
but also that such a sequence can be found using only
about 16 samples per subset (this is thus the number
used for all subsequent experiments). The bottom left
panel displays the relative error of the HDR estimator.
It is to bear in mind that the relative error is 9/11 if
the estimator is one order of magnitude off, indicating
that HDR achieves the right order of magnitude with a
relatively low sample demand. The right panel of Fig. 4
shows the values for the conditional probabilities found
by HDR, using 2!! samples per subdomain. If subset
simulation were perfectly reliable, these should ideally
be p = 1/2. The plot confirms that, with N > 16, all
conditional probabilities found by HDR are far from 0
and 1, warranting the efficiency of HDR.

3.2 Bayesian optimization

Bayesian optimization is a sample-efficient approach to
global optimization of expensive-to-evaluate black-box
functions (see Shahriari et al. (2016) for a review). A
surrogate over the objective function f(x) serves to
build a utility function and ultimately derive a pol-
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Figure 4: Left: HDR integral estimates for different subset sequences (same color coding as in Fig. 3) for 25 to 2!t
samples, top: compared to the binary logarithm of the ground truth (horizontal line), and bottom: the relative
error. Right: Conditional probabilities obtained by HDR for the same subset sequences, where p = 1/2 was chosen

for the construction of the subsets (vertical line).

icy to determine the next query point. Information-
based utilities are directly concerned with the poste-
rior distribution over the minimizer, pyin (x| D), where
D = {X,, f(x,)}\_; summarizes previous evaluations
of f. Entropy search (Hennig & Schuler, 2012) seeks
to evaluate the objective function at the location that
bears the most information about the minimizer. The
expression pmin(x | D) is an infinite-dimensional integral
itself, but for practical purposes, it can be discretized
considering the distribution over so-called representer
points. The probability of the i*P representer point to
be the minimum can be approximated as

oinlx) = [ df (6. E) [T O 065) = Fix), (6)
J#i

where p and X are the posterior mean and covariance
of the Gaussian process over f, respectively. Clearly,
this is a linearly constrained Gaussian integral in the
form of Eq. (1) which has to be solved for all Ng
representer points. Eq. (6) is stated in matrix form
in the appendix Section B.2. The original paper and
implementation uses expectation propagation (EP) to
approximate this integral.

Probability of minimum For our experiment, we
consider the one-dimensional Forrester function (For-
rester et al., 2007) with three initial evaluations. The
top plot in Fig. 5 shows the ground truth distribution
over the minimum obtained by Thompson sampling,
i.e., drawing samples from the discretized posterior
GP and recording their respective minimum, and the
approximation over this distribution obtained by EP.
It is apparent that EP fails to accurately represent prin.
For HDR, we consider four locations (indicated by the
vertical lines) and show that while it takes longer to
compute, the estimate obtained by HDR converges to

the true solution (see bottom plot of Fig. 5). In the
experiment we use 200 representer points—which is an
unusually high number for a 1-d problem—to show that
our method can deal with integrals of that dimension.
Also note that we are reporting CPU time, which means
that due to automatic parallelization in PYTHON the
wall clock time is considerably lower.

Derivatives Entropy search requires derivatives of
Eq. (6) to construct a first-order approximation of the
predictive information gain from evaluating at a new
location x,. We can estimate derivatives using expecta-
tions (cf. Section 2.2.3 and B.2). Initially we choose 5
representer points to validate the approach of comput-
ing derivatives via moments against finite differences.
The latter requires estimating P, at very high ac-
curacy and has thus a high sample demand even in
this low-dimensional setting, for which we employ both
rejection sampling and HDR. The derivatives computed
via moments from rejection sampling and LIN-ESS take
0.7% of the time required to get a similar accuracy with
finite differences. Unsurprisingly, rejection sampling is
faster in this case, with Pmin(x;) = /4, i.e. only ~ 3/4
of the samples from the posterior over f need to be
discarded to obtain independent draws that have their
minimum at x;. LIN-ESS only outperforms rejection
sampling at higher rejection rates common to higher-
dimensional problems.

Therefore, we also consider 20 representer points, which
corresponds to a 20-d linearly constrained space to sam-
ple from. In this setting, we consider a location of low
probability, with P, = 1.6 - 1074, which renders an
estimation via finite differences impossible and highly
disfavors rejection sampling even for computing the
moments. LIN-ESS, however, enables us to estimate the
gradient of the normal distribution w.r.t. its mean and
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Figure 5: Top: Probability for z to be the minimum, es-
timated via Thompson sampling (blue), and EP (gray).
Vertical lines indicate locations at which we run HDR.
Bottom: Absolute relative error by EP and HDR against
CPU time at the locations indicated above. Each HDR se-
quence shown uses 2% to 2'3 samples per nesting. The
smaller Py, the longer takes the HDR run, since there
are more subsets to traverse.

covariance matrix with a relative standard deviation
on the 2-norm of the order of 1072 using 5-10° samples
and an average CPU time of 325s for a problem that
was previously unfeasible. A badly conditioned covari-
ance matrix in Eq. (5) deteriorates runtime (which is
already apparent in the considered case) since it re-
quires estimating moments at very high accuracy to
compensate for numerical errors.

3.3 Constrained samples

We emphasize that LIN-ESS allows to draw samples from
linearly constrained Gaussians without rejection. In
the Gaussian process setting, this permits to efficiently
draw samples that are subject to linear restrictions
(Agrell, 2019; Lépez-Lopera et al., 2017; Da Veiga &
Marrel, 2012). In particular, the time required for sam-
pling is essentially independent of the probability mass
of the domain of interest. This probability mass only
affects the precomputation required to find an initial
sample in the domain for LIN-ESS (cf. Section 2.2.2).
Since this can be achieved with ~ 16 samples per subset
(cf. Section 3.1), this initial runtime is typically negli-
gible compared to the actual sampling. Fig. 6 displays
the posterior distribution of a GP conditioned on the
location of the minimum from the Bayesian optimiza-
tion context, estimated from LIN-ESS samples. This
distribution is required in predictive entropy search

20 T T T
— (&) — () —Elflam] p
10 |- 2
B
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Figure 6: The Forrester function (black), the posterior
GP given three evaluations (gray), and the posterior
distribution over f conditioned on the minimum being
located at where the vertical line indicates (orange),
each with the 20 confidence interval shaded. The latter
has been obtained from drawing 10° samples using
LIN-ESS, 10 of which are shown (thin orange lines).

(Herndndez-Lobato et al., 2014)—a reformulation of
the original entropy search—where it is approximated
by imposing several related constraints (e.g., on the
derivatives at the minimizer Xy, ). The probability for
the given location to be the minimizer is < 1075, which
renders direct sampling virtually impossible. The un-
altered ESS algorithm fails on this problem due to the
domain selector—a binary likelihood.

4 CONCLUSIONS

We have introduced a black-box algorithm that com-
putes Gaussian probabilities (i.e. the integral over lin-
early constrained Gaussian densities) with high numer-
ical precision, even if the integration domain is of high
dimensionality and the probability to be computed is
very small. This was achieved by adapting two separate
pieces of existing prior art and carefully matching them
to the problem domain: We designed a special version
of elliptical slice sampling that takes explicit advantage
of the linearly-constrained Gaussian setting, and used
it as an internal step of the HDR algorithm. We showed
that, because this algorithm can not just compute in-
tegrals but also produces samples from the nestings
alongside, it also permits the evaluation of derivatives
of the integral with respect to the parameters of the
measure. One current limitation is that, because our
algorithm was designed to be unbiased, it has com-
parably high computational cost (but also superior
numerical precision) over alternatives like expectation
propagation. This problem could be mitigated if one is
willing to accept unbiasedness and thus reuse samples.
Furthermore, both HDR and LIN-ESS are highly paral-
lelizable (as opposed to EP) and thus offer margin for
implementational improvement.
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