Supplementary Material
A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

A.1 Project website

Our project website at https://vislearn.github.io/libct contains additional information. At the time
writing there we distribute: (i) The source code of our cell-tracking solver, (ii) information about how to obtain
the datasets, and (74) the model parameters that we have used.

A.2 Tracking-by-Assignment formulation and cost computation

A description of the mathematical model of the tracking-by-assignment formulation was already given in Section 2.
Even though the reasoning in the paper has no restrictions on the costs, the cost assignment is a crucial step
when using the method in practice. In the following we describe the cost computation that we have used for
preparation of this paper, especially for obtaining the results in our experimental evaluation in Section 6.

The cost 6, associated with each segmentation variable u €)A/det is based on image and object features of the
underlying segmentation hypothesis. All segmentation hypotheses are assigned negative costs in order to promote
selection as part of a tracking solution, i.e., a segmentation hypothesis with higher negative cost is more likely
to be picked as part of a solution. Similar to Jug et al. (2014a,b) and Kaiser et al. (2018), the cost 6, of any

segment hypothesis is chosen according to its area and convexity according to the following rule
2
Ou = —aget - a(u) + Baet - (lac(u) — a(u)|) + yder - max (0, (a(u) — 4))" (14)
where e, Bdet and ~ger are free coefficients,; a(u) is the area of the hypothesis u, ac(u) is the area of convex
hull of that hypothesis u, and A is a free parameter that denotes the upper limit of the range of reasonable
object (segment) sizes.

The costs for all transitions between time steps (moves and divisions) are set up to reflect the knowledge of
biological experts. For any u-—v € Emove the associated cost 0w, is given by a function which takes segment size
and displacement (of segment centre of mass) between consecutive time points into account. The cost for a move
variable can be written as

0 = Qmove * ACL(U, 'U) + ﬂmove : AP(% U) , (15)

where amove and PBmove are free coefficients, Aa and Ap represent the change in area and in squared position
between two consecutive time points, respectively.

w
U—v

Let u%v/ v e éd;v. The cost 6 By for division variable additionally accounts for the fact that a dividing cell
typically splits into two equally sized daughter cells, and that the cumulative volume of the daughter cells roughly
equals the volume of the mother cell. The division variable cost is given by

0,2,/ = Qv + Baiv - Aamas (u,v,0") + Ya - Aa(v, v') + kv - Aa(v, v')? + (16)
+0.5 - paiv - (Ap(u, v)? 4+ Ap(u, v')?) + ogiv - Ap(v,v")? + Tay - Ar(u,v,v') |
where adiv, Bdiv, Ydiv, Kdivs Pdiv, Odiv and Tgiy are free coefficients, Adags(u,v,v") := |a(u) — a(v) — a(v’)] is the

change of area between mother and daughter cells, and Ar(u,v,v") is the difference in angular orientation between
mother cell and daughter cells. Overall, the transition costs discourage the deviation from the above mentioned
biological rules for any decision variable. Transition costs are positive and in order to collect the reward (negative
costs) for a segmentation hypothesis, a solution needs to pay the price for explaining the past and future of this
segment.

https://vislearn.github.io/libct

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

Additionally, it is possible for a cell to appear/disappear along the image border (cells moving in/out of the field
of view) but costs of appearance and disappearance are set to be higher for cells further away from the image
boundary. For sake of simplicity our description in Section 2 does not include decision variables for appearance or
disappearance events. However, our formulation allows to deactivate all incoming (outgoing) transition variables
for a segment to model cell appearance (disappearance), see (3). The costs for appearance and disappearance
described below can be incorporated by simply shifting the costs of incoming and outgoing transition variables
and the affected segmentation variable by a constant factor. The cost 0,pp(u) and 4is(uw) for an appearance or
disappearance of segmentation hypothesis u € Vier are given by

eapp(u) = Qapp * a(u) + Bapp YV db(u) + Yapp * db(u)) (17)
Odis (1) = auis - a(u) + Bais - v/ dp(u) + vais - dp (1) (18)

where aapp, Qdis, Bapps Bdis, Yapp anid 7Yais are free coefficients and dy(u) represents the distance of the centre of
mass of hypothesis u to the closest image boundary.

All free coefficients and the parameter A are set to sensible values by the engineer of the proposed system. The

values we have used for all reported results are available online at our project website.

A.3 Source code of our cell-tracking solver

We implemented the suggested solving scheme in a modern C++ library. The source code of this implementation
is publicly available and we plan to incorporate further improvements in the future. To make the results presented
in this paper reproducible, the repository holding the source code also contains a fixed version which we used
during the preparation of this paper.

Along with the library we provide Python 3 bindings which allow to feed a text file representation of cell-tracking
problems into the native library to run the solver.

For further information about the implementation and the text formats, please refer to the README file that is
bundled with the source code.

Source code repository: https://github.com/vislearn/libct

https://github.com/vislearn/libct

S. Haller, M. Prakash, L. Hutschenreiter, T. Pietzsch, C. Rother, F. Jug, P. Swoboda, B. Savchynskyy

A.4 Detailed information about the datasets

A description of all used datasets can be found in Section 6. Instructions how to obtain the datasets can be
found on our project website. There we also distribute the resulting optimization problems for each cell-tracking

instance in a text format and provide all model parameters.

(a) drosophila

(¢) Fluo-C2DL-MSC

(d) Fluo-N2DH-GOWT1

Figure 3: Example images of datasets that have been used for the evaluation.

instance #timesteps ‘ifﬁ;‘:itsf’;; tci;“eﬁ;igi transitive conflict clique
drosophila 252 323.3 £ 62.9 161.9 + 62.9 2.0+0.3
flywing-100-1 100 2041.1 + 358.0 2138.8 £+ 358.0 753.2 4+ 997.2
flywing-100-2 100 2223.4 + 258.2 1831.6 £ 258.2 131.4 £+ 511.7
flywing-245 245 3317.2 + 326.6 2733.5 £ 326.6 54.7 + 373.9
Fluo-C2DL-MSC-1 48 115.1 £ 6.9 41.4 £ 6.9 12.3 £ 8.3
Fluo-C2DL-MSC-2 48 52.2 £ 4.9 18.8 + 4.9 9.8 £ 8.8
Fluo-N2DH-GOWT1-1 92 168.4 + 1.6 249 £ 1.6 7.3 £ 1.6
Fluo-N2DH-GOWT1-2 92 207.1 £ 4.9 36.8 4.9 7.5+ 2.0
PhC-C2DL-PSC-1 426 1551.4 4+ 482.7 576.7 £ 482.7 34+14
PhC-C2DL-PSC-2 426 1249.8 + 372.6 455.8 £ 372.6 3.5+ 14

Table 2: Characteristics of all used tracking problem instances.

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

A.5 Detailed convergence plots

—
X 10
2
.
o
=
o 0
[
>
=]
il
0 —10
—_
X 10
<
o
9]
=
o 0
9]
=
]
o
0 —10
—
X 10
2
o
o
=
o 0
[
>
B
8
0 —10
—
x 10
<z
b
9]
=
o 0
9]
>
=]
o
0 —10
—_
X 10
2
o
o
=
o 0
9]
>
B
8
0 —10

Figure 4: Comparison of lower-bound (dashed ==) and upper-bound (dotted ::::) convergence for our solver and Gurobi.

Fluo-C2DL-MSC-1

[
[
: : our
: : Gurobi
T T T T
1 2 3 4 5
run time (s)
Fluo-N2DH-GOWT1-1
Pl
[
: : our
: : Gurobi
T T T T
1 4 5
run time (s)
flywing-100-1
I_._.._.,;_.
(]
: ’, our
: : Gurobi
T T T T T
1 2 3 4 5 6

run time (min)

flywing-245

our
Gurobi

T T T T T
10 20 .30 .40 50 60
run time (min)

PhC-C2DL-PSC-1

e T
/

our
Gurobi

I
I I
1 1
| I
I I
1 I

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

run time (min)

Fluo-C2DL-MSC-2

5 :
s 0=
M
2 i
=] 1 our
o n .
©—10 u Gurobi
1
T T T T
0 1 2 3 4 5
run time (s)
Fluo-N2DH-GOWT1-2
& 10
s
& 0 ==——-
1 1
2 [[
=] 1 1 our
o 1 1 .
—-10 4 1 Gurobi
1 1
T T T T
0 1 5
run time (s)
flywing-100-2
& 10 1
s
S r", ...
2 I/
= 1 our
o [.
—-10 1 1 Gurobi
1
T T T T T
0 1 2 3 4 5 6
run time (min)
drosophila
gl s
N : :
o : :
d 0 - pommm— e r
2 [!
*_r-‘g : I our
@ —10 A 1 ,' Gurobi
! 1
T T T T T T T
0.0 2.5 5.0 7.5 1_0.0 12.5 15.0 17.5 20.0
run time (s)
PhC-C2DL-PSC-2
S 0]
5 :
s 04 i.._......._....._....-.l-
2 [/
= 1 1 our
o 1 | .
-10 I Gurobi
1 1
T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

run time (min)

We obtain high-quality solutions after only a few iterations. For more information see section 6.

S. Haller, M. Prakash, L. Hutschenreiter, T. Pietzsch, C. Rother, F. Jug, P. Swoboda, B. Savchynskyy

A.6 Proofs of mathematical statements

Lemma 1. The optimization objective E(6,x) = Zvevdet<9v7$v> + > ey

conf

Z 91} det Ty det 1 Z Hu out xu,out Z av m $U in) +

VE Vet iy

(0,), cf. (10), is equivalent to

eSmove egmove
+ Z eu,out (6) xu,out Z 01} |n xv |n() + Z ow,in(ff) xw,in(e) + Z 90('0) l‘c(’l}) . (19)
e=u=v/w e=u=v/w e=u=v/w e=vjc
[S EEqiv EEconf

Proof. First, we apply the definition of X, for all v € V4t as well as the definition of X, for all ¢ € Veonr. Next,
we write the inner products in an explicit form.

Z <6v7 mv) = Z (<9u,det7xv,det> + <9v7in,$v,in> + <9v,out7 mv,out>)

VE Vet VE Vet
- Z av,det xv,det + Z Z gu,in(e) mv,in(e) + Z Z gu,out(e) xu,out(e) (20)
VE Vet VEVder e€in(v) UE Vget e€out(u)
Z (Oc,) = Z Z Oc(v) zc(v) = Z Oc(v) zc(v) (21)
€ Veonf cE€Veonf VEVdet v § c€Econf
V4 CEEconf

We can now use the definition of in(-) and out(+) to expand the corresponding sums in (20)

Z Z ev,in(e) xv,in(e) = Z Z e'u,in(e) ir'u,in(e) + Z Z ev,in(e) Loy, |n Z Z ev |n xv |n

VE Vet e€in(v) VEVdet UE Vet : VE Vet U, WE Vet : VE Vet U, WE Vet :
e= e= e=
U= € Emove U=/ WEEmove U=w /VE Emove
= Z 91} |n mv |n + Z 91} |n xv |n + Z 91} |n -T'u in) (22)
uwegmove u:{v/weé'move u:iw/veé'move
Z Z eu,out(e) xu,out<e) = Z Zeu out 6 $u,out 6 + Z Zeu,out (& xu,out<e)
UE Vyet e€Eout(u) UE Vet UGVdet UE Vet U,U)Gl)det :
Hefmove U= /W E Enmove
= Z O, out l‘mout + Z Hu out xmout(e) (23)
uwefmove u:iv/wefmove
Substituting the terms in (10) by (20), (21), (22) and (23) results in equation (19). O

Corollary 1. For any x € X the optimization objective E(0,x) is equivalent to

BO,0) = > (fuaa(@) + D 00)) wuer(e) + D (Buoue) + 0uin(€)) Zuom(e) +

VEVget CEVeonf %=5"_"U
/Ué CESCOHf move

+ Z (wout(€) + Ouin(e) + 6’w,in(‘e)) Tuout(€) (24)

e=u=w/w
EE&div

Proof. Due to x € X we know that the coupling constraints (9) hold. This means that for a given edge
€=UV € Enove it holds that , out(€) = Zy,in(e) and similarly for divisions and conflict edges. We can now
regroup the expression (19) of Lemma 1 and sort all terms by elements of vector x to directly obtain (24). O

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

Proposition 1. Vr € X, A € A: E(0,z) = E(0*,z).

Proof. Due to z € X we can apply Coralarry 1 and hence know that E(6,x) is equivalent to (24). Corolarry 1
also holds for E(f*, x) and we obtain

B 2) = > (0aele) + 3 02(0)) wuer@) + D (02 0unle) + 03in(€)) Tuons(e) +

VE Vet cE€Veonf 66:5
v§ c€Econf move

+ Z (u OUt + 9’L>)\In() + 01); m()) wu,out(e) . (25)

e=u=/w
EEdiv

By definition of the reparametrized costs #* we can simplify each of the following terms into

Y € Vier: 02 ger(€) + > 62(0) = b, qee(e ZAU&C—#Z(Q’\ +)\véc))

c€Veonf c€Veonf c€Veonf
v § CEEconf v § cEEconf v § cEEconf
= av,det(e) + Z 00(’0) (26)
cEVeonf :
V4 CEEconf
Ve=u—v € Enove: 0;‘ oule) + Qﬁﬁn(e) = Oy out(€) — Ale) + by,in(e) + A(e)
eu,out(e) + ev,in(e) (27)
Ve=u=v/w € Eav: eu out(€) + 9{}”,()+ Hi\; in(€) = Buoue(€) — Av(€) = Aw(e) + Ouin(e) + Au(€) + Ouinle) + Au(e)
- gu out(e) + 91} |n(e) + gw,in(e) (28)

Note that all tuples/triples of A have been cancelling out each other. We can now insert (26), (27) and (28)
into (25) and obtain the same expression as the right-hand side of (24). Due to Coralarry 1 we now that the very
same expression is equivalent to F(6,z), hence E(0*,x) = E(0,x). O

S. Haller, M. Prakash, L. Hutschenreiter, T. Pietzsch, C. Rother, F. Jug, P. Swoboda, B. Savchynskyy

Proposition 2. Dualizing all coupling constraints (9) in the objective (10) yields the Lagrange dual problem
maxyep D(X), where

D) =) _min (O zu) + > min 02, z.) . (11)
UEVae " cEVeont

Proof. To recap, the primal optimization problem is defined as the following, cf. (9) and (10):

Ty det = L) Vube € Econt
; — zu,out(u—>v) = xv,in(u—>v) Vu—v € Emove
ze%lfll}n |:E(97 .'I;) - Z<9u7 xu> + Z<907 xc>:| s.t. xquUt(ujv/w) _ xv)in(u:{v/w) Vu:gv/w c gdiv (29)

uE Vet €& Veont Tyot(UV/W) = Ty in(u=v/W) YVu=v/w € Egy

We are now dualizing all the constraints of (29) by introducing a Lagrangean multipler for each equality constraint

n (29). In total we have |[Econf| + [Emove] + 2 |Ediv| constraints, so to assign a Lagrangean multiplier to each
constraint we will write A € A = Rl€ent|+[Emoel+2 €] gee the definition in the main paper. The Lagrange dual
function augmented by the Lagrange multipliers now reads

D()\) = mm{ 0,z) + Z Te(U) — Ty det) Mudc) + Z(%,in(e) — Tuout(€)) Ae) +

U c€Econt U—VUeGZEmove
+ E zv |n xu,out + § xw |n xu,out(e)))\w(e)])
u:{v/wegdw u:w/weé'd.v

D(A):Hgg(l[017"’5 xc uéc+§ xum +§ zvln +§ xwm w -
x

ut ¢€Econt u_wegmove u:?u/weé'd.v m/wegdlv

- E Ly, det § Loy, out § Ly, out § T, out):| . (30)

uy Cegconf u—wegmove u:;’u/wefd.v u:lv/wegd.v

We can now apply Lemma 1 to replace the term E (6, z) by (19) in (30). After regrouping the terms and sorting
them by elements of = we get

03 det 03 out() 0:} in(e)
—_——
D()\) == gél;g |:Z (v,det — Z A Cé’U) Ty, det +Z (u out (6)) xu,out(e) +Z (Gv,in(e) + A(6)) xu,in(e) +
VE Vet € Veonf e=u—w
CHVEEcont Egmove EEmove
+ Z (u, out)‘v(e) -)\w()) Ly, out + Z (v, m + Ay ()) xv,in(e) +
e=u=v/w e=u=w/w
E&div GQYout(e) €Ediv 0;\ (e
37 (Guin(@) + (@) uinle) + 30 (6:0) + A@)) ze(v)] - (31)
e=u=v/w e=vjc _/—/
€& 02 (e € Econf 02 (e)
Due to Lemma 1 we know that (31) is equivalent to D(A) = minycx E(0*,2) = mingex Y, ey, (00, 2u) +

D eV (62, x.)] which is our unconstrained objective function for the Lagrange dual of (29).
As we want to maximize the dual function D(\) with respect to A € A the Lagrange dual problem reads

neniy 0 @heat 3 @hwa] =na] 30 mig @he 3 miy @ea] @2

UE Vet €€ Veonf UE Vet €€ Veonf

O

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

Proposition 3. Dual updates A € {A5, A, Al | u € Vaer} U{A] | ¢ € Veont} monotonically increase the dual
function, i.e. YA € A: D(X) < D(A+ A).

Proof. For all possible choices of A we want to show
D)) < DA+ A),
for any fixed A € A, which is equivalent to 0 < D(A+ A) — D(A). Without loss of generality we can assume A = 0,

. P, A .
since any reparametrization is linear, and, therefore, A2 = (9)‘) . So we can just redefine # to match 6*. Thus,

it suffices to prove
0 < D(A) - D(0), (33)

for all possible choices of A.

Case 1: Let A=Al ce Vconf arbitrary but fixed. Recall that for all u € ¢, e = usc:

Al(e) == —0.(u) + [<0(.,Zc> (0, 25™)], with 2} = argmin(f.,z), 2}* = argmin (0.,).
zEX, S zeX\{z}}

For convenience, let Be := 3[(0c, 2}) + (0, 25*)]. Note that (6., 2}) < Be < (f,x) for all € X\ {z}} by
definition of 2. We now rewrite the difference D(A]) — D(0):

D(A!) — D(0) = Z min(@dAZ,@—F Z min(@vAI,J;)— [Z ;reli)gwd,x)—k Z min(&v,@}

rEXy TEX, TEX,
d€Vconf VE Vet d€Veont VE Vet
= 02 *) — min (8 0 : (0
grégl() grenan< C,sc>+uzecwmm WS, T uzecmm s L)
:;reuxnc [Qc(u)—ac(u)—i-B] (QC,ZC —&-ZL;IE%? Guc’ _wnelgl <9u,x>]
uec uec
=min{0, B.} — (6., 25) + ; Lgreun (Ou,) + [0c(u) — Be] - Tget) — ;Ielglu<9u7$>:|
uece

If z¥(u) = 0 for all u € ¢, Equation (33) holds, as in this case 6.(u) > B, > 0 for all u € ¢. So we are left with the
case that there exists u* € ¢ such that z*(u*) = 1. Note that u* is unique since z} € X, cf. (8). In particular,
zx(u) =0 for all u € ¢, u # u*. Furthermore, it is (6., z%) = 6.(u*) < B, < 0. We now obtain:

D(AN — D(0) = min{O,BC} — (O, 22 + Z erenn Oy, z) + [0:(u) — B .xdet) — gcrgi‘ri(&u,m)]

uec:
2% (u)=0
+ :zzlenég}* (<9"* ’ I> + [GC(U) - B('} ’ Idet) N zIen}(?* <9u*) l’>

= Be = {0 z) + min (0, 2) + (B 2) — Be — min (s, 2) =0
Hence, D(A) — D(0) > 0.
Case 2: Let A = A, u € V4 arbitrary but fixed. Recall that for all e € conf(u):
Al(e):= min (fu o) _ ! min (0, 7).
2€X,: zaa=1 |cOnf(u)| |conf(u)| z€Xy: D=1
Now, rewriting the difference D(A]) — D(0) yields:

D(A}) - D)
= % npetor ¥ mipethe - | ¥ mip@n+ X i)

VE Vet c€Veonf VE Vet c€Veonf
. Al . . AT .
= min (6, *,z) — min (0, x) + E min (6, *, x) — E min (0., x)
reX, TEX, reX, reEX,
CcEVeonf CEVeonf
uece uec

proof continues on next page

S. Haller, M. Prakash, L. Hutschenreiter, T. Pietzsch, C. Rother, F. Jug, P. Swoboda, B. Savchynskyy

D(A]) - D(0)
= min {(97“35 — Tdet - ZAT } - mm (Hu,x> + Z [;Iél)g((@c,@ + Al (ugc) x(u)) — min (90,33)]

TEX, reX,
e€conf(u) CEVeonf
uece
= Iin {<9u,x> Tder © I <9u,y>} 1in (0, 2) + > [neu)g(wc,x) + TeontCay] ", 20 (0w y)) min <907m>]
Ydet=1 06;/&02(y et = b}

= min{O7 min (6,,z) — min (Hu,y>}—££<9u,x> + Z [;renxnc(wc,x) + % yg}\l,q? (6u,y)) — min <96,x>]

TEX, : YEX, : rEX,
Tder=1 Ydet=1 €€ Veonf : Ydet=1
uece
>0 — min (0, x) + E min (0 x—l—mm(ﬂ-mm))—min9 x
= xeXu< ws > .LEXC< ¢y > e [conf (w)] e < u7y> wEXc< ¢y >
Ceq‘jggf : Yder=1
= — min {0,z min | —=*~ - min (@):—mln@ T mln{07~ min (0 }
mexu,< us T) + E zexc(\conf(u)\ e, (0,) mexu,< us T) + E ’ Teonf ()] yexu,:< wY)
CGQL}%’E{ : ydet_1 Ceggg : Ydet=1

= — min (0, x) + min{O, min (6, z)} = — min (0, x) + min (0,) =0
rEX, TEX,, ,Tdet=1 TEX, TEX,

Hence, D(AT) — D(0) > 0.
Case 3: Let A = A7, u € Vyer arbitrary but fixed. Recall that for all e € out(u):
Ay (e) = gl}én (Ou,) — Oy out; If € € Emoves (A)w(e) == %[gl;n (O, a:}—@mout}, ife=u=v/w

u .

Tout(€)=1 Tout(€)=1

where Oy oyt 1= min{O [(Ou, z%) + (B, (1, Ty ins Y out))] }, xy = argmin (f,,z), and y} := argmin (0,).
TEXy : Tder=1 TEXy : Tder=1,
Iin?éz:,,im zout?éz:,,out

Using similar techniques as above we can rewrite the difference D(A;) — D(0) as follows:

D(A,) — D(0)
B AT AT . .
= > min(,x)+ 0 min(0) [Z min (fo,0) + ;renxnc<9c,x>]

VE Vet €€ Veonf VE Vet €€ Veonf
= min (0 @) + M;E ;relgiwf? z) + jz/: E [neu)? (O) + zrg}glﬂ}(@f;:)]
Emove Mout(u) Eqiv Nout(u)
- <£%<0uax> + Z 1{21&<9va$> + Z [Eel‘l)gwmx) + Inel}au<6wa-r>}>
u—vE u=v/we
Emove Nout(u) Ediv Nout(u)
o =(— — . . N
= i [)= 30 A0 on€)= 3 (A1) + (A7 u(e)] - n(e)]| + 3 smip [(1:2) + A7) - ()
eEout(u)f‘]Emo\,e e=u=v/we e=u—vE
out(u) N Egiv Emove Nout(uw)
1 - . . 3 - . .
D [m;? () + (A2 00(6) 300) + i (2] + (A7)0 x.n<e>)]
e=u=3v/we

Egiv Nout(u)

—<52£<9N>+ PUEE AP [fg%@v’@mn;wﬁm})

Emove Nout(u) Ediv Nout(u)

proof continues on next page

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

For convenience, we set Boyt := 3 [(0u, 27) + 0,(1, Ty ins Yurout)]- Observe Boye > (6, 27,). With this we get:
D(A,) — D(0)

= min l<9u,w> -> (yén)gl: (Ousy) — min{OaBout}> ~mout(e)l

TEX,
yout(e)zl

)
s 0w+ (i 000) - (0, B))|
e=u—ve out(e):1
Emove Nout(u) Y

+ Y [mgl <<9v,x>+;[min (¢, y) — min{0, Bout}] Tin(e))

ecout(u

S v
e=u=3v/we out (€
Egiv Nout(u) Y () !
+ min (<9w,x) + = | min (6,,y) — min{0, Bout}] - Tin(e)>]
TEX,, YEX, :
yout(e) 1
~(mpeun s X mpoua 2 lmpeni o))
Emove N OUt(u) Egiv Nout(u)

ecout(u) | TEX, : YEX,
Tout (€)=1 Yout (€)=1

Zmin{() min [min (0y,2) — min <0u,y>+min{O,Bout}}}

TEX,

+ Z mm 9v7x Z {mm Oy,) + mm <9w,x} —|—Z mln{O Iél/lvn (Ou,) —min{07Bout}}

gmofﬁﬁguet(m o Do) oot o)
~(mons T mpea 3 [mpoen+ mp o))
Emove Mout(w) Egiv Nout(u)
= min{0, Bout} + Z min{O7 yrél}(? (0, y) — min{0, Bout}} - ;relég(@u,x)
e€out(u) Yout (€)=1

= min{0, Boy:} + min{O, 0y, z3) — min{0, Bout}} — min{0, (0, z;)} =0
Hence, D(A,”) — D(0) > 0.
Case 4: Let A = AY, u € Vyer arbitrary but fixed. In this case the argument is completely analogous to 3. [

Proposition 4. The mazimization of the dual (11) yields the same value as the natural LP relaxation of (10),
more precisely

r{leai({D()\) = Z xrvnel/;’l(v(Qv,xU +Z zrpnelnp 0)| = mren[ér’lu {E(Q,x) = Z(@v,mv> —l—Z(Gc,xc)} . (34)

VE Vet c€Vconf st. (9) hold VE Vet CEVconf

Proof. Instead of showing this result directly we will reference the corresponding general results in the literature
as this property is not special to the Lagrange decomposition at hand. We refer to the excellent survey by
Guignard (2003) that summarizes the Lagrange decomposition technique and gives a number of mathematical
and applied insights. Generally, it is known that the Lagrange decomposition is always at at least as good as the
LP relaxation, i.e. using “<” instead of “=" in (34). If the relaxed solutions for all subproblems of the Lagrange
decomposition are integer (i.e. the LP relaxation of all subproblems is tight) then the Lagrange decomposition

dual is not stronger than the LP relaxation, i.e. they have the same optimal value (Guignard, 2003, Corallary 5.1).

In our decomposition we have dualized all coupling constraints (9) which leads us to the dual function
D(\) = Z mm <9Wmv —|—Z mm QC,xC> . (11)
UEVdet Cevccnf

All subproblems in our dual D(\) consists of minimizing simple inner products. Hence it is trivial to see that the
the LP relaxation of all subproblems are tight. O

	Supplementary Material
	Project website
	Tracking-by-Assignment formulation and cost computation
	Source code of our cell-tracking solver
	Detailed information about the datasets
	Detailed convergence plots
	Proofs of mathematical statements

