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Abstract

Local graph clustering methods aim to find small
clusters in very large graphs. These methods take
as input a graph and a seed node, and they re-
turn as output a good cluster in a running time
that depends on the size of the output cluster but
that is independent of the size of the input graph.
In this paper, we adopt a statistical perspective on
local graph clustering, and we analyze the perfor-
mance of the `1-regularized PageRank method
for the recovery of a single target cluster, given a
seed node inside the cluster. Assuming the target
cluster has been generated by a random model,
we present two results. In the first, we show
that the optimal support of `1-regularized PageR-
ank recovers the full target cluster, with bounded
false positives. In the second, we show that if
the seed node is connected solely to the target
cluster then the optimal support of `1-regularized
PageRank recovers exactly the target cluster. We
also show empirically that `1-regularized PageR-
ank has a state-of-the-art performance on many
real graphs, demonstrating the superiority of the
method.

1 Introduction

In many data applications, one is interested in finding
small-scale structure in a very large data set. As an exam-
ple, consider the following version of the so-called local

graph clustering problem: given a large graph and a seed
node in that graph, quickly find a good small cluster that
includes that seed node. From an algorithmic perspective,
one typically considers worst-case input graphs, and one
may be interested in running time guarantees, e.g., to find a
good cluster in a time that depends linearly or sub-linearly
on the size of the entire graph. From a statistical perspec-
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tive, such a local graph clustering problem can be under-
stood as a recovery problem. One assumes that there exists
a target cluster in a given large graph, where the graph is
assumed to have been generated by a random model, and
the objective is to recover the target cluster from one node
inside the cluster.

In this paper, we consider the so-called `1-regularized

PageRank algorithm [Fountoulakis et al., 2019], a popular
algorithm for the local graph clustering problem, and we
establish statistical recoverability guarantees for it. Previ-
ous theoretical analysis on local graph clustering, e.g., [An-
dersen et al., 2006, Zhu et al., 2013], is based on the no-
tion of conductance (a cluster quality metric that considers
the internal versus external connectivity of a cluster) and
considers running time performance for worst-case input
graphs. In contrast, our goal will be to study the average-
case performance of the `1-regularized PageRank algo-
rithm, under a certain type of a local random graph model.
This model concerns the target cluster and its adjacent
nodes, and it encompasses the stochastic block model [Hol-
land et al., 1983, Abbe, 2017] and the planted clustering
model [Alon et al., 1998, Arias-Castro and Verzelen, 2014]
as special cases.

Within this random graph model, we provide theoreti-
cal guarantees for the unique optimal solution of the `1-
regularized PageRank optimization problem. In particular,
the cluster is recovered through the support set of the `1-
regularized PageRank vector and we give rigorous bounds
on the false positives and false negatives of the recov-
ered cluster. Furthermore, observe that our statistical per-
spective is more aligned with statistical guarantees for the
sparse regression problem (and the lasso problem [Tibshi-
rani, 1996]), where the objective is to recover the true pa-
rameter and/or support from noisy data. Given this connec-
tion, we also establish a result for the exact support recov-
ery of `1-regularized PageRank. Empirically we demon-
strate the ability of the method to recover the target cluster
in a range of real-world data graphs.

Literature review The origins of local graph clustering
are with the work of [Spielman and Teng, 2013]. Subse-
quent to their original results, there has been a great deal
of follow-up work on local graph clustering procedures, in-
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cluding with random walks [Andersen et al., 2006], local
Lanczos spectral approximations [Shi et al., 2017], evolv-
ing sets [Andersen et al., 2016], seed expansion meth-
ods [Kloumann and Kleinberg, 2014], optimization-based
approaches [Fountoulakis et al., 2019, 2017], and local
flow methods [Wang et al., 2017].

There are also numerous papers in statistics on partition-
ing random graphs. Arguably, the stochastic block model
(SBM) is the most commonly employed random model for
graph partitioning [Abbe and Sandon, 2015, Abbe et al.,
2015, Zhang and Zhou, 2016, Massoulié, 2014, Mossel
et al., 2018, Newman et al., 2002, Mossel et al., 2015, Rohe
et al., 2011]. The literature in this area is too extensive to
cover in this paper, but we refer the readers to excellent sur-
vey papers on the graph partitioning problem [Abbe, 2017].

Notation Throughout the paper we assume we have a
connected, undirected graph G = (V,E), where V de-
notes the set of nodes, with |V | = n, and E ⇢ (V ⇥ V )
denotes the set of edges. We denote by A the adjacency
matrix of G, i.e., Aij = wij if (i, j) 2 E, and 0 oth-
erwise. For an unweighted graph, wij is set to 1 for all
(i, j) 2 E. We denote by D the diagonal degree matrix
of G, i.e., Dii := di =

P
j:(i,j)2E wij , where di is the

weighted degree of node i. In this case, d = (di) 2 Rn de-
notes the degree vector, and the volume of a subset of nodes
is define as Vol(B) =

P
i2B di for B ✓ V . We denote by

L = D �A the graph Laplacian; and Q := ↵D + 1�↵
2 L.

2 Background on `1-regularized PageRank

PageRank [Page et al., 1999, Brin and Page, 1998] is a pop-
ular approach for ranking the nodes of a graph. It is defined
as the stationary distribution of a Markov chain, which is
encoded by a convex combination of the input distribution
s 2 Rn and the (lazy) random walk operator W :

pPR = ↵s+ (1� ↵)WpPR, (1)

where W = (I + AD�1)/2 and where ↵ 2 (0, 1) is the
teleportation parameter. To measure the ranking or impor-
tance of the nodes of the “whole” graph, PageRank is often
computed by setting the input vector s to be a uniform dis-
tribution over {1, 2, . . . , n}.

For local graph clustering, where the aim is to identify a tar-
get cluster, given a seed node in the cluster, the input distri-
bution s is set to be equal to one for the seed node and zero
everywhere else. This “personalized” PageRank [Haveli-
wala, 2002] measures the closeness or similarity of the
nodes to the given seed node, and it outputs a ranking of the
nodes that is “personalized” with respect to the seed node
(as opposed to the original PageRank, which considers the
entire graph). From an operational point of view, the under-
lying diffusion process in (1) defining personalized PageR-
ank performs a lazy random walk with probability 1 � ↵

and “teleports” a random walker back to the original seed
node with probability ↵.

From the definition itself, the personalized PageRank vec-
tor can be obtained by solving the linear system (1). Un-
fortunately, this step can be prohibitively expensive, espe-
cially when there is a single seed node or a small seed set
of seed nodes, and when one is interested in very small
clusters in a very large graph. In the seminal work of An-
dersen et al. [2006], the authors propose an iterative algo-
rithm, called Approximate Personalized PageRank (APPR),
to solve this running time problem. They do so by approx-
imating the personalized PageRank vector, while running
in time independent of the size of the entire graph. APPR
was developed from an algorithmic (or “theoretical com-
puter science”) perspective, but it is equivalent to apply-
ing a coordinate descent type algorithm to the linear sys-
tem (1) with a particular scheme of early stopping. Moti-
vated by this, Fountoulakis et al. [2019] recently proposed
the `1-regularized PageRank optimization problem. Unlike
APPR, the solution method for the `1-regularized PageR-
ank optimization problem is purely optimization-based. It
uses an `1 norm regularization to set automatically to be
zero nodes dissimilar to the seed node, thereby resulting
in a highly sparse output. In this manner, `1-regularized
PageRank can estimate the personalized ranking, while
maintaining the most relevant nodes at the same time. Prior
work [Fountoulakis et al., 2019] also showed that proxi-
mal gradient descent (ISTA) can solve the `1-regularized
PageRank problem, with access to only a small portion
of the entire graph, i.e., without even touching the entire
graph, thereby allowing the method to easily scale to very
large-scale graphs.

In this paper, we investigate the statistical performance of
`1-regularized PageRank by reformulating the local graph
clustering into the problem of sparse recovery. Here is a
more precise definition of the `1-regularized PageRank op-
timization problem from [Fountoulakis et al., 2019] that we
consider.
Definition 1 (`1-regularized PageRank). Given a graph
G = (V,E), with |V | = n, and a seed vector s 2 Rn, the
`1-regularized PageRank [Fountoulakis et al., 2019] on the
graph is defined as

bx = argmin
x2Rn

8
>><

>>:

1

2
x>Qx� ↵x>s

| {z }
:=f(x)

+⇢↵kDxk1

9
>>=

>>;
, (2)

where recall Q = ↵D + 1�↵
2 L, and where ⇢ > 0 is a user-

specified parameter that controls the amount of the regular-
ization.

To see the intuition behind (2), observe that if we set ⇢ = 0
and bpPR = Dbx, then we can see that it recovers the original
PageRank solution of (1). In other words, the optimization
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problem in (2) adds an additional `1 norm regularization to
the quadratic objective of the linear system (1) and change
variables to x = D�1pPR. The fact that the output cluster
of `1-regularized PageRank is given by the optimization so-
lution allows us to analyze statistical properties under ran-
dom graph model more easily.

Properties. Here, we state some properties of `1-
regularized PageRank that will be useful for our anal-
ysis. First, the following lemma guarantees that the `1-
regularized PageRank vector is non-negative.
Lemma 1. Let bx be the vector given in (2). Then bx is non-

negative, i.e., bxj � 0 for all j 2 V .

The next lemma guarantees that the gradient of f at the
optimal solution bx cannot be positive.
Lemma 2. Let support(bx) := {i 2 V | bxi 6= 0} be the

support set of the optimal solution. Then

rif(bx) = (Qbx)i � ↵si8
><

>:

= �⇢↵di bxi > 0,

2 [�⇢↵di, 0] bxi = 0, i is a neighbor of nonzero node,

= 0 otherwise.

Lemma 2 gives the optimality condition for (2), which we
frequently use in the proof of our results.

3 Statistical guarantees under random

model

In this section, we introduce a random model that we con-
sider for generating a target cluster, and then we provide
recovery guarantees for `1-regularized PageRank. The de-
tails of the proofs are referred to our longer version of the
present work [Ha et al., 2019].

3.1 Random graph model

We will assume the graph is generated according to the fol-
lowing model.
Definition 2 (Local random model). Given a graph G =
(V,E) that has n vertices, let K ⇢ V be a target cluster
inside the graph, and let Kc denote the complement of K.
If two vertices i and j belong to K, then we draw an edge
between i and j with probability p, independently of all
other edges; if i 2 K and j 2 Kc, then we draw an edge
with probability q, independently of all other edges; and
otherwise, we allow any (deterministic or random) model
to generate edges among vertices in Kc.

Definition 2 says that the adjacency matrix A 2 Rn⇥n is
symmetric, and for any i, j 2 V , we have that Aij is an
independent draw from a Bernoulli distribution with prob-
ability p if i, j 2 K, and from a Bernoulli distribution with

probability q if i 2 K and j 2 Kc. For the rest of the
graph, i.e., when both i and j belong to Kc, Aij can be
generated from an arbitrary fixed model. Under this defini-
tion, we can also naturally define the expected version of
the graph, which is the graph induced by the expected ad-
jacency matrix E [A], where the expectation is taken with
respect to the distribution defined by Definition 2. That
is, the expected graph is an undirected graph Ḡ = (V,E)
whose adjacency matrix is E [A], where

E [Aij ] =

8
><

>:

p if i 2 K and j 2 K,

q if i 2 K and j 2 Kc,

Any value if i 2 Kc and j 2 Kc.

(3)

The expected degree matrix is similarly denoted by E [D]
and the expected graph Laplacian is defined as E [L] =
E [D] � E [A]. The model in Definition 2 allows us to for-
mulate the problem of local graph clustering as the recov-
ery of a target cluster. Since we are interested in recover-
ing a single target cluster, it is natural to make assumptions
only for nodes in the target cluster and nodes adjacent to the
target cluster, and to leave the interactions between other
nodes unspecified.

The employed random model is also fairly general and
covers several popular random graph models appearing
in the literature, including the stochastic block model
(SBM) [Holland et al., 1983, Abbe, 2017] and the planted
clustering model [Alon et al., 1998, Arias-Castro and
Verzelen, 2014, Chen and Xu, 2016]. For instance, if the
subgraph with the vertices within Kc is generated from the
SBM, then the entire graph G = (V,E) follows the SBM.
On the other hand, if the subgraph of Kc is generated from
the classical Erdős-Rényi model with probability q, the en-
tire graph G = (V,E) follows the Planted Densest Sub-
graph (in this case nodes in Kc do not belong to any clus-
ters). Hence, the results we obtain here for our model holds
more broadly across these different random graph models.

Before we move on to our results, we need additional no-
tation. We write S ✓ K to denote a singleton of the given
seed node. Let k = |K| denote the cardinality of the target
cluster. According to our local model, any node in the target
cluster has the same expected degree, E [di] = p(k � 1) +
q(n � k) for i 2 K, which we denote by d̄. For the nodes
` outside K, we write E [d`] to denote its expected degree,
where the expectation is taken with respect to any distribu-
tion. Conductance measures the weight of the edges that are
being removed over the volume of the cluster— formally it
is defined as the ratio Cut(S, Sc)/min (Vol(S),Vol(Sc)),
where Cut(S, Sc) :=

P
i2S,j2Sc Aij . From Definition 2,

the conductance of the target cluster of the expected graph
Ḡ is given by

Cond = 1� �, where � :=
p · (k � 1)

d̄
2 (0, 1). (4)

Here � can be viewed as the ratio of the random walker
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staying inside K under the expected graph. (Note d̄ is the
expected degree of the target cluster and p · (k � 1) is
the expected degree of the target cluster when restricted
to the subgraph within K.) As in the worst-case analy-
sis of local graph clustering [Andersen et al., 2006, Zhu
et al., 2013], conductance Cond, or equivalently the num-
ber �, will play a crucial in determining the behavior of
`1-regularized PageRank under the local graph model. In
particular, note that in the extreme scenario where � = 1,
we have q = 0 indicating perfect separability of the tar-
get cluster from the rest, while for � = 0, we have p = 0
meaning there is no signal to recover. With this definition,
we can also write p(k� 1) = �d̄ and q(n� k) = (1� �)d̄.

3.2 Recovery of target cluster with bounded false

positives

Here, we investigate the performance of `1-regularized
PageRank on the graph generated by the local random
model in Definition 2, and we state two of our main the-
orems.

Our first main result guarantees full recovery of the target
cluster for an appropriate choice of the regularization pa-
rameter. In particular, if we set ⇢ to be less than O

��p
d̄2

�
,

then the optimal solution (2) fully recovers the target clus-
ter K, as long as the seed node S is initialized inside K.

Theorem 1 (Full recovery). Suppose that p2k �

O

⇣
log k
�2

⌘
. If we set

⇢ 

✓
1� ↵

1 + ↵

◆2 ✓1� �

1 + �

◆2 �p

(1 + �)d̄2
, (5)

then with probability at least 1� 6 exp(�O
�
�2p2k

�
),1 the

solution to Problem (2) fully recovers the cluster K, i.e.,

K ✓ support(bx).

Our next main result provides an upper bound on the false
positives present in the support set of the `1-regularized
PageRank vector. By “false positives,” we mean the
nonzero nodes that belong to Kc. We measure the size of
false positives using a notion of volume, where we recall
the volume of a subset of vertices B ⇢ V is given by
Vol(B) =

P
i2B di.

Theorem 2 (Bounds on false positives). Suppose the

same conditions as Theorem 1. If we set

⇢ =

✓
1� ↵

1 + ↵

◆2 ✓1� �

1 + �

◆2 �p

(1 + �)d̄2
, (6)

1The precise statement is as follows: assume (1 � �)p2k �

c�1
0 ��2 log k for a fixed constant c0 > 0, then with probability at

least 1� 6e�c0�
2(1��)p2k, the statement in the theorem holds.

then with probability at least 1� 6 exp(�O
�
�2p2k

�
),2 we

have

Vol(FP)  Vol(K)
⇥✓1 + ↵

1� ↵

◆2 ✓1 + �

1� �

◆3 1

�2
� 1

| {z }
=O

⇣
1
�2

⌘
�1

⇤
,

(7)
where FP = {i 2 support(bx) : i 2 Kc

} is the collection

of false positive nodes.

The above results, Theorem 1 and Theorem 2, show sev-
eral regimes where `1-regularized PageRank can fully re-
cover the target cluster with nonvanishing probability. In
particular, when p = O (1), the size of the target cluster, k,
is required to be larger than O (log k), which includes the
constant size k = O (1). This is often the regime of interest
for local graph clustering, where the goal is to find small-
and meso-scale clusters in massive graphs [Leskovec et al.,
2009, 2010]. In addition, Theorem 1 indicates that if � is
small, then we need to set ⇢ to be small to recover the
entire cluster. Intuitively, more mass will leak out to Kc

for small �, so we need to run more steps of random walk
(⇢ smaller in our optimization framework) to find the right
cluster. However, this means that the `1-regularized PageR-
ank vector will also pick up many nonzero nodes in Kc,
resulting in many false positives in the support set. Indeed,
Theorem 2 shows that the volume of false positives grows
quadratically as 1/�, so we need � to be bounded to get
a meaningful recovery from local clustering. In the case
of p = O (1) , k = O (1), this amounts to requiring that
q = O

�
1
n

�
in order for the target cluster to keep high mass

inside K.

Several other comments are worth making regarding these
results. First, the current bound we obtain in (7) may not be
tight with respect to ↵ and other constants, and the factor
( 1+↵
1�↵ )

2 may be an artifact of our proof. Studying the lower
bound on the performance of the method, as well as obtain-
ing an improved bound on false positives, is therefore an
interesting future direction to pursue. Furthermore, based
on our empirical results, `1-regularized PageRank performs
well across a broad range of ↵ values, and we have not seen
much difference in terms of performance among different
↵’s. The role of ↵ in `1-regularized PageRank is closely
tied to the regularization parameter ⇢, and we leave the
question of selecting optimal ↵ for future work.

3.3 Exact recovery of target cluster with no false

positives

Next, we study the scenarios under which `1-regularized
PageRank can exhibit a stronger recovery guarantee.
Specifically, under some additional conditions, we show
that the support set of the optimal solution (2) identifies

2The same probability bound as Theorem 1.
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the target cluster exactly, without making any false posi-
tives. For this stronger exact recovery result, we require the
following assumption about the parameters of the model.

Assumption 1. We assume p = O (1) and k = O (1),
i.e., the within-cluster connectivity and the size of the target

cluster do not scale with the size of the graph n. Also, we

assume q = c
n for a fixed numerical constant c > 0.

As we noted above, the setting k = O (1) is often the
case of interest for local graph clustering, where we would
like to identify small- and medium-scale structure in large
graphs [Leskovec et al., 2009, 2010]. In this case, Assump-
tion 1 requires p = O (1), so that the underlying “signal” of
the problem does not vanish as the size of the graph grows,
n ! 1. As discussed earlier, this means q must also scale
as O

�
n�1

�
for the local clustering algorithm to find the

target without making many false positives.

Now we turn to the statements of exact recovery guaran-
tees for `1-regularized PageRank when applied to the noisy
graph generated from Definition 2. In particular, the fact
that q = O

�
n�1

�
from Assumption 1, allows that with

nonvanishing probability there is a node in the target clus-
ter that is solely connected to K. This node will serve as
a “good” seed node input in the `1-regularized PageRank.
With this choice of seed node, we now give conditions un-
der which the optimal solution bx has no false positives with
nonvanishing probability.

Theorem 3 (No false positives). Suppose the same con-

ditions as Theorem 1, and assume also that Assumptions 1

holds. If k � 2(c+ 3), ↵ 2 [0.1, 0.9], � � 0.1, and

⇢ �

✓
1� ↵

1 + ↵

◆2 ✓1� �

1 + �

◆2 �p

(1 + �)d̄2
, (8)

then for n sufficiently large, with probability at least 1 �

6 exp(�O
�
�2p2k

�
) � (1 � exp(�1.5c))k � O

�
n�1

�
,
3

there is a good starting node in K such that `1-regularized

PageRank parameterized with that node as a seed node sat-

isfies

support(bx) ✓ K,

as long as

C(0.5c+ 1)

�p
= O

✓
1

�p

◆
< dj , (9)

for all node j 2 Kc
adjacent to K, where C > 0 is a

universal constant.

We require ↵ 2 [0.1, 0.9] and �  0.1 in the condition (8)
to avoid overly complicated constants; while this simplifies
the statements of the theorem, it is not difficult to show

3The precise statement is as follows: assume (1 � �)p2k �

c�1
0 ��2 log k for a fixed constant c0 > 0, then with probability at

least 1� 6e�c0�
2(1��)pk

� (1� exp(�1.5c))k �O
�
n�1

�
, the

statement in the theorem holds.

that a similar result holds more generally. While Theo-
rem 3 guarantees no false positives in the solution of `1-
regularized PageRank, when combined with Theorem 1, it
immediately establishes that `1-regularized PageRank re-
covers the target cluster exactly, even when the target clus-
ter is constant-sized.
Corollary 1 (Exact recovery). Under the same assump-

tions as Theorem 1 and Theorem 3, there is a good starting

node in K such that `1-regularized PageRank parameter-

ized with that node as a seed node satisfies

support(bx) = K,

with nonvanishing probability.

Some sort of condition like (9) about the realized degree
seems necessary in order that the `1-regularized PageRank
has no false positives. The optimization program (2) as-
signs less weights to low degree nodes in the `1 penalty,
so any nodes adjacent to K will become active unless
the `1-regularized PageRank penalizes them with nontrivial
weights. Unlike Theorem 1 and Theorem 2, condition (9)
rules out some specific models to which Theorem 3 can
be applied. For example, planted clustering model with
p = O (1) and q = O (1/n) does not satisfy this con-
dition because the degrees in Kc do not concentrate. For
the stochastic block model, this condition is still satisfied
if nodes adjacent to the target cluster belong to the clusters
with degree larger than O (1/�p). In practice, condition (9)
may not be always applicable for every node adjacent to K,
in which case the nodes that violate this condition may en-
ter the model as false positives. We require the condition
here though, since our model is essentially local and we do
not have control outside K beyond its neighbors.

3.4 Comparison with existing results

The local graph clustering problem has been relatively
well-studied in the area of theoretical computer science and
the existing works largely focus on the worst-case guaran-
tees. We now compare our results through random graph
model with the current known state-of-the-art worst-case
results, given by [Zhu et al., 2013]. First, [Zhu et al., 2013,
Theorem 1], when applied to our “expected” graph, im-
plies that Vol(FP),Vol(FN)  Vol(K) · O ((1� �) log k),
as long as Gap = O (1/((1� �) log k)) � O (1). When
� = O (1) 2 (0, 1), our Theorem 1 states that if pk2 �

O (log k), the output of the algorithm does not contain any
false negative, which cannot be deduced from Zhu et al.
[2013]. In addition, our general bound on false positive,
i.e., Vol(FP)  Vol(K) · O

�
1/�2

� 1
�

in Theorem 2,
is better than the worst-case bound of Zhu et al. [2013]’s
result in the regime of large � which is of many practi-
cal interest; for instance, when the expected target con-
ductance Cond = 1 � � is small and fixed, the bound
of the worst-case result degrades as the size of the tar-
get cluster k increases, whereas our result is improved by
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increasing the probability bound. In the regime of p =
O (1) , q = O (1/n), and k = O (1) (hence � = O (1)),
our Theorem 3 shows that the output even contains no
false positive. In this particular case, the strong separa-
bility (p = O (1) , q = O (1/n)) corresponds to a constant
signal-to-noise ratio since even for q = O (1/n) there are
still a constant amount of edges outgoing from the target
cluster while the internal edges inside the target cluster is
also constant. Although in practice the exact recovery of
the target cluster may be a strong requirement, neverthe-
less, for real world clusters with high signal-to-noise ratio,
`1-regularized PageRank can still reconstruct the ground
truth clusters exactly (see, for instance, Section 4.2).

4 Numerical experiments

We now illustrate the performance of `1-regularized
PageRank on synthetic and real data. To measure the qual-
ity of the recovered cluster, we define Precision and Re-
call as Vol(TP)/Vol(support(bx)) and Vol(TP)/Vol(K) re-
spectively. The F1 score is the harmonic mean of pre-
cision and recall,

�
2/

�
Precision�1 + Recall�1

��
. We

will also make use of conductance where recall Cond =
Cut(S, Sc)/min (Vol(S),Vol(Sc)). The lower the conduc-
tance value is the better. For our experiments, we solve
problem (2) using a proximal coordinate descent algorithm,
which enjoys the locality property (running time depends
on the size of cluster rather than the entire graph) and lin-
ear convergence [Fountoulakis et al., 2019].

4.1 Simulated data

First we run a series of simulations to examine the ability of
`1-reg. PR to recover the target cluster. More precisely, we
show that for large and medium values of � there exists a
parameter ⇢ such that the support of the `1-reg. PR solution
recovers the target cluster. While for small � < 0.5, `1-reg.
PR does not recover the target cluster with high accuracy.

We fix the teleportation parameter ↵ = 0.1. We generate
graphs from the stochastic block model which consists of
10 clusters, each of which has 20 number of nodes and only
one of which is the target cluster K. We use the same pa-
rameters p and q across different clusters to generate edges
within and between clusters. Here we set p = 0.5 and q is
varying in order to generate various � as is shown in Fig-
ure 1. We use four settings of �, one that is favorable, one
that is not, and two in-between those two cases. For each
experiment, we solve (2) over a range of ⇢’s (i.e., to obtain
the `1-regularized PageRank solution path) and the results
are averaged over 30 trials.

For large �, Figure 1(a), we observe that when `1-reg. PR
recovers about 20 nodes, then these nodes correspond to
very high precision and recall, and as the number of nodes
in the solution increases then precision decreases. We also

(a) � = 0.91 (b) � = 0.86

(c) � = 0.65 (d) � = 0.44

Figure 1: In Figures 1(a), 1(b) and 1(c) we illustrate that
for large and medium values of �, `1-reg. PR recovers the
target cluster. While for small � in Figure 1(d), `1-reg. PR
does not recover the target cluster with high accuracy. The
x-axis gives the number of nonzero nodes in the solution of
`1-reg. PR as the parameter ⇢ decreases. The vertical line
indicates the cardinality of the target cluster (k = 20).

observe that conductance of the recovered cluster is a good
metric for finding the target cluster. Meaning that we will
find the target cluster with high precision and recall if out of
all solutions on the path we choose the one with minimum
conductance. As � gets smaller the minimum conductance
does not relate to the target cluster. However, it is clear from
Figures 1(b) and 1(c) that `1-regularized PageRank with
minimum conductance still finds the target cluster K with
good accuracy if the algorithm is terminated early. Finally,
in Figure 1(d) we demonstrate a case where � is small and
conductance of solution fails to relate to the target cluster
and there is no output of `1-reg. PR that recovers the target
cluster accurately.

4.2 Real data

In this section we apply `1-reg. PR to biology networks
and social networks. All the real graphs that are used come
with a number of ground truth clusters and we compare the
performance of `1-reg. PR with state-of-the-art local graph
clustering algorithms to recover the clusters. For details
on the experimental analysis, including the description of
datasets, parameter tuning, additional results and running
times, we refer the reader to [Ha et al., 2019, Section 5].
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4.2.1 Datasets

We apply local graph clustering to five different biology
and social networks. The dataset Sfld contains pairwise
similarities of blasted sequences of 232 proteins belonging
to the amidohydrolase superfamily [Brown et al., 2006].
There are 232 nodes and 15570 edges in this graph. PPI-

mips is a protein-protein interaction graph of mammalian
species [Pagel et al., 2004]. There are 1096 nodes and
26442 edges in this graph. FB-Johns55 and Colgate88

are Facebook anonymized datasets on a particular day in
September 2005 for a student social network at John Hop-
kins university and Colgate university [Traud et al., 2011,
2012]. These graphs have 5157 nodes and 186572 edges
and 3482 nodes and 155043 edges respectively. Orkut is
a free on-line social network where users form friendship
each other. This dataset has 3072441 nodes and 117185083
edges [Leskovec and Krevl, 2014].

4.2.2 Baseline methods

We consider various baseline methods to perform and com-
pare local graph clustering on the real data graphs.

APPR: [Andersen et al., 2006] proposes an Approximate
Personalized PageRank algorithm, where the personalized
PageRank linear system (1) is solved approximately using
a local diffusion process. Strong theoretical guarantees of
the algorithm based on conductance measure are presented
in [Andersen et al., 2006, Zhu et al., 2013].

SimpleLocal (SL): For local flow-based methods, we con-
sider the one proposed in [Veldt et al., 2016] (SimpleLocal)
which simplifies and generalizes the methods in [Lang and
Rao, 2004, Andersen and Lang, 2008, Orecchia and Zhu,
2014], while having similar theoretical and practical guar-
antees in terms of quality of the output. Since flow-based
methods require initial input from some other stand-alone
method, we consider two initialization techniques: `1-reg.
PR-SL is SL using the output of `1-regularized PageR-
ank as input; BFS-SL initializes SL using the output of a
breadth-first-search-type (BFS) algorithm starting from a
given seed node. The algorithm that is used for initializa-
tion of SL is shown in Algorithm 1 in [Ha et al., 2019],
which has also been used in [Veldt et al., 2016].

4.2.3 Experimental results

APPR and `1-reg. PR are similar. In [Fountoulakis et al.,
2019], it is shown that `1-regularized PageRank can be
viewed as a variational version of APPR (See also [Ha
et al., 2019, Theorem 5] for a concrete result). Here we
present a comprehensive empirical evidence by comparing
APPR and `1-regularized PageRank on the Orkut dataset
(282 ground truth clusters). Specifically we compare their
precision, recall, and F1score. Figure 2 shows average
results over all nodes for each given ground truth clus-

(a) F1score vs con-
ductance

(b) Recall vs con-
ductance

(c) Precision vs con-
ductance

Figure 2: Results of APPR to `1-reg. PR illustrating
F1score, recall and precision vs conductance of ground
truth clusters plots for the Orkut dataset (282 ground truth
clusters). This plot demonstrates that the methods `1-reg.
PR and APPR get nearly identical results. We also ob-
serve that as conductance becomes larger then overall per-
formance decreases.

ter. We can see that APPR and `1-regularized PageRank
produce output with nearly identical precision, recall and
F1score. Any minor differences of the two methods are at-
tributed to the minor differences between the termination
criteria of `1-regularized PageRank and APPR. In addition
we observe that performance of both methods decreases as
the conductance of the target cluster increases. This is an
expected outcome that is predicted by our theoretical re-
sult. Since APPR and `1-reg. PR are nearly identical, we
only use `1-regularized PageRank in the subsequent exper-
iments.

Results for biology networks (Sfld and PPI-mips). The
results for the biology datasets are shown in Table 1
(see [Ha et al., 2019, Section 5.2.4] for additional results).
In this table we present average results of F1score over all
nodes for each given ground truth cluster. We denote with
bold numbers the performance number of a method when
it has the largest score among all methods.

We note the consistent state-of-the-art performance of `1-
regularized PageRank for all clusters in Table 1. For some
ground truth clusters `1-regularized PageRank perfectly re-
covers the target clusters which is mainly attributed to the
fact that the ground truth clusters have strong separability
property (see also Corollary 1). In most experiments, Sim-
pleLocal did not improve the performance of the input of
`1-regularized PageRank, but also it did not make it worse.
In some cases, like the Spindle ground truth cluster in the
PPI-mips dataset, SimpleLocal decreased the performance
of `1-regularized PageRank in terms of the F1score. This is
because SimpleLocal found clusters that have smaller con-
ductance but do not correspond to clusters with the highest
F1score. This is a known issue that has been mentioned
in Fountoulakis et al. [2017]. BFS-SL has the worst per-
formance among all methods in most experiments. In fact,
BFS-SL performs well only for the AMP ground truth clus-
ter in the Sfld dataset. The performance of BFS-SL is es-
pecially poor for all ground truth clusters in the PPI-mips
dataset. It is important to mention that we did experiment
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with different parameter tuning for both BFS-type Algo-
rithm and SimpleLocal for the BFS-SL method, but the
performance was poor for all settings of parameters that
we tried. We charge the poor performance of BFS-SL in
the BFS-type algorithm, which provides the input to Sim-
pleLocal. In particular, the BFS-type Algorithm is not re-
lated to clustering in a general sense and this translates to
poor quality input to SimpleLocal. As is mentioned in the
theoretical analysis Orecchia and Zhu [2014], Veldt et al.
[2016], SimpleLocal requires as input the output of a local
spectral method such as `1-regularized PageRank in order
to perform well, which is also verified by the results in Ta-
ble 1.

Table 1: Results for biology datasets Sfld and PPI-mips.
In this table we present average results of F1score over all
nodes for each given ground truth cluster. We denote with
bold numbers the performance number of a method when
it has the largest score among all methods.

dataset feature `1-reg. PR BFS-SL `1-reg. PR-SL

Sfl
d urease 0.75 0.42 0.38

AMP 0.86 0.86 0.86

PP
I-

m
ip

s

Anaphase 1.00 0.09 1.00
Cdc28p 1.00 0.10 1.00
Coat 0.85 0.04 0.85
ct-large 1.00 0.02 1.00
ct-small 1.00 0.05 1.00
F0-F1-ATP 1.00 0.06 1.00
mc-complex 0.78 0.07 0.79
mRNA 0.93 0.03 0.93
Nuclear 0.85 0.05 0.85
RNA 0.87 0.03 0.80
Spindle 0.85 0.03 0.82

Results for social networks (FB-Johns55 and Col-

gate88). The results for the social network graphs are
shown in Table 2 (see [Ha et al., 2019, Section 5.2.4] for ad-
ditional results). There are a lot of interesting observations
for this set of experiments. First, `1-regularized PageRank
outperforms BFS-LS with the exception of the ground truth
clusters of major index 217 in FB-Johns55, where BFS-
LS has a 0.03 larger F1score, and the ground truth clus-
ter of year 2009 in Colgate88, where BFS-SL has the same
F1score as `1-regularized PageRank. We observed two rea-
sons that BFS-SL has worse performance in most exper-
iments. The first reason is that BFS-SL outputs a cluster
that has smaller conductance than the output cluster of `1-
regularized PageRank, but better conductance is often not
related to the ground truth cluster, especially in cases that
the ground truth cluster itself has large conductance. We
charge this behavior to SL because as an algorithm it at-
tempts to find a cluster with small conductance. The second
reason is that the input to SL from BFS-type Algorithm is
not a good approximation to the ground truth cluster, which
is a required property of SL such that it performs well.

The second set of observations is about `1-reg. PR-SL.

For most ground truth clusters we observe that `1-reg. PR-
SL performs worse or on par to `1-regularized PageRank,
with the exception of clusters year 2009 and major index
217 in FB-Johns55 and clusters of years 2008 and 2009
in Colgate88. When `1-reg. PR-SL makes the input of
`1-reg. PR worse it is clearly because the former finds a
cluster with better conductance value which does not relate
to the ground truth cluster. We observe this behavior often
when the ground truth target cluster does not have small
conductance value and this is also confirmed through our
simulation study (see Figure 1(d) in Section 4.1). When
`1-reg. PR-SL performs better it is because the target clus-
ter has small conductance but not small enough such that
`1-regularized PageRank performs well by itself. In par-
ticular, `1-regularized PageRank leaks more mass outside
of the target cluster than it should, and this results in small
precision. This is a well-known problem that has been also
observed in [Fountoulakis et al., 2017], which can be fixed
by SL.

Table 2: Results for Facebook datasets FB-Johns55 and
Colgate88. In this table we present average results of
F1score over all nodes for each given ground truth cluster.
We denote with bold numbers the performance number of
a method when it has the largest score among all methods.

dataset feature `1-reg. PR BFS-SL `1-reg. PR-SL

FB
-J

oh
ns

55

year 2006 0.32 0.13 0.23
year 2007 0.43 0.17 0.31
year 2008 0.50 0.34 0.36
year 2009 0.84 0.78 0.89
major index 217 0.85 0.88 0.88
second major 0 0.41 0.20 0.20
dorm 0 0.46 0.13 0.08
gender 1 0.42 0.21 0.21
gender 2 0.46 0.19 0.18

C
ol

ga
te

88

year 2004 0.42 0.29 0.44
year 2005 0.44 0.15 0.43
year 2006 0.46 0.27 0.39
year 2007 0.54 0.25 0.46
year 2008 0.75 0.56 0.88
year 2009 0.96 0.96 0.98
second major 0 0.49 0.24 0.25
dorm 0 0.46 0.04 0.26
gender 1 0.45 0.21 0.25
gender 2 0.34 0.20 0.26

5 Conclusion

We have examined the `1-regularized PageRank optimiza-
tion problem for local graph clustering, where the objective
is to find a single target cluster given a seed node in the
cluster. Under our local random model, we show that the
optimal support of `1-regularized PageRank identifies the
target cluster with bounded false positives, and in certain
settings exact recovery is also possible. We demonstrate
the state-of-the-art performance of `1-regularized PageR-
ank on real data graphs.
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