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Abstract

Modern machine learning models with very
high accuracy have been shown to be vul-
nerable to small, adversarially chosen per-
turbations of the input. Given black-box
access to a high-accuracy classifier f, we
show how to construct a new classifier g
that has high accuracy and is also robust
to adversarial L2-bounded perturbations.
Our algorithm builds upon the framework
of randomized smoothing that has been re-
cently shown to outperform all previous de-
fenses against L2-bounded adversaries. Us-
ing techniques like random partitions and
doubling dimension, we are able to bound
the adversarial error of g in terms of the op-
timum error. In this paper we focus on our
conceptual contribution, but we do present
two examples to illustrate our framework.
We will argue that, under some assump-
tions, our bounds are optimal for these
cases.

1 INTRODUCTION

Modern neural networks achieve high accuracy on
tasks such as image classification (Krizhevsky et al.
(2012)) or speech recognition (Collobert and Weston
(2008)) but have been shown to be susceptible to
small, adversarially-chosen perturbations of the in-
puts (Szegedy et al. (2014), Nguyen et al. (2015),
Biggio et al. (2013)): given an input x, which is cor-
rectly classified by a neural network, one is often
able to find a small perturbation δ such that x + δ

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

is misclassified by the network, whereas x and x+ δ
are virtually indistinguishable to the human eye.

Many empirical approaches have been proposed for
building “robust” classifiers. One of the most suc-
cessful ones is the framework of adversarial train-
ing (Goodfellow et al. (2015), Kurakin et al. (2017),
Madry et al. (2017)). Unfortunately these tech-
niques usually protect only against restricted types
of adversaries. Moreover, many of the heuristic
defenses were shown to break in the presence of
suitably powerful adversaries (Carlini and Wagner
(2017), Athalye et al. (2018), Uesato et al. (2018)).

Certifiable robust classifiers, on the other hand, are
classifiers whose predictions are verifiably constant
within a neighborhood of a query point. The first
such classifiers were introduced by Raghunathan
et al. (2018) and Wong and Kolter (2018). Ran-
domized smoothing was considered in Lécuyer et al.
(2019), Li et al. (2018), Cohen et al. (2019) and
Salman et al. (2019). It works as follows.

Let f be any classifier which maps Rd to classes Y.
The smoothed classifier g classifies an input x as
that class c that is most likely to be returned by f
on input x+ δ, where δ ∼ N (0, σ2I).

It was shown in Lécuyer et al. (2019) that this ap-
proach scales well and one can use it to train cer-
tifiably robust classifier for ImageNet. In Cohen
et al. (2019) it is shown that for `2 perturbations
randomized smoothing outperforms other certifiably
defenses previously proposed. Moreover the authors
show how to derive a robustness radius guarantee
for an input x. To derive the bound one defines for
a class c ∈ Y the probability pc := Pδ(f(x+ δ) = c),
where the perturbation δ is chosen according to
δ ∼ N (0, σ2I). Then one argues that if there exists
a c such that pc � maxc′ 6=c pc′ then the robustness
radius at x is big. Unfortunately, even if the base
classifier f has very high accuracy we don’t know
much about the structure of {pc}c∈Y . Thus it’s hard
to reason about the robustness radii. These short-
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comings point to the following question:

Having a black-box access to a high accuracy clas-
sifier f is it possible to construct a new classifier g
that is guaranteed to be both robust and achieve high
accuracy?

Note that robustness without an accuracy constraint
is trivially achieved by a constant classifier, and high
accuracy without a robustness constraints has also
been shown to be achievable in many settings of in-
terest. The real question of interest therefore only
appears if we require both types of constraints.

Our contributions: We show a framework for
transforming any high accuracy classifier f into
a provably robust and high accuracy classifier g.
Moreover we show what the optimal classifier for
a given learning task is and then relate the perfor-
mance of g to this optimum. We present two in-
stances of this framework. To keep the exposition
simple, we limit our setting to `2-robustness. The
ideas apply more generally, but the details differ.

In the first instance we show that if f satisfies a
suitable property (similar to a property implicitly
assumed in Cohen et al. (2019) and Salman et al.
(2019)) then g can be evaluated with only black-box
access to f .

In the second instance we prove that, without any
assumptions on f , a robust classifier g can be evalu-
ated if we also have access to an oracle O that pro-
vides unlabeled i.i.d. samples from the underlying
distribution. Notice that this model is not very re-
strictive. A similar setting occurs in semi-supervised
learning where the learner has access to a dataset of
labeled data Dl and also to (an often much larger)
dataset Du of unlabeled samples (see Chapelle et al.
(2010)). In this scenario Du serves as the oracle O.

Even though our main contribution is a conceptual
one, we also present two implementations of these
methods that achieve different runtime/robustness
tradeoffs. In the end we give examples of binary clas-
sification tasks (e.g. adversarial spheres from Gilmer
et al. (2018)) and compare the performance of our
methods on these tasks to the optimum.

2 OUR TECHNIQUES

Let us present an overview of our approach.

2.1 Randomized smoothing

Our techniques build upon randomized smoothing
from Lécuyer et al. (2019), Li et al. (2018), Cohen

et al. (2019) and Salman et al. (2019). Consider a
classifier f that maps Rd to classes Y. Random-
ized smoothing is a method that produces a new,
smoothed classifier g. The smoothed classifier g as-
signs to a query point x the class that is most likely
to be returned by f under random Gaussian noise:

g(x) := arg max
c∈Y

P[f(x+ δ) = c], δ ∼ N (0, σ2I). (1)

Note that g can also be expressed as:

g(x) = arg max
c∈Y

∫
Rd

1{f(x)=c}γ(x− z)dz, (2)

where γ is the density function of N (0, σ2I).

Unfortunately it is easy to design a learning task
and a classifier f with low standard error such that
g, computed according to (1), has high error. For
instance, imagine the following binary classification
task in R2. We generate x ∈ R2 uniformly at random
from a union of two discs B−, B+ of radius 1 cen-
tered at (−2, 0) and (2, 0), respectively. We assign
the label y = −1 if x belongs to B− and the label
y = +1 otherwise. Let f(x) = −1 if x ∈ B− and
f(x) = +1 otherwise (i.e., for all points x 6∈ B−).
Observe that f has error equal 0. If we now com-
pute g according to (1), then g(x) = +1 for all x if
σ ≥ 1/(

√
2 InvErfc( 1

2 )) ∼ 1.4826. This means that
g has an error of 1

2 .

The reason that we were able to construct such an
example is that in (1) the smoothing is performed
independent of the data. A natural idea to fix this is
to perform the smoothing “conditioned" on the data
distribution. For instance, in the example above we
would like to not take points outside B− ∪ B+ into
account during smoothing. The formal definition of
this approach is as follows:

g(x) := arg max
c∈Y

∫
Rd

1{f(x)=c}γ(x− z)pX(z)dz, (3)

where pX is the density function of the data distri-
bution. Notice the difference between (3) and (2).
Unfortunately we can construct “counter examples"
even for this modification (see next section).

2.2 Hard distribution for randomized
smoothing described in (3)

It is possible to create a separable, binary classifi-
cation task on Rd and a classifier f such that the
standard error of f is e−Θ(d) but the error of the
smoothed classifier g is Θ(1) (see Appendix A for
details). That is, the standard error grows by a fac-
tor eΘ(d) when we perform smoothing!
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This example shows that when we use randomized
smoothing then already the standard error can grow
by a factor exponential in the dimension of the am-
bient space. As we aim for creating g that is robust
and has small error we must try something different.

2.3 Partitions

The intuitive reason why we were able to construct
the example in the previous section is that in ran-
domized smoothing it might happen that 1 misclas-
sified point of f contributes to eΘ(d) misclassified
points of g. To prevent that we use space partitions.

Assume that in a binary classification task the dis-
tance between the two classes is at least ε. Assume
further that we partition Rd into sets S1, S2, . . . ,
each of diameter at most ε. Now for x ∈ Rd we
define g(x) as the class that is most likely returned
by f on points sampled from the data distri-
bution conditioned on being in set Si to which
x belongs. As the classes are at least ε away from
each other and the diameters of the sets in the parti-
tion are at most ε, each misclassified point of f con-
tributes to at most 2 misclassified points of g (this
will be proven in Lemma 5). This means that the
error of g is bounded in terms of the error of f .

But we also want g to be robust. Intuitively we want
a big fraction of points to be far from the bound-
aries of sets S1, S2, . . . . To do that we use padded
random partitions, which previously found applica-
tions in low distortion embeddings (Gupta et al.
(2003)), locality sensitive hashing (Andoni and In-
dyk (2008)) and even spectral algorithms (Lee et al.
(2014)). Definitions of random and padded parti-
tions are presented in Section 5.

2.4 Doubling dimension

Some random partitions suffer from the big dimen-
sion of the space Rd. To improve the guarantees for
binary classification tasks that have data lying on
lower dimensional manifolds we resort to the notion
of doubling dimension (Section 4). This definition
captures the intuition that it should be easier to “de-
scribe" a manifold that is lower dimensional.

2.5 Examples

In Section 9 we give two examples to analyze the
tightness of the bounds obtained in Section 7. The
first one is a data distribution from Gilmer et al.
(2018). For this example we show that our approach
is competitive against a certain class of classifiers

(see Section 9.1 for an in-depth discussion). The
second example is a data distribution supported on
two low dimensional manifolds embedded in high-
dimensional space for which we show optimality of
our method up to constant factors.

3 PRELIMINARIES

For a distribution D over Rd and for a set A ⊆ Rd let
µ(A) := PX(X ∈ A). For us, D will denote the dis-
tribution of the data. For simplicity in this section
and the rest of the paper we consider only separable
binary classification tasks. Such tasks are fully spec-
ified by D as well as a ground truth h : Rd → {−1, 1}.
We note however that one can generalize the results
to any binary classification task (see Appendix B for
a generalization of the definitions from this section).
For x ∈ Rd and ε > 0 we write Bε(x) to denote the
open ball with center x and radius ε. Most of the
proofs are deferred to the Appendix D.
Definition 1. (Risk) Consider a binary classifica-
tion task for separable classes with a ground truth
h : Rd −→ {−1, 1}. For a classifier f : Rd −→ {−1, 1}
we define the Risk as

R(f) := PX(f(X) 6= h(X)).

Definition 2. (Adversarial Risk) Consider a bi-
nary classification task for separable classes with
a ground truth h : Rd −→ {−1, 1}. For a classi-
fier f : Rd −→ {−1, 1} and ε ∈ R≥0 we define the
Adversarial Risk as

AR(f, ε) := PX(∃ η ∈ Bε f(X + η) 6= h(X)).

We also introduce the notation:

AR(ε) := inf
f
AR(f, ε).

to denote the smallest achievable adversarial risk for
that classification task with a given ε.
Fact 1. (R versus AR)

• AR(f, 0) = R(f),

• AR(f, ε) and AR(ε) are nondecreasing func-
tions of ε; combined with the previous point this
implies that for ε ∈ R≥0, AR(f, ε) ≥ R(f),

• AR(f, ε)≤R(f)+PX∼D[f ¬ const. on Bε(X)].

Definition 3 (Separation function). For a binary
classification task for separable classes with a ground
truth h : Rd −→ {−1, 1} we define a separation func-
tion as follows:

S(ε) := inf
E⊆Rd,d(M−\E,M+\E)≥ε

[PX(X ∈ E)] .
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Here M− = h−1({−1}),M+ = h−1({1}). For a
given ε > 0 this function returns the probability
mass that needs to be removed so that the classes
are separated by an ε-margin.

Lemma 1. For all separable binary classification
tasks and all ε ∈ R≥0 we have that:

AR(ε) = S(2ε).

4 DOUBLING DIMENSION

Definition 4. (ε-Net) Let (M,d) be a metric space.
For N ⊆ M we say that N is an ε-net of M if it
satisfies:

• For every u,w ∈ N if u 6= w then d(u,w) ≥ ε,

• M ⊆
⋃
u∈N Bε(u).

Definition 5 (ε-Doubling dimension). For a
metric space (M,d), let λ be the smallest value such
that every ball of radius at most ε in M can be
covered by λ balls of radius ε/2. We define the
ε-doubling dimension of M as dd((M,d), ε) :=
log2 λ. Often we will omit the metric and write
dd(M, ε) when the metric is clear from the context.

Definition 6 (Doubling dimension). For a met-
ric space (M,d) it’s doubling dimension is:

dd((M,d)) := sup
ε>0

dd((M,d), ε)

Fact 2. dd((Rd, `2)) ≤ 3d

Next fact was implicitly proven in Dasgupta (2007).

Fact 3. Let M ⊆ Rd be a d′ dimensional manifold
such that the second fundamental form is uniformly
bounded by κ. Pick ε ≤ 1/2κ. If for all e′ ≤ ε, for
all x ∈M we have that Bε(x)∩M has at most 2O(d′)

connected components then

dd(M, ε) = O(d′),

where the metric on M is the inherited `2 metric
from Rd.

Lemma 2. Let (M,d) be a metric space with ε-
doubling dimension dd. If all pairwise distances in
N ⊆M are at least r then for any point x ∈M and
radius r ≤ t ≤ ε we have |Bt(x) ∩N | ≤ 2dddlog 2t

r e.

Remark 1. In the remainder of the paper we will
only consider subsets of Rd and the metric we use is
always the inherited `2 metric from the whole space.

5 RANDOM PARTITIONS

We now discuss random partitions, the main tech-
nical tool of the paper. For a metric space (M,d)
a partition π of M is as a function π : M −→ 2M ,
mapping a point x ∈M to the unique set π(x) in π
that contains x.

Although in this section we formulate all statements
with respect to a generic M , in the sequel it will be
important that M equals the support of the data
distribution, i.e., M = supp(D). In particular this
will come into play when the data lies on a manifold
of small dimension embedded in the ambient space.
To simplify our notation we will not repeat
this assertion in each subsequent statement.

For ε > 0 we say that π is ε-bounded if diam(π(x)) ≤
ε for all x ∈M . The main object of interest will be
random partitions. We denote a random partition
by Π and assume that it has distribution P. We say
that Π is ε-bounded if Π, drawn according to P, is
ε-bounded with probability 1.

Definition 7 (Padded partitions). For a metric
space (M,d) we say that a random partition Π ∼ P
is (ε, β, δ)-padded if it is ε-bounded and for every
x ∈M :

PΠ∼P [Bε/β(x) 6⊆ Π(x)] ≤ δ.

Corollary 1. Let Π ∼ P be an (ε, β, δ)-padded ran-
dom partition of a metric space (M,d). Then for
every distribution D we have that:

EΠ∼P [PX∼D[Bε/β(X) 6⊆ Π(X)]] ≤ δ.

Now let’s consider two random partitions:

Definition 8 (Cube partition). For the space
(Rd, `2) and parameter ε we define a Cube parti-
tion as a partition of Rd into cubes of width ε/

√
d

corresponding to the shifted lattice v+ ε√
d
·Zd. Here

the shift v ∼ U([0, ε√
d
]d), i.e., v is drawn uniformly

at random from a fundamental region of the lattice
ε√
d
· Zd. A point x which lies in the intersection

of two or more cubes is assigned to the one that is
crossed first by a ray x+ α(1, 1, . . . , 1), α ∈ R≥0.

Definition 9 (Ball carving partition). For a
bounded M ⊆ Rd and ε > 0 we define a ball carving
partition as follows. Let N be an ε/4-net ofM . Pick
R uniformly at random from the interval (ε/4, ε/2].
Let σ be a random permutation of N . Then for each
u ∈ N define

Π̂(u) := BR(u) \
⋃

w:σ(w)<σ(u)

BR(w).
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Since the radius R can be strictly larger than some
pairwise distances it can happen that for some u ∈
N , Π̂(u) does not contain u itself, leading to a po-
tential inconsistency in our notation for the points of
the net N . Hence, for all x ∈ M (and in particular
the points of the net N itself) let us define Π(x) to
be the unique Π̂(w), w ∈ N , that contains x.

Lemma 3. Let Π be a Cube partition with parame-
ter ε. Then for every β > 2

√
d it is

(
ε, β, O(d1.5)

β

)
-

padded.

The proof of the following Lemma is a slight modifi-
cation of a proof presented in (Gupta et al. (2003)).

Lemma 4. Let Π be a Ball carving partition of a
bounded M ⊆ Rd with parameter ε. Then for every
β > 1 it is (ε, β, O(dd(M,ε))

β )-padded.

Proof. Recall that the net N underlying the ball
carving partition is an ε/4-net ofM . Fix a point x ∈
M and some t ∈ [0, ε/4]. Let W = Bε/2+t(x) ∩ N ,
and note that by Lemma 2 we have that m = |W | ≤
6dd(M,ε). Arrange the points w1, . . . , wn ∈ W in or-
der of increasing distance from x, and let Ik be the
interval [d(x,wk) − t, d(x,wk) + t]. Let us say that
Bt(x) is cut by a cluster Π̂(wk) if Π̂(wk)∩Bt(x) 6= ∅
and Bt(x) 6⊆ Π̂(wk). Finally, write Ek for the event
that wk is the minimal element in W (according to
σ) for which Π̂(wk) cuts Bt(x). Then,

P[Bt(x) is cut] ≤
m∑
k=1

P[Ek]

=

m∑
k=1

P[R ∈ Ik] · P[Ek|R ∈ Ik]

≤
m∑
k=1

4t

ε
· 1

k
≤ 4t

ε
(1 + lnm).

Using the fact that m = |W | ≤ 6dd(M,ε) we get that:

P[Bt(x) is cut] ≤ t · (8 · dd(M, ε) + 4)

ε
.

Corollary 2. If Π is a Ball carving partition of a
bounded M ⊆ Rd with parameter ε then for every
β > 1 it is

(
ε, β, O(d)

β

)
-padded.

Proof. Follows from Fact 2 and Lemma 4.

6 FROM A PARTITION TO A
CLASSIFIER

To create a robust classifier g from a low-risk classi-
fier f we will use the following framework:

Algorithm 1 Smooth(f,P)
1: Partition “the space” using Π ∼ P
2: return g(x) := sgn(EZ∼D[f(Z)|Z ∈ Π(x)])

First we want to argue that if a partition π is ε-
bounded then g defined in Algorithm 1 will have
small Risk.
Lemma 5. Let π be an ε-bounded partition. For a
given f let g(x) = sgn(EZ∼D[f(Z)|Z ∈ π(x)]). Then

R(g) ≤ 2S(ε) + 2R(f).

The following lemma collects the results from pre-
vious sections to obtain a bound on the Adversarial
Risk of the classifier g in terms of the optimum.
Lemma 6. For all ε > 0 and any binary classifi-
cation task with underlying distribution D if there
exists an (εβ, β, δ)-padded random partition Π of
supp(D) then the following conditions hold. There
exists a randomized algorithm ALG that given black-
box access to classifier f produces a classifier g such
that in expectation over the random choices of ALG:

AR(g, ε) ≤ 2S(εβ) + 2R(f) + δ

and if AR(ε) > 0 then:

AR(g, ε) ≤ 2S(εβ)

S(2ε)
AR(ε) + 2R(f) + δ.

7 MAIN RESULTS

In this section we use the partitions defined in Sec-
tion 6 to derive explicit bounds for the Adversarial
Risk of the created classifier.
Theorem 1. Assume that Algorithm 1 uses Cube
partitions (see Definition 8). Let α > 0 and ε >
0. Then, in expectation over the randomness of the
algorithm,

AR(g, ε) ≤ 2S

(
d

3
2 · ε
α

)
+ 2R(f) +O(α)

and if AR(ε) > 0 then

AR(g, ε) ≤
2S

(
d

3
2 ·ε
α

)
S(2ε)

AR(ε) + 2R(f) +O(α).
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Proof. Follows from Lemma 6 and 3.

To understand the interplay of the parameters
it’s instructive to consider the following case. If

S

(
O
(
d

3
2

)
α ε

)
and S(2ε) are comparable, say their

ratio is upper-bounded by a constant C, and α is
some small constant then the theorem says that
the classifier produced by the algorithm satisfies:
AR(g, ε) ≤ 2C ·AR(ε)+2 ·R(f)+O(1) . That is, the
produced classifier is at most 2C times (plus additive
error) worse than the optimal one.

Next we present an algorithm with a better bound
that uses Ball carving partitions.
Theorem 2. Assume that Algorithm 1 uses Ball
carving partitions (see Definition 9). Let α > 0 and
ε > 0. Then, in expectation over the randomness of
the algorithm,

AR(g, ε) ≤ 2S

(
d · ε
α

)
+ 2R(f) +O(α)

and if AR(ε) > 0 then:

AR(g, ε) ≤
2S
(
d·ε
α

)
S(2ε)

AR(ε) + 2R(f) +O(α).

Proof. Follows from Lemma 6 and Corollary 2.

Remark 2. The bound obtained in Theorem 2 de-
grades with d. We show however that in some
regimes it might be inevitable (see Section 9.1).

Finally we generalize Theorem 2 to the case when
the support of the underlying distribution is a low-
dimensional manifold.
Theorem 3. Assume that Algorithm 1 uses Ball
carving partitions (see Definition 9) and that
supp(D) ⊆ Rd is a d’ ≤ d dimensional manifold
such that the second fundamental form is uniformly
bounded by κ. Assume further that for all x ∈ M ,
and for all r ≤ 1/2κ the intersection Br(x)∩M has
at most 2O(d′) connected components. Let α > 0 and
ε ≤ α

O(d′)κ . Then, in expectation over the random-
ness of the algorithm,

AR(g, ε) ≤ 2S

(
d’ · ε
α

)
+ 2R(f) +O(α)

and if AR(ε) > 0 then:

AR(g, ε) ≤
2S
(d’·ε
α

)
S(2ε)

AR(ε) + 2R(f) +O(α).

Proof. Follows from Lemma 6, 4 and Fact 3.

Note that all theorems in this section give bounds
in the expectation over the randomness of the al-
gorithms. By applying Markov inequality, we can
convert these bounds to bounds that are worse by a
factor γ > 1 but hold with probability 1− 1/γ.

8 COMPUTING sgn(E[f(Z)|Z∈π(x)])

Recall that g(x) := sgn(EZ∼D[f(Z)|Z ∈ π(x)]). As
we do not know the distribution D we cannot com-
pute this expectation directly.

8.1 Scheme A: Approximation with oracle

One approach is to approximate the expectation by
a sample mean

ĝ(x) := sgn

(
1

s

s∑
i=1

f(Zi)

)
, (4)

where the Zi’s are i.i.d. samples from the distribu-
tion D conditioned on being inside π(x). To com-
pute this sum we need samples from D. Note that
unlabeled samples suffice.

We will bound the number of samples needed to es-
timate ĝ so that ĝ has small adversarial risk. Let
x ∈ Rd, and assume that |EZ∼D[f(Z)|Z∈π(x)]− 1

2 | ≥
0.1. If we use s samples to estimate ĝ(x) according
to (4), then, using standard tail bounds,

P[g(x) 6= ĝ(x)] ≤ e−Θ(s). (5)

Now assume that π has Q sets S1, S2, . . . , SQ. For
i ∈ {1, . . . , Q} let pi := PX∼D[X ∈ Si]. We only
need to worry about sets Si whose probability pi is
not too small. Hence, let H ⊆ {i ∈ {1, . . . , Q} :

pi ≥ R(f)
Q }. We can argue now, as in the coupon

collector’s problem, that if we draw

O

(
Q

R(f)
log

(
Q

R(f)

)
+
Q log(Q)

R(f)
log log

(
Q

R(f)

))
(6)

samples from D then with constant probability, for
every i ∈ H at least Θ (log(Q)) samples will be in
Si. Note that sets outside H cover negligible mass:∑

i∈{1,...,Q}\H

pi ≤ R(f). (7)

Now let F := {i ∈ {1, . . . , Q} : |EZ∼D[f(Z)|Z ∈
Si] − 1

2 | ≤ 0.1} and notice that sets from F also
cover negligible mass of D:∑

i∈F
pi ≤ O(R(f)), (8)
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because if i ∈ F then at least a 0.4 fraction of
points from Si is misclassified. Combining: by (5)
and the union bound over Q sets, if we sample (6)
points from D then with constant probability, for
every i ∈ {1, . . . , Q} \ (F ∪ H) ĝ is equal to g on
Si, which by using (7), (8) and Lemma 5 implies
that R(ĝ) ≤ O(R(f) + S(ε)). As a consequence, all
theorems from Sections 7 remain true in this set-
ting up to some changes in the constant factors. For
instance a variant of Theorem 2 would state:
Theorem 4. Assume that we sample

O

(
Q

R(f)
log

(
Q

R(f)

)
+
Q log(Q)

R(f)
log log

(
Q

R(f)

))
points from D to estimate ĝ. Assume further that
Algorithm 1 uses Ball carving partitions (see Defini-
tion 9). Let α > 0 and ε > 0. Then, with constant
probability over the randomness of the algorithm,

AR(ĝ, ε) ≤ O
(
S

(
d · ε
α

)
+R(f) + α

)
and if AR(ε) > 0 then:

AR(ĝ, ε) ≤ O

(
S
(
d·ε
α

)
S(2ε)

AR(ε) +R(f) + α

)
.

8.2 Scheme B: Approximation by uniform
sampling

If Q is large then an alternative approach to esti-
mating g might be preferable. One might hope that

g(x) ≈ sgn(EZ∼U(π(x))[f(Z)]). (9)

In words, the expectation of f over the whole set
π(x) is a good proxy to the expectation of f with re-
spect to D conditioned on being in set π(x). If that
is the case then instead of performing the smoothing
with respect to the data distribution D we smooth
with respect to the uniform distribution on a set of
the partition. There are experimental results that
indicate that assumption (9) is reasonable. In par-
ticular, the approach to approximate g(x) according
to (9) is similar to the smoothing used in Cohen et al.
(2019) and Salman et al. (2019) – in these works the
smoothing is performed by adding a random Gaus-
sian noise to the input. So in this case also the
smoothing does not depend on D. Authors of these
papers show that their methods outperform all pre-
vious defenses against `2 restricted adversaries. This
suggests that assumption (9) holds.

A disadvantage of that approach is that it’s hard to
prove any theoretical guarantees for this algorithm

because, as we discussed before, classifiers with small
risk can still behave widely outside of supp(D). The
main advantage of this approach is that we don’t
require any additional data, apart from access to f ,
to compute ĝ. So if (9) holds then the theorems
from Section 7 give a direct, affirmative answer to
the question posed in the introduction. For running
times discussion see Appendix C.

9 THOUGHT EXPERIMENTS

In this section we will present two data distributions
and we will show how the implied guarantees from
Section 7 compare to the optimum.

9.1 Concentric spheres

First let’s analyze the concentric spheres dataset
considered in Gilmer et al. (2018). The data dis-
tribution consists of two concentric spheres in d di-
mensions: we generate x ∈ Rd where ||x||2 is either
1.0 or 1.3, with equal probability assigned to each
norm. We associate with each x a label y such that
y = −1 if ||x||2 = 1.0 and y = +1 otherwise.

First observe that the data is perfectly separable and
that the optimal classifier

gopt(x) =

{
−1, if ||x||2 ≤ 1.15

+1, otherwise

obtainsAR(gopt, 0.15) = 0, which is the information-
theoretic optimum. Assume that we have access to
a classifier f such that R(f) = δ. Now we want
to analyze the performance of our algorithm. More
precisely, we compare our algorithm to the set of
classifiers

H := {g : Rd −→ {−1, 1} | R(g) ≥ δ},

and not gopt. The constraint R(g) ≥ δ is natural
as it means that we want to be competitive against
classifiers that are no better than input classifier f .

Now assume that we want to produce a classifier
ALG(f) such that AR(ALG(f), ε) ≤ η, for some η ∈
R+. We should compare the following quantities:

εalg := arg max
ε∈R+

[AR(ALG(f), ε) ≤ η], (10)

εopt := arg max
ε∈R+

[
min
g∈H

AR(g, ε) ≤ η
]

. (11)
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Observe that the S function for this dataset is:1

S(ε) =

{
0, if ε < 0.3,

1/2, otherwise.

Then Theorem 2 guarantees that we can produce
ALG(f) so that: AR(ALG(f), ε) ≤ 2δ + O(ε · d).
Using (10) this gives us that εalg ≥ Θ(η−2δ

d ).

Now let g ∈ H. Recall that by definition R(g) ≥ δ.
Let Sin and Sout denote the inner and outer sphere,
respectively. Assume that E and E′ are the sets of
misclassified points on the inner and outer sphere
respectively. Without loss of generality we may as-
sume that µ(E) ≥ δ/2 (µ is the measure correspond-
ing to D). Notice that for all ε we have AR(g, ε) ≥
µ(E + Bε). Moreover, the isoperimetric inequality
for spheres states that among all sets of measure δ/2
the one that minimizes µ(E +Bε) is a spherical cap
of this volume, see Gilmer et al. (2018). Let’s call
this cap C. Now observe that µ(C+Bε) ≈ δ

2 (1+ε)d.

This means that εopt ≤ O
(

log(η/δ)
d

)
.

Combining lower and upper bounds we get that:

εopt
εalg
≤ O

(
log(η/δ)

η − 2δ

)
. (12)

That is, our method achieves the target adversar-
ial risk but for perturbations that are O

(
log(η/δ)
η−2δ

)
smaller than the optimum. For example in a regime
where log(η/δ) remains smaller than a constant we
get a Markov-style tradeoff between the target ad-
versarial risk η and the optimality of ε.

It was shown in Gilmer et al. (2018) that neural net-
works trained on concentric spheres dataset achieve
very small risk. When one of the trained networks
was evaluated on 20 million samples no errors were
observed. This means that R(f) might be really
small for this dataset. If for the target adversarial
risk we have η >> R(f) then the bound (12) might
not be satisfactory. It is an interesting research di-
rection to analyze the regime where η >> R(f).

9.2 Intersecting circles

Let u1, u2 be a pair of orthonormal vectors in
Rd. Let C−1, C+1 ⊆ Rd be two circles in the 2-
dimensional subspace spanned by u1, u2 of radius 1
centered at 0 and u1 respectively. The distribution
is defined as follows: we generate x ∼ U(C−1∪C+1)

1The separating function S(ε) does not reach 1 for
large values of ε since one can always completely remove
one class in order to guarantee a separation of ∞.

and we associate with each x a label y such that
y = −1 if x ∈ C−1 and y = +1 otherwise.

Note that for ε ≤ 1/10, S(ε) = Θ(ε). This is
true since in order to ε-separate the classes we need
to remove the points close to the two intersection
points. Note that supp(D) is a union of two 1-
dimensional manifolds whose second fundamental
form is bounded by Θ(1) (Theorem 3 also works in
this case). Hence, using Theorem 3 for all ε < 1/10
and α > 0:

AR(g, αε) ≤ O(AR(ε) +R(f) + α).

That is, if α is a small constant and R(f) is small
then g is only a constant times (plus an additive er-
ror) worse than the optimal classifier for adversarial
perturbations which are α times smaller. Note that
the guarantee does not depend on the dimension of
the ambient space but only on the dimension of the
manifolds themselves, which in this case is 1.

10 OPEN PROBLEMS &
RESEARCH DIRECTIONS

One important open problem is to consider improve-
ments of Theorem 2. In this theorem the guaranteed
robustness radius degrades with the dimensionality
d of the space. One might hope to get a better de-
pendence on d. In some regimes however it might
be hard to achieve an improvement as discussed in
Subsection 9.1 (see competitive guarantee (12)).

It is also interesting to analyze different threat mod-
els. Imagine that we want the classifier to be robust
against an oblivious adversary, that is an adver-
sary that has access to f and the algorithm’s code
but does not know the randomness used by the al-
gorithm. In Appendix E we show that in this model
it’s possible to achieve the bound

AR(g, ε) ≤ 2S

(√
d · ε
α

)
+ 2R(f) +O(α).

Note that the difference compared to Theorem 2 is
that we have the factor

√
d instead of d. Intuitively

this means that we are be able to get the same ad-
versarial risk for perturbations that are

√
d bigger.

Another direction is to improve running times of
presented algorithms, especially the ones using Ball
carving partition. These methods suffer from the
high dimension of the ambient space Rd, but as
discussed in Subsection C.0.2 there is hope to im-
prove the runtime per query to 2O(dd(supp(D),ε)).
This would be a significant improvement for low-
dimensional distributions.
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