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A Proofs of Section 4

The following Lemma shows how episodic error is di-
rectly proportional to the belief-error:

Lemma 3 (Per-episode Error). The error in reward
under the true and approximate belief in any episode
is bounded by

∆h , sup
π

∥∥∥vπβh − vπβ̂h∥∥∥∞ ≤ 1− γK

1− γ
εh ≤ Kεh.

Proof. Due to the fact that the two BAMDPs induced
by the beliefs are εk close in L1 norm, we can use the
argument in Theorem 1 of Dimitrakakis (2011).

We shall also use a trivial lemma from Analysis:

Lemma 4. If ‖f − g‖∞ ≤ ε and f(x∗) ≥ f(x),
g(y∗) ≥ g(y) then f(y∗) ≥ f(x∗)− 2ε.

We are now ready to prove the main results:

Lemma 1 (Anytime Error). Under Assumption 1,∥∥v∗β − vKβ ∥∥∞ ≤ 2ε0K ln
1

1− γK
.

Proof. First note that if the belief is only changing ev-
ery K steps, then the Bayes-optimal policy is Marko-
vian over K steps. This means that finding a K-step
Markovian policy starting from belief βh is the same
as finding the optimal policy for a fixed belief β̂h.This
allows us to use Lemma 3 to bound the error of the
K-step policy.

Let f(π) , vπβh and g(π) , vπ
β̂h

. Therefore,

∥∥v∗β − vKβ ∥∥∞ =

H∑
h=1

γhK(v∗βh − v
K
βh

)

(a)

≤ 2

H∑
h=1

γhK∆h

(b)

≤ 2

H∑
h=1

γhKKεh

(c)

≤ 2K ×
H∑
h=1

γhKε0/h

≤ 2ε0K ×
∞∑
h=1

γKh/h

(d)
= 2ε0K × ln

1

1− γK

(a) is obtained using Lemma 4.

(b) is a consequence of Lemma 3.

(c) is a consequence of Assumption 1.

(d) is derived from the fact that
∑∞
x=1

ax

x = − log(1−
a) for 1 > a ≥ 0.

Therefore,
∥∥∥v∗β − vKβ ∥∥∥∞ ≤ 2ε0K ln 1

1−γK .

Lemma 2 (Error of Thompson-sampling-dis-
tributed10 episodic Policy). Under Assumption 2

∥∥vKβ − vTS
β

∥∥
∞ ≤

2(KC + γK)

(1− γ)
.

Proof. We want to show that the value of the TS-
episodic policy is not much worse than the Bayes-
optimal K-step stationary policy.

vKβ − vTS
β

(a)

≤ v∗β(s)− vTS
β (s)

(b)

≤
∫
M
dµβ(µ)

[
V
π∗β ,µ

0,K (s)−
∫
M
dµ′V

π∗
µ′ ,µ

′

0,K (s)β(µ′)

]
+

2γK

1− γ

=

∫
M

∫
M

[
V
π∗µ,µ

0,K (s)− V
π∗
µ′ ,µ

′

0,K (s)

]
β(µ)β(µ′)dµdµ′

+
2γK

1− γ
(c)

≤
∫
M

∫
M

2KD(µ, µ′)

(1− γ)
β(µ)β(µ′)dµdµ′

+
2γK

1− γ
(d)

≤ 2(KC + γK)

(1− γ)
.

(a) follows by the definition of the Bayes-optimal pol-
icy.

(b) follows by truncating the reward sequence to K
steps.

(c) follows from the approximate MDP Lemma (Even-
Dar and Mansour, 2003, Lemma 4) by definition of the
MDP distance D(µ, µ′).

(d) is a direct consequence of Assumption 2.

Proof of Theorem 1. For the final proof, we add
the effect of sampling in the total error from the two
lemmas:

10i.e. the optimal polices of MDPs distributed according
to the current belief.



Divya Grover, Debabrota Basu, Christos Dimitrakakis

Proof. Merging the errors due to Thompson-
sampling-distributed error and the anytime-error
from Lemma (2) and (1), we obtain for all s

v
πTS
β

β (s) ≥ v∗β(s)−
(

2ε0K ln
1

1− γK
+

2(KC + γK)

(1− γ)

)
.

We can then use Hoeffding’s bound since utility of πDS
β

is just sampled utility of πTS
β . For simplicity, let ρ̄ be

the expected error of a TS policy and ρi of the i-th
sampled policy and let

ε =

√
ln(n/δ)

2N
(1− γ)−1.

Then, we bound the probability of minimal-error pol-
icy among samples has an error more than ε than the
expectation:

P (min {ρi | i = 1, . . . , N} ≥ ρ̄+ ε)

≤ P

(
1

N

N∑
i=1

ρi ≥ ρ̄+ ε

)
≤ δ/n,

where the last inequality is from Hoeffding, and the
boundedness of rewards. Since there are n such poli-
cies, and with a union bound, the probability that any
policy has an error of more than ε worse than the ex-
pected, is bounded by δ.

B Root sampling and look-ahead view
equivalence

Denote Eβ as the expectation under marginals ν and
τ . The optimal for Bayesian value function can be
calculated by noting the following equivalence relation:

V πt (st, βt) ≡ vπβt(st)

=

∫
M
V πµ (st)βt(µ)dµ

=

∫
M
rt+1 Pµ(rt+1|st, at)βt(µ)dµ

+ γ

∫
M

∑
s′∈st+1

Pµ(s′|st, at)V πµ (s′)βt(µ)dµ

=

∫
M
rt+1 Pµ(rt+1|st, at)βt(µ)dµ

+ γ
∑

s′∈st+1

∫
M
V πµ (s′)Pµ(s′|st, at)βt(µ)dµ (7)

= rt+1τ(rt+1|ωt, at)
∫
M
βt+1(µ)dµ

+ γ
∑

s′∈st+1

ν(ωt+1|ωt, at)
∫
M
V πµ (s′)βt+1(µ)dµ (8)

= rt+1τ(rt+1|ωt, at) + γ
∑
ωt+1

vπβt+1
(st+1)ν(ωt+1|ωt, at)

= Eβ [rt+1 + γvπβt+1
(st+1)]

= Eβ [rt+1 + γV πt+1(st+1, βt+1)]

We obtain Eq.(8) from Eq.(7) using Eq.(2) and the
definitions of marginal distributions ν and τ .

C Parameter Selection for
Experiments

Here we describe the chosen hyperparameters for each
algorithm shown in Table 3. For each algorithm, these
are:

1. BAMCP: (depth,no. of simulations): No. of sim-
ulations range from 10 to 105, or until the envi-
ronment time-limit is reached. Depth is between
{15,50,auto}, using the original implementation.

2. SPARSER : (no.of sampled policies,no.of samples
per policy,depth parameter K, Horizon). PI is
performed upto 1e-4 accuracy, while RTDP per-
forms lookahead planning of depth 15 for all envi-
ronments, except larger Grid10 and Maze, where
depth is set to 50.

3. BFS3: (branching-factor,no.of simulations).
Depth is fixed at 15 for all except larger Grid10
and Maze environment, for which it is 50.
Branching factor is between {5,10,15} and no. of
simulations between {10,10,1000}.

4. SBOSS: (no.of samples,sampling threshold)
Cross-validated against {2,4,8,16,32} and {3,5,7}
respectively.

D Additional plots

To target larger audience, we provide Python
API for the original C++ implementation used
in the paper, using Pybind11 (Jakob et al.,
2017). It is available at the following link:
https://github.com/revorg7/DeepSparseSampling

This API was used in conjunction with Bsuite environ-
ment API by Deepmind (Osband et al., 2019) to draw
Regret plots comparing DSS to BDQN (Bootstrapped
DQN) and TS (Thompson sampling) in Figure 3.

We did this to promote reusability of DSS, as well as
demonstrate reproducibility of DSS’s advantage over
model-free algorithms such as BDQN for discrete grid-
world environments (upto 20x20 atleast).
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Algorithm Chain DoubleLoop Grid5 Grid10 Maze

Sparser-RTDP (8,4,10,2) (4,4,18,2) (4,2,50,1) (4,2,200,2) (4,4,500,1)
Sparser-PI (4,4,5,2) (4,4,18,2) (2,2,25,1) (2,2,100,2) (4,2,100,1)
BAMCP (auto,100) (15,100) (50,10000) (50,10000) (50,1000)
BFS3 (10,100) (10,10) (10,10) (5,10) (5,10)
SBOSS (8,3) (2,3) (2,3) (2,3) (2,3)

Table 3: Best parameters obtained from the initial 10 tuning runs.

Figure 3: Regret plots(lower is better) for Deep-sea environment for different size parameter ’L’.


