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Abstract

In this paper we introduce a unified analy-
sis of a large family of variants of proximal
stochastic gradient descent (SGD) which so
far have required different intuitions, conver-
gence analyses, have different applications,
and which have been developed separately
in various communities. We show that our
framework includes methods with and with-
out the following tricks, and their combina-
tions: variance reduction, importance sam-
pling, mini-batch sampling, quantization, and
coordinate sub-sampling. As a by-product, we
obtain the first unified theory of SGD and ran-
domized coordinate descent (RCD) methods,
the first unified theory of variance reduced
and non-variance-reduced SGD methods, and
the first unified theory of quantized and non-
quantized methods. A key to our approach
is a parametric assumption on the iterates
and stochastic gradients. In a single theorem
we establish a linear convergence result under
this assumption and strong-quasi convexity
of the loss function. Whenever we recover an
existing method as a special case, our theo-
rem gives the best known complexity result.
Our approach can be used to motivate the
development of new useful methods, and of-
fers pre-proved convergence guarantees. To
illustrate the strength of our approach, we
develop five new variants of SGD, and through
numerical experiments demonstrate some of
their properties.
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1 Introduction

In this paper we are interested in the optimization
problem

min
x∈Rd

f(x) +R(x), (1)

where f is convex, differentiable with Lipschitz gradient,
and R : Rd → R ∪ {+∞} is a proximable (proper
closed convex) regularizer. In particular, we focus on
situations when it is prohibitively expensive to compute
the gradient of f , while an unbiased estimator of the
gradient can be computed efficiently. This is typically
the case for stochastic optimization problems, i.e., when

f(x) = Eξ∼D [fξ(x)] , (2)

where ξ is a random variable, and fξ : Rd → R is
smooth for all ξ. Stochastic optimization problems
are of key importance in statistical supervised learning
theory. In this setup, x represents a machine learn-
ing model described by d parameters (e.g., logistic
regression or a deep neural network), D is an unknown
distribution of labelled examples, fξ(x) represents the
loss of model x on datapoint ξ, and f is the gener-
alization error. Problem (1) seeks to find the model
x minimizing the generalization error. In statistical
learning theory one assumes that while D is not known,
samples ξ ∼ D are available. In such a case, ∇f(x) is
not computable, while ∇fξ(x), which is an unbiased
estimator of the gradient of f at x, is easily computable.

Another prominent example, one of special interest in
this paper, are functions f which arise as averages of a
very large number of smooth functions:

f(x) =
1

n

n∑
i=1

fi(x). (3)

This problem often arises by approximation of the
stochastic optimization loss function (2) via Monte
Carlo integration, and is in this context known as the
empirical risk minimization (ERM) problem. ERM
is currently the dominant paradigm for solving su-
pervised learning problems (Shalev-Shwartz and Ben-
David, 2014). If index i is chosen uniformly at random
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from [n] := {1, 2, . . . , n}, ∇fi(x) is an unbiased estima-
tor of ∇f(x). Typically, ∇f(x) is about n times more
expensive to compute than ∇fi(x).

Lastly, in some applications, especially in distributed
training of supervised models, one considers problem
(3), with n being the number of machines, and each fi
also having a finite sum structure, i.e.,

fi(x) =
1

m

m∑
j=1

fij(x), (4)

where m corresponds to the number of training exam-
ples stored on machine i.

2 The Many Faces of Stochastic
Gradient Descent

Stochastic gradient descent (SGD) (Robbins and Monro,
1951; Nemirovski et al., 2009; Vaswani et al., 2019)
is a state-of-the-art algorithmic paradigm for solving
optimization problems (1) in situations when f is either
of structure (2) or (3). In its generic form, (proximal)
SGD defines the new iterate by subtracting a multiple
of a stochastic gradient from the current iterate, and
subsequently applying the proximal operator of R:

xk+1 = proxγR(xk − γgk). (5)

Here, gk is an unbiased estimator of the gradient (i.e.,
a stochastic gradient),

E
[
gk | xk

]
= ∇f(xk), (6)

and proxγR(x) := argminu{γR(x) + 1
2 ‖u− x‖

2}. How-
ever, and this is the starting point of our journey in this
paper, there are infinitely many ways of obtaining a
random vector gk satisfying (6). On the one hand, this
gives algorithm designers the flexibility to construct
stochastic gradients in various ways in order to target
desirable properties such as convergence speed, itera-
tion cost, parallelizability and generalization. On the
other hand, this poses considerable challenges in terms
of convergence analysis. Indeed, if one aims to, as one
should, obtain the sharpest bounds possible, dedicated
analyses are needed to handle each of the particular
variants of SGD.

Vanilla1 SGD. The flexibility in the design of efficient
strategies for constructing gk has led to a creative re-
naissance in the optimization and machine learning
communities, yielding a large number of immensely
powerful new variants of SGD, such as those employing

1In this paper, by vanilla SGD we refer to SGD variants
with or without importance sampling and mini-batching,
but excluding variance-reduced variants, such as SAGA (De-
fazio et al., 2014) and SVRG (Johnson and Zhang, 2013).

importance sampling (Zhao and Zhang, 2015; Needell
et al., 2015), and mini-batching (Konečný et al., 2016).
These efforts are subsumed by the recently developed
and remarkably sharp analysis of SGD under arbitrary
sampling paradigm (Gower et al., 2019), first intro-
duced in the study of randomized coordinate descent
methods by (Richtárik and Takáč, 2016). The arbitrary
sampling paradigm covers virtually all stationary mini-
batch and importance sampling strategies in a unified
way, thus making headway towards theoretical unifica-
tion of two separate strategies for constructing stochas-
tic gradients. For strongly convex f , the SGD methods
analyzed in (Gower et al., 2019) converge linearly to a
neighbourhood of the solution x∗ = arg minx f(x) for
a fixed stepsize γk = γ. The size of the neighbourhood
is proportional to the second moment of the stochastic
gradient at the optimum (σ2 := 1

n

∑n
i=1 ‖∇fi(x∗)‖

2),
to the stepsize (γ), and inversely proportional to the
modulus of strong convexity. The effect of various
sampling strategies, such as importance sampling and
mini-batching, is twofold: i) improvement of the linear
convergence rate by enabling larger stepsizes, and ii)
modification of σ2. However, none of these strategies2
is able to completely eliminate the adverse effect of σ2.
That is, SGD with a fixed stepsize does not reach the
optimum, unless one happens to be in the overparame-
terized case characterized by the identity σ2 = 0.

Variance reduced SGD. While sampling strategies
such as importance sampling and mini-batching re-
duce the variance of the stochastic gradient, in the
finite-sum case (3) a new type of variance reduction
strategies has been developed over the last few years
(Roux et al., 2012; Defazio et al., 2014; Johnson and
Zhang, 2013; Shalev-Shwartz and Zhang, 2013; Qu
et al., 2015; Nguyen et al., 2017; Kovalev et al., 2019).
These variance-reduced SGD methods differ from the
sampling strategies discussed before in a significant
way: they can iteratively learn the stochastic gradients
at the optimum, and in so doing are able to eliminate
the adverse effect of the gradient noise σ2 > 0 which,
as mentioned above, prevents the iterates of vanilla
SGD from converging to the optimum. As a result,
for strongly convex f , these new variance-reduced SGD
methods converge linearly to x∗, with a fixed step-
size. At the moment, these variance-reduced variants
require a markedly different convergence theory from
the vanilla variants of SGD. An exception to this is the
situation when σ2 = 0 as then variance reduction is
not needed; indeed, vanilla SGD already converges to
the optimum, and with a fixed stepsize. We end the
discussion here by remarking that this hints at a possi-
ble existence of a more unified theory, one that would
include both vanilla and variance-reduced SGD.

2Except for the full batch strategy, which is prohibitively
expensive.
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Distributed SGD, quantization and variance re-
duction. When SGD is implemented in a distributed
fashion, the problem is often expressed in the form
(3), where n is the number of workers/nodes, and fi
corresponds to the loss based on data stored on node
i. Depending on the number of data points stored on
each node, it may or may not be efficient to compute
the gradient of fi in each iteration. In general, SGD is
implemented in this way: each node i first computes
a stochastic gradient gki of fi at the current point xk
(maintained individually by each node). These gradi-
ents are then aggregated by a master node (Shamir
et al., 2014; Konečný and Richtárik, 2018), in-network
by a switch (Sapio et al., 2019), or a different technique
best suited to the architecture used. To alleviate the
communication bottleneck, various lossy update com-
pression strategies such as quantization (Seide et al.,
2014; Gupta et al., 2015; Zhang et al., 2017), sparsifi-
cation (Konečný and Richtárik, 2018; Alistarh et al.,
2018; Wangni et al., 2018) and dithering (Alistarh et al.,
2017) were proposed. The basic idea is for each worker
to apply a randomized transformation Q : Rd → Rd
to gki , resulting in a vector which is still an unbiased
estimator of the gradient, but one that can be commu-
nicated with fewer bits. Mathematically, this amounts
to injecting additional noise into the already noisy
stochastic gradient gki . The field of quantized SGD is
still young, and even some basic questions remained
open until recently. For instance, there was no dis-
tributed quantized SGD capable of provably solving (1)
until the DIANA algorithm (Mishchenko et al., 2019a)
was introduced. DIANA applies quantization to gradient
differences, and in so doing is able to learn the gradients
at the optimum, which makes it able to work for any
regularizer R. DIANA has some structural similarities
with SEGA (Hanzely et al., 2018)—the first coordinate
descent type method which works for non-separable
regularizers—but a more precise relationship remains
elusive. When the functions of fi are of a finite-sum
structure as in (4), one can apply variance reduction
to reduce the variance of the stochastic gradients gki
together with quantization, resulting in the VR-DIANA
method (Horváth et al., 2019). This is the first dis-
tributed quantized SGD method which provably con-
verges to the solution of (1)+(4) with a fixed stepsize.

Randomized coordinate descent (RCD). Lastly, in
a distinctly separate strain, there are SGD methods
for the coordinate/subspace descent variety (Nesterov,
2012). While it is possible to see some RCD methods
as special cases of (5)+(6), most of them do not fol-
low this algorithmic template. First, standard RCD
methods use different stepsizes for updating different
coordinates (Qu and Richtárik, 2016), and this seems
to be crucial to their success. Second, until the re-
cent discovery of the SEGA method, RCD methods were

not able to converge with non-separable regularizers.
Third, RCD methods are naturally variance-reduced in
the R = 0 case as partial derivatives at the optimum
are all zero. As a consequence, attempts at creating
variance-reduced RCD methods seem to be futile. Lastly,
RCD methods are typically analyzed using different tech-
niques. While there are deep links between standard
SGD and RCD methods, these are often indirect and rely
on duality (Shalev-Shwartz and Zhang, 2013; Csiba
and Richtárik, 2018; Gower and Richtárik, 2015).

3 Contributions

As outlined in the previous section, the world of SGD
is vast and beautiful. It is formed by many largely
disconnected islands populated by elegant and efficient
methods, with their own applications, intuitions, and
convergence analysis techniques. While some links
already exist (e.g., the unification of importance sam-
pling and mini-batching variants under the arbitrary
sampling umbrella), there is no comprehensive general
theory. It is becoming increasingly difficult for the com-
munity to understand the relationships between these
variants, both in theory and practice. New variants are
yet to be discovered, but it is not clear what tangible
principles one should adopt beyond intuition to aid the
discovery. This situation is exacerbated by the fact that
a number of different assumptions on the stochastic
gradient, of various levels of strength, is being used in
the literature.

The main contributions of this work include:

• Unified analysis. In this work we propose a unify-
ing theoretical framework which covers all of the vari-
ants of SGD outlined in Section 2. As a by-product, we
obtain the first unified analysis of vanilla and variance-
reduced SGD methods. For instance, our analysis covers
as special cases vanilla SGD methods from (Nguyen
et al., 2018) and (Gower et al., 2019), variance-reduced
SGD methods such as SAGA (Defazio et al., 2014),
L-SVRG (Hofmann et al., 2015; Kovalev et al., 2019) and
JacSketch (Gower et al., 2018). Another by-product is
the unified analysis of SGD methods which include RCD.
For instance, our theory covers the subspace descent
method SEGA (Hanzely et al., 2018) as a special case.
Lastly, our framework is general enough to capture the
phenomenon of quantization. For instance, we obtain
the DIANA and VR-DIANA methods in special cases.

• Generalization of existing methods. An impor-
tant yet relatively minor contribution of our work is
that it enables generalization of knowns methods. For
instance, some particular methods we consider, such
as L-SVRG (Alg 10) (Kovalev et al., 2019), were not
analyzed in the proximal (R 6= 0) case before. To illus-
trate how this can be done within our framework, we
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do it here for L-SVRG. Further, most3 of the methods
we analyze can be extended to the arbitrary sampling
paradigm.

• Sharp rates. In all known special cases, the rates
obtained from our general theorem (Theorem 4.1) are
the best known rates for these methods.

• New methods. Our general analysis provides esti-
mates for a possibly infinite array of new and yet-to-
be-developed variants of SGD. One only needs to verify
that Assumption 4.1 holds, and a complexity estimate
is readily furnished by Theorem 4.1. Selected existing
and new methods that fit our framework are summa-
rized in Table 1. This list is for illustration only, we
believe that future work by us and others will lead to
its rapid expansion.

• Experiments. We show through extensive experi-
mentation that some of the new and generalized meth-
ods proposed here and analyzed via our framework have
some intriguing practical properties when compared
against appropriately selected existing methods.

4 Main Result

We first introduce the key assumption on the stochastic
gradients gk enabling our general analysis (Assump-
tion 4.1), then state our assumptions on f (Assump-
tion 4.2), and finally state and comment on our unified
convergence result (Theorem 4.1).

Notation. We use the following notation. 〈x, y〉 :=∑
i xiyi is the standard Euclidean inner product, and

‖x‖ := 〈x, x〉1/2 is the induced `2 norm. For simplicity
we assume that (1) has a unique minimizer, which we
denote x∗. Let Df (x, y) denote the Bregman diver-
gence associated with f : Df (x, y) := f(x) − f(y) −
〈∇f(y), x− y〉. We often write [n] := {1, 2, . . . , n}.

4.1 Key assumption

Our first assumption is of key importance. It is mainly
an assumption on the sequence of stochastic gradients
{gk} generated by an arbitrary randomized algorithm.
Besides unbiasedness (see (7)), we require two recur-
sions to hold for the iterates xk and the stochastic
gradients gk of a randomized method. We allow for
flexibility by casting these inequalities in a parametric

3Our analysis allows for arbitrary sampling of all meth-
ods except of those using partial derivatives such as SEGA or
N-SEGA. We shall note that arbitrary sampling for SEGA was
developed concurrently in (Hanzely and Richtárik, 2019b).
Note that (Hanzely and Richtárik, 2019b) proposes many
novel variance reduced algorithms, for some of which we
can obtain best rates. A detailed discussion and comparison
to (Hanzely and Richtárik, 2019b) is provided in Remark A.4
in the Appendix

manner.
Assumption 4.1. Let {xk} be the random iterates
produced by proximal SGD (Algorithm in Eq (5)). We
first assume that the stochastic gradients gk are unbi-
ased

E
[
gk | xk

]
= ∇f(xk), (7)

for all k ≥ 0. Further, we assume that there exist non-
negative constants A,B,C,D1, D2, ρ and a (possibly)
random sequence {σ2

k}k≥0 such that the following two
relations hold4

E
[∥∥gk −∇f(x∗)

∥∥2 | xk] ≤ 2ADf (xk, x∗)+Bσ2
k+D1,

(8)
E
[
σ2
k+1 | σ2

k

]
≤ (1− ρ)σ2

k + 2CDf (xk, x∗) +D2, (9)

The expectation above is with respect to the random-
ness of the algorithm.

The unbiasedness assumption (7) is standard. The
key innovation we bring is inequality (8) coupled with
(9). We argue, and justify this statement by furnishing
many examples in Section 5, that these inequalities
capture the essence of a wide array of existing and some
new SGD methods, including vanilla, variance reduced,
arbitrary sampling, quantized and coordinate descent
variants. Note that in the case when ∇f(x∗) = 0 (e.g.,
when R = 0), the inequalities in Assumption 4.1 reduce
to

E
[∥∥gk∥∥2 | xk] ≤ 2A(f(xk)−f(x∗))+Bσ2

k+D1, (10)

E
[
σ2
k+1 | σ2

k

]
≤ (1− ρ)σ2

k + 2C(f(xk)− f(x∗)) +D2.
(11)

Similar inequalities can be found in the analysis of
stochastic first-order methods. However, this is the first
time that such inequalities are generalized, equipped
with parameters, and elevated to the status of an as-
sumption that can be used on its own, independently
from any other details defining the underlying method
that generated them.

To give a further intuition about inequalities (8) and (9),
we shall note that sequence σk usually represents the
portion of noise that can gradually decrease over the
course of optimization while constants D1, D2 repre-
sent a static noise. On the other hand, constants
A,C are usually related to some measure of smooth-
ness of the objective. For instance, the parameters
for (deterministic) gradient descent can be chosen as
A = L,B = C = D1 = D2 = σ2

k = ρ = 0. For an
overview of parameter choices for specific instances
of (5), see Table 2. Note also that the choice of param-
eters of (8) and (9) is not unique, however this has no
impact on convergence rates we provide.

4For convex and L-smooth f , one can show that
‖∇f(x)−∇f(y)‖2 ≤ 2LDf (x, y). Hence, Df can be used
as a measure of proximity for the gradients.
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4.2 Main theorem

For simplicity, we shall assume throughout that f is
(µ, x∗)-strongly quasi-convex, which is a generalization
of µ-strong convexity. We leave an analysis under
different assumptions on f to future work.

Assumption 4.2 ((µ, x∗)-strong quasi-convexity).
There exists µ > 0 such that f : Rd → R satisfies
the following inequality for all x ∈ Rd:

f(x∗) ≥ f(x) + 〈∇f(x), x∗ − x〉+
µ

2
‖x∗ − x‖2 . (12)

We are now ready to present the key lemma of this
paper which states per iteration recurrence to ana-
lyze (5). Due to space limitations, we present the proof
in Section 4 of the Appendix.

Lemma 4.1. Let Assumptions 4.1 and 4.2 be satisfied.
Then the following inequality holds for all k ≥ 0:

E
[∥∥xk+1 − x∗

∥∥2]+Mγ2E
[
σ2
k+1

]
+ 2γ (1− γ(A+ CM)) E

[
Df (xk, x∗)

]
≤ (1− γµ)E

[∥∥xk − x∗∥∥2]+ (1− ρ)Mγ2E
[
σ2
k

]
+Bγ2E

[
σ2
k

]
+ (D1 +MD2)γ2.

Using recursively Lemma 4.1, we obtain the conver-
gence rate of proximal SGD, which we state as Theo-
rem 4.1.

Theorem 4.1. Let Assumptions 4.1 and 4.2 be satis-
fied. Choose constant M such that M > B

ρ . Choose a
stepsize satisfying

0 < γ ≤ min

{
1

µ
,

1

A+ CM

}
. (13)

Then the iterates {xk}k≥0 of proximal SGD (Algo-
rithm (5)) satisfy

E
[
V k
]
≤max

{
(1− γµ)k,

(
1 +

B

M
− ρ
)k}

V 0

+
(D1 +MD2)γ2

min
{
γµ, ρ− B

M

} , (14)

where the Lyapunov function V k is defined by V k :=∥∥xk − x∗∥∥2 +Mγ2σ2
k.

This theorem establishes a linear rate for a wide range
of proximal SGD methods up to a certain oscillation
radius, controlled by the additive term in (14), and
namely, by parameters D1 and D2. As we shall see
in Section A (refer to Table 2), the main difference
between the vanilla and variance-reduced SGD methods
is that while the former satisfy inequality (9) with

D1 > 0 or D2 > 0, which in view of (14) prevents
them from reaching the optimum x∗ (using a fixed
stepsize), the latter methods satisfy inequality (9) with
D1 = D2 = 0, which in view of (14) enables them to
reach the optimum.

5 The Classic, The Recent and The
Brand New

In this section we deliver on the promise from the
introduction and show how many existing and some
new variants of SGD fit our general framework (see
Table 1).

An overview. As claimed, our framework is powerful
enough to include vanilla methods (7 in the “VR” col-
umn) as well as variance-reduced methods (3 in the
“VR” column), methods which generalize to arbitrary
sampling (3 in the “AS” column), methods support-
ing gradient quantization (3 in the “Quant” column)
and finally, also RCD type methods (3 in the “RCD”
column).

For existing methods we provide a citation; new meth-
ods developed in this paper are marked accordingly.
Due to space restrictions, all algorithms are described
(in detail) in the Appendix; we provide a link to the
appropriate section for easy navigation. While these
details are important, the main message of this pa-
per, i.e., the generality of our approach, is captured
by Table 1. The “Result” column of Table 1 points to
a corollary of Theorem 4.1; these corollaries state in
detail the convergence statements for the various meth-
ods. In all cases where known methods are recovered,
these corollaries of Theorem 4.1 recover the best known
rates.

Parameters. From the point of view of Assump-
tion 4.1, the methods listed in Table 1 exhibit certain
patterns. To shed some light on this, in Table 2 we
summarize the values of these parameters.

Note, for example, that for all methods the param-
eter A is non-zero. Typically, this a multiple of an
appropriately defined smoothness parameter (e.g., L
is the Lipschitz constant of the gradient of f , L and
L1 in SGD-SR5, SGD-star and JacSketch are expected
smoothness parameters). In the three variants of the
DIANA method, ω captures the variance of the quantiza-
tion operator Q. That is, one assumes that EQ(x) = x

5SGD-SR is first SGD method analyzed in the arbitrary
sampling paradigm. It was developed using the stochas-
tic reformulation approach (whence the “SR”) pioneered
in (Richtárik and Takáč, 2017) in a numerical linear alge-
bra setting, and later extended to develop the JacSketch
variance-reduction technique for finite-sum optimization
(Gower et al., 2018).
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Table 1: List of specific existing (in some cases generalized) and new methods which fit our general analysis
framework. VR = variance reduced method, AS = arbitrary sampling, Quant = supports gradient quantization,
RCD = randomized coordinate descent type method. a Special case of SVRG with 1 outer loop only; b Special
case of DIANA with 1 node and quantization of exact gradient.

Problem Method Alg # Citation VR? AS? Quant? RCD? Section Result
(1)+(2) SGD Alg 1 Nguyen et al. (2018) 7 7 7 7 A.1 Cor A.1
(1)+(3) SGD-SR Alg 2 Gower et al. (2019) 7 3 7 7 A.2 Cor A.2
(1)+(3) SGD-MB Alg 3 NEW 7 7 7 7 A.3 Cor A.3
(1)+(3) SGD-star Alg 4 NEW 3 3 7 7 A.4 Cor A.4
(1)+(3) SAGA Alg 5 Defazio et al. (2014) 3 7 7 7 A.5 Cor A.5
(1)+(3) N-SAGA Alg 6 NEW 7 7 7 7 A.6 Cor A.6

(1) SEGA Alg 7 Hanzely et al. (2018) 3 7 7 3 A.7 Cor A.7
(1) N-SEGA Alg 8 NEW 7 7 7 3 A.8 Cor A.8

(1)+(3) SVRGa Alg 9 Johnson and Zhang (2013) 3 7 7 7 A.9 Cor A.9
(1)+(3) L-SVRG Alg 10 Hofmann et al. (2015) 3 7 7 7 A.10 Cor A.10
(1)+(3) DIANA Alg 11 Mishchenko et al. (2019a) 7 7 3 7 A.11 Cor A.11
(1)+(3) DIANAb Alg 12 Mishchenko et al. (2019a) 3 7 3 7 A.11 Cor A.12
(1)+(3) Q-SGD-SR Alg 13 NEW 7 3 3 7 A.12 Cor A.13

(1)+(3)+(4) VR-DIANA Alg 14 Horváth et al. (2019) 3 7 3 7 A.13 Cor A.15
(1)+(3) JacSketch Alg 15 Gower et al. (2018) 3 37 7 7 A.14 Cor A.16

Table 2: The parameters for which the methods from Table 1 (special cases of (5)) satisfy Assumption 4.1. The
meaning of the expressions appearing in the table, as well as their justification is defined in detail in the Appendix
(Section A).

Method A B ρ C D1 D2

SGD 2L 0 1 0 2σ2 0
SGD-SR 2L 0 1 0 2σ2 0

SGD-MB A′+L(τ−1)
τ 0 1 0 D′

τ 0
SGD-star 2L 0 1 0 0 0

SAGA 2L 2 1/n L/n 0 0

N-SAGA 2L 2 1/n L/n 2σ2 σ2

n
SEGA 2dL 2d 1/d L/d 0 0

N-SEGA 2dL 2d 1/d L/d 2dσ2 σ2

d
SVRGa 2L 2 0 0 0 0
L-SVRG 2L 2 p Lp 0 0

DIANA
(
1 + 2ω

n

)
L 2ω

n α Lα (1+ω)σ2

n ασ2

DIANAb (1 + 2ω)L 2ω α Lα 0 0
Q-SGD-SR 2(1 + ω)L 0 1 0 2(1 + ω)σ2 0

VR-DIANA
(
1 + 4ω+2

n

)
L 2(ω+1)

n α
(

1
m + 4α

)
L 0 0

JacSketch 2L1
2λmax

n λmin
L2

n 0 0

and E‖Q(x)− x‖2 ≤ ω ‖x‖2 for all x ∈ Rd. In view
of (13), large A means a smaller stepsize, which slows
down the rate. Likewise, the variance ω also affects
the parameter B, which in view of (14) also has an
adverse effect on the rate. Further, as predicted by
Theorem 4.1, whenever either D1 > 0 or D2 > 0, the
corresponding method converges to an oscillation re-
gion only. These methods are not variance-reduced.
All symbols used in Table 2 are defined in the appendix,
in the same place where the methods are described and
analyzed.

Five new methods. To illustrate the usefulness of

our general framework, we develop 5 new variants of
SGD never explicitly considered in the literature before
(see Table 1). Here we briefly motivate them; details
can be found in the Appendix.

• SGD-MB (Algorithm 3). This method is specifically
designed for functions of the finite-sum structure (4).
As we show through experiments, this is a powerful
mini-batch SGD method, with mini-batches formed with
replacement as follows: in each iteration, we repeatedly
(τ times) and independently pick i ∈ [n] with proba-
bility pi > 0. Stochastic gradient gk is then formed by
averaging the stochastic gradients ∇fi(xk) for all se-
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lected indices i (including each i as many times as this
index was selected). This allows for a more practical
importance mini-batch sampling implementation than
what was until now possible (see Remark A.1 in the
Appendix for more details and experiment in Figure 1).

• SGD-star (Algorithm 4). This new method forms
a bridge between vanilla and variance-reduced SGD
methods. While not practical, it sheds light on the
role of variance reduction. Again, we consider func-
tions of the finite-sum form (4). This methods an-
swers the following question: assuming that the gra-
dients ∇fi(x∗), i ∈ [n] are known, can they be used
to design a more powerful SGD variant? The answer
is yes, and SGD-star is the method. In its most basic
form, SGD-star constructs the stochastic gradient via
gk = ∇fi(xk) − ∇fi(x∗) + ∇f(x∗), where i ∈ [n] is
chosen uniformly at random. Inferring from Table 2,
where D1 = D2 = 0, this method converges to x∗, and
not merely to some oscillation region. Variance-reduced
methods essentially work by iteratively constructing
increasingly more accurate estimates of ∇fi(x∗). Typ-
ically, the term σ2

k in the Lyapunov function of vari-
ance reduced methods will contain a term of the form∑
i

∥∥hki −∇fi(x∗)∥∥2, with hki being the estimators
maintained by the method. Remarkably, SGD-star
was never explicitly considered in the literature before.

• N-SAGA (Algorithm 6). This is a novel variant of
SAGA (Defazio et al., 2014), one in which one does not
have access to the gradients of fi, but instead only
has access to noisy stochastic estimators thereof (with
noise σ2). Like SAGA, N-SAGA is able to reduce the
variance inherent in the finite sum structure (4) of
the problem. However, it necessarily pays the price
of noisy estimates of ∇fi, and hence, just like vanilla
SGD methods, is ultimately unable to converge to x∗.
The oscillation region is governed by the noise level
σ2 (refer to D1 and D2 in Table 2). This method will
be of practical importance for problems where each fi
is of the form (2), i.e., for problems of the “average
of expectations” structure. Batch versions of N-SAGA
would be well suited for distributed optimization, where
each fi is owned by a different worker, as in such a
case one wants the workers to work in parallel.

• N-SEGA (Algorithm 8). This is a noisy extension of
the RCD-type method SEGA, in complete analogy with
the relationship between SAGA and N-SAGA. Here we
assume that we only have noisy estimates of partial
derivatives (with noise σ2). This situation is common
in derivative-free optimization, where such a noisy esti-
mate can be obtained by taking (a random) finite dif-
ference approximation (Nesterov, 2017). Unlike SEGA,
N-SEGA only converges to an oscillation region the size
of which is governed by σ2.

• Q-SGD-SR (Algorithm 13). This is a quantized version
of SGD-SR, which is the first SGD method analyzed in
the arbitrary sampling paradigm. As such, Q-SGD-SR
is a vast generalization of the celebrated QSGD method
(Alistarh et al., 2017).

6 Experiments

In this section we numerically verify the claims from
the paper. We present only a fraction of experiments
here, the rest is contained in Appendix B. Besides an
extended version of experiment described here, we also
provide experiments on SGD-star, as well as about
N-SEGA (recall that both are new methods).

In Section A.3, we describe in detail the SGD-MBmethod
already outlined before. The main advantage of SGD-MB
is that the sampling procedure it employs can be imple-
mented in just O(τ log n) time. In contrast, even the
simplest without-replacement sampling which selects
each function into the minibatch with a prescribed
probability independently (we will refer to it as in-
dependent SGD) requires n calls of a uniform random
generator. We demonstrate numerically that SGD-MB
has essentially identical iteration complexity to inde-
pendent SGD in practice. We consider logistic regression
with Tikhonov regularization. For a fixed expected sam-
pling size τ , consider two options for the probability of
sampling the i-th function:

(i) τ
n , or

(ii) ‖ai‖2+λ
δ+‖ai‖2+λ

, where δ is such that6∑n
i=1

‖ai‖2+λ
δ+‖ai‖2+λ

= 1.

The results can be found in Figure 1, where we also
report the choice of stepsize γ and the choice of τ in
the legend and title of the plot, respectively.

Indeed, iteration complexity of SGD-MB and indepen-
dent SGD is almost identical. Since the cost of each
iteration of SGD-MB is cheaper7, we conclude superiority
of SGD-MB to independent SGD.

7 Limitations and Extensions

Although our approach is rather general, we still see
several possible directions for future extensions, includ-

6An RCD version of this sampling was proposed
in (Hanzely and Richtárik, 2019a); it was shown to be
superior to uniform sampling both in theory and practice.

7The relative difference between iteration costs of SGD-MB
and independent SGD can be arbitrary, especially for the
case when cost of evaluating ∇fi(x) is cheap, n is huge
and n � τ . In such case, cost of one iteration of SGD-MB
is τCost(∇fi) + τ log(n) while the cost of one iteration of
independent SGD is τCost(∇fi) + n.
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Figure 1: SGD-MB and independent SGD applied on
LIBSVM (Chang and Lin, 2011). Title label “unif”
corresponds to probabilities chosen by (i) while label
“imp” corresponds to probabilities chosen by (ii). Lastly,
legend label “r” corresponds to “replacement” with value
“True” for SGD-MB and value “False” for independent
SGD.

ing:

• We believe our results can be extended to weakly
convex functions. However, producing a comparable
result in the nonconvex case remains a major open
problem.

• It would be further interesting to unify our theory
with biased gradient estimators. If this was possible,
one could recover methods as SAG (Roux et al., 2012)
in special cases, or obtain rates for the zero-order op-
timization. We have some preliminary results in this
direction already.

• Although our theory allows for non-uniform stochas-
ticity, it does not recover the best known rates for RCD
type methods with importance sampling. It would be
thus interesting to provide a more refined analysis ca-
pable of capturing importance sampling phenomena
more accurately.

• An extension of Assumption 4.1 to iteration dependent
parameters A,B,C,D1, D2, ρ would enable an array of
new methods, such as SGD with decreasing stepsizes.
Such an extension is rather very straightforward.

• It would be interesting to provide a unified analysis of
stochastic methods with acceleration and momentum.
In fact, (Kulunchakov and Mairal, 2019) provide (sepa-
rately) a unification of some methods with and without
variance reduction. Hence, an attempt to combine our
insights with their approach seems to be a promising
starting point in these efforts.
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