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Appendix

A Pseudocode for A-GBM

Algorithm 3 has the pseudocode for the AGBM pro-
cedure introduced in Section 2. The GBFS training
procedure is identical, except with the function being
optimized being un-normalized.

Algorithm 3 Pseudocode for A-GBM
Require: Data {xi, yi}, i = 1, .., n, shrinkage ε, itera-

tions N, penalty parameter µ, tree growth param-
eter α

1: model H = 0, residues gi = yi, i = 1, 2, .., n. and
selected feature set Ω = ∅

2: for k = 1, 2, . . . N do
3: Fit a tree hk using µ to minimize (1) in every

split and α as stopping criteria
4: H = H + εhk
5: gi = yi −H(xi)
6: Ω = Ω ∪ {j, tree hkuses feature fj}
7: end for
8: Output H and Ω

B Theoretical analysis of GTGBM

B.1 Notations and Setup

Consider (X, Y ) ∼ P. Y is the label and we have d
features: X = (X1, .., Xd). X1, , ., Xd are independent
with each other (not assuming have the same distribu-
tion) and 0 ≤ Xi ≤ 1 (as GTGBM first standardizes
the feature value to be within [0, 1] ). Assume there is
an unknown subset S∗ ⊂ [d],|S∗| = s, such that

Y = µ+
∑
i∈S∗

fi(Xi) + ε, (7)

where µ = EY is the population mean and ε is noise
that has mean 0 and is independent with X. fis are
unknown univariate functions. To make the model
identifiable, we can assume without loss of generality
that

Efi(Xi) = 0, i ∈ S∗ (8)

This is called a sparse additive model. For the set-
ups of GTGBM, we independently generated p =⌈
es log( sδ )

⌉
random subsets of [d]: S1, .., Sp, where

e = 2.71828.. is the base of natural logarithm and
δ ∈ (0, 1). From Theorem 4.1, with high probabil-
ity (≥ 1 − δ), for every relevant features (Xi,i ∈ S∗

), there is a random subset that exactly covers this
feature.

B.2 Proof of Theorem 4.1

Proof. Suppose we have d features, and without loss
of generality the active features are f1, . . . , fs ∈
{1, 2, . . . , d}. We generate iid subsets S1, . . . , Sp ⊂ [d],
such that ∀j ∈ [d], P (j ∈ Si) = 1/s. We want to
show that the probability that exactly one of the rel-
evant features lies in one of the random groups we
create is larger than 1 − δ. We do this by obtaining
an upper bound on it’s complement. For convenience,
we use the following shorthands: {f1, . . . , fs} :=
Ω, {S1, . . . , Sp} := S. We bound the probability
of the complement of the event we are interested as
follows:

P (∃j ∈ Ω : ∀S ∈ S, j /∈ S OR ∃j′ 6= j : j′ ∈ S, j′ ∈ Ω)

≤ s(1− P (f1 ∈ S1 and ∀j′ 6= f1, j′ ∈ Ω, j′ /∈ S1))p

= s

(
1− 1

s

(
1− 1

s

)s−1
)p

≤ s exp

(
−p
s

(
1− 1

s

)s−1
)

≤ s exp
(
− p

es

)
≤ δ (9)

Where the first inequality follows from the union bound,
the second inequality follows from Bernoulli’s inequality.
The final inequality in (9) holds so long as p satisfies the
condition in the statement of the Theorem.

B.3 Theoretical split criterion in GTGBM

A key component of tree algorithms are the rules for
splitting a node. For the classical CART algorithm,
we greedily build the tree by splitting with a feature
and a threshold such that in the child nodes the sam-
ple are most homogeneous measured by square error
loss. Mathematically, the population version of the
split criterion can be written as a function L(Z, t) of
split feature Z (including the “peusdo” feature created
by GT-GBM) and threshold t ∈ R:

L(Z, t) = E[(Y − E [Y |Z < t])
2

1{Z < t}
+ (Y − E [Y |Z ≥ t])2

1{Z ≥ t}] (10)

Note that the split function is invariant with a shift of a
constant in Y , so we may assume µ = EY = 0 without
loss of generality. Then some calculations lead to

L(Z, t) = EY 2 − E2 [Y 1{Z < t}]
P (Z < t)

− E2 [Y 1{Z ≥ t}]
P (Z ≥ t)

(11)
Since EY = 0, we have

E [Y 1{Z < t}] = −E [Y 1{Z ≥ t}] .
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Let M(Z, t) = E [Y 1{Z ≥ t}], we can further write

L(Z, t) = EY 2 − M2(Z, t)

P (Z < t) P (Z ≥ t)
(12)

In the algorithm, we will choose (Z, t) that minimize
L(Z, t) (the sample estimated version, see next section)
which is equivalent to maximize M2(Z,t)

P(Z<t)P(Z≥t) . Note
that if Z and Y are independent, then

M(Z, t) = E [Y 1{Z ≥ t}]
= E [Y ] P (Z ≥ t)
= 0 (13)

Thus no variance reduction takes into place. Let’s re-
call the GTGBM procedure to find the split feature:
for the p independently generated random group of fea-
tures, we perform binary search. That is, for random
subset S ⊂ [d],write

ZS =
∑
i∈S

Xi,

we split S into left-half SL and right-half SR and cal-
culate inft L(ZSL

, t) and inft L(ZSR
, t) . We select the

half with smaller value and recursively find the candi-
date split feature. We find the candidate split features
for all p random subsets of features, and we choose the
best split feature among them. Now we show that, if
we have access to the theoretical split criterion (that
corresponds to the ideal situation that we have infi-
nite amount of data), the GTGBM split-finding pro-
cedure can actually find the best split feature. We
only need to show that all relevant features: Xi,i ∈ S∗
are among the candidate split features. For i ∈ S∗,
from Theorem 4.1 we know that there is a random
subset S ∈ {S1,..,Sp} such that i ∈ S and for any
i′ ∈ S∗, i′ 6= i, we have i′ /∈ S. Now we show that
when we perform binary search on S, the half that
contains the important feature index i is always been
selected. Thus the output of binary search on S is ex-
actly this index i. Suppose the left half SL contains
i. Then SR doesn’t contain i and also doesn’t contain
any i′ ∈ S∗, i′ 6= i since S doesn’t contain them. Thus
ZSR

is independent with Y , so M(ZSR
, t) = 0 for any

t. On the other hand

M(ZSL
, t) = E [Y 1{ZSL

≥ t}]
=

∑
i∈S∗

E [fi(Xi)1{ZSL
≥ t}]

= E

fi(Xi)1{Xi +
∑

i′ 6=i,i′∈SL

Xi′ ≥ t}

(14)

We can choose t such that M(ZSL
, t) 6= 0, as long as

fi is not degenerated. Thus we always have

inf
t
L(ZSL

, t) ≤ L(ZSL
, t)

= EY 2 − M2(ZSL
, t)

P (ZSL
< t) P (ZSL

≥ t)
< EY 2

= inf
t
L(ZSR

, t).

But in reality, we are using sample version of split
function that only approximates the theoretical split
function. So the condition for GTGBM to successfully
find the best split feature depends on how the approx-
imation error between theoretical split function and
empirical split function and magnitude of M2(ZSL

, t)
(still assumes SL is the half that contains the relevant
feature index) change with sample size n at a node and
total number of features d. Intuitively, the increase of
dimension d will harm the signal strength M2(ZSL

, t)
since the irrelevant part

∑
i′ 6=i,i′∈SL

Xi′ in equation
(14)becomes more dominant. We rigorously showed
that (see lemma B.1), under fairly general condition
we have

M2(ZSL
, t) &

1

|SL|
&
s

d
. (15)

Then we just need to know how well we can approx-
imate theoretical split function by the empirical ones
with sample size n.

B.4 Empirical split criterion in GTGBM

Suppose we have i.i.d sample in a node (Xi, Yi) ∼
P, i = 1, 2, .., n. Xi = (Xi1, .., Xid). The empirical
split function is

Ln(Z, t) =
1

n

 ∑
i:Zi<t

(
Yi − ȲL

)2
+
∑
i:Zi≥t

(
Yi − ȲR

)2
(16)

where ȲL =
∑

i Yi1{Zi<t}∑
i 1{Zi<t} , ȲR =

∑
i Yi1{Zi≥t}∑
i 1{Zi≥t} and Zi,

i = 1, .., n is the i.i.d sample for split feature Z. With
a standard argument and concentration inequality (see
lemma B.2 ), we can prove

sup
t
|Ln(Z, t)− L(Z, t)| = Op(

1√
n

). (17)

Thus with high probability, we have

inf
t
Ln(ZSL

, t) ≤ inf
t
L(ZSL

, t) +O(
1√
n

)

. EY 2 − s

d
+O(

1√
n

)

= inf
t
L(ZSR

, t)− s

d
+O(

1√
n

)

≤ inf
t
Ln(ZSR

, t)− s

d
+O(

1√
n

)(18)
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The first and last inequality is from (17) and the sec-
ond inequality is from (15). So, we only need n & (ds )2

for GTGBM to find the best split variables.

B.5 Proof of Theorem 4.2

The above subsections did some intuitive calculations
that motivate the claim. This subsection aims at pro-
viding rigorous statement and filling the gaps. First
let’s recall the conditions assumed in theorem 4.2.

Assume

1. Xi has bounded probability density function pi(x)
and positive variance. Denote B2

d = Var(X1 + ..+
Xd). Suppose Bd →∞, d→∞ and the limit

η = lim
d→∞

µd
Bd

exists, where µd = E [X1 + ..+Xd].

2. The unknown functions in (7) are bounded mono-
tone functions.

We have following two lemmas:
Lemma B.1. Recall the notation, for subset S ⊂ [d],
ZS =

∑
i∈S Xi. if there is an index i ∈ S∗ that i ∈ S

and for any i′ 6= i, i′ ∈ S∗ we have i′ /∈ S. Assume the
unknown function component fi is bounded monotone.
Also assume condition 1 in theorem 1. Then there
exists constants t0 , d0 > 0, c0 > 0 that only depend
on the unknown functions in (7) and η, such that when
|S| ≥ d0, we have

L(ZS , t0) ≤ EY 2 − c0
|S|

(19)

proof of lemma B.1. From (13), we only need to show
that there exists constants t0 , d0 > 0, c0 > 0 , such
that

M2(ZS , t0)

P (ZS < t0) P (ZS ≥ t0)
≥ c0
|S|

(20)

First let’s look at the numerator. From (14), we have

M(ZS , t) = E

fi(Xi)1{Xi +
∑

i′ 6=i,i′∈S

Xi′ ≥ t}

 (21)

Denote S′ = S\{i} and Xi and ZS′ ’s probability den-
sity function as pi(x) and pZS′ (z) respectively. Since
Xi and ZS′ are independent, we have

E [fi(Xi)1{Xi + ZS′ ≥ t}]

=

∫
x+z≥t

fi(x)pi(x)pZS′ (z)dzdx

=

∫
fi(x)pi(x)

∫
z≥t−x

pZS′ (z)dzdx

On the other hand, since fi is monotone function
(without loss of generality assume it’s monotone in-
creasing), then there exists t0 ∈ [0, 1] such that
fi(t0) = 0 and fi(t) > 0 for t > t0 and fi(t) < 0
for t < t0. Then, E [fi(Xi)1{Xi + ZS′ ≥ t0}] can be
written as∫

x≥t0
fi(x)pi(x)

∫
z≥t0−x

pZS′ (z)dzdx

+

∫
x<t0

fi(x)pi(x)

∫
z≥t0−x

pZS′ (z)dzdx

=

∫
1≥x≥t0

fi(x)pi(x)

∫ 0

t0−x
pZS′ (z)dzdx

−
∫

0≤x<t0
fi(x)pi(x)

∫ t0−x

0

pZS′ (z)dzdx (22)

The equation is from the fact that
∫
x≥t0 fi(x)pi(x)dx+∫

x<t0
fi(x)pi(x)dx = E [fi(Xi)] = 0. Let mZS′ =

minz∈[t0−1,t0] pZS′ (z). Then the right hand side of (22)
is lower bounded by

mZS′

1∫
0

(x− t0)fi(x)pi(x)dx. (23)

Note that (x − t0)fi(x)pi(x) ≥ 0 for any x ∈ [0, 1]
and there exists a positive measure set such that (x−
t0)fi(x)pi(x) > 0 (otherwise Xi is degenerated). Thus
we denote v0 =

∫ 1

0
(x − t0)fi(x)pi(x)dx and v0 > 0.

Now let’s look at the other factor mZS′ in (23) Denote
Z̃S′ = ZS′−EZS′√

Var(ZS′ )
as standardized ZS′ , then we have

pZS′ (z) =
1√

Var(ZS′)
pZ̃S′

(
z − EZS′√
Var(ZS′)

). (24)

From condition 1 and the well known local limit the-
orem, the standardized density function pZ̃S′

(z) uni-
formly converge to standardized normal density φ(z)
as |S′| → ∞. Moreover

lim
|S′|→∞

√
Var(ZS′)mZS′ = φ(−η) (25)

since from condition 1, we have lim|S′|→∞
z−EZS′√
Var(ZS′ )

=

−η,∀z ∈ [t0 − 1, t0]. Combined with (21)(22)(23), we
conclude that there exists a constant d1 such that when
|S| > d1, we have

M2(ZS , t) ≥
v2

0φ
2(−η)

2Var(ZS′)
≥ v2

0φ
2(−η)

2|S|
(26)

where the second inequality follows from Var(ZS′) =∑
i∈S′ Var(Xi) ≤ |S′| < |S| since Xi ≤ 1. For the

denominator in (20), from Central Limit Theorem, we
have

P (ZS < t0) = P

(
ZS − EZS√
Var(ZS)

<
t0 − EZS√
Var(ZS)

)
→ Φ(−η)
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as |S| → ∞, where Φ is the distribution function of
standard normal. Thus there exists a constant d2, such
that when |S| > d2, we have

P (ZS < t0) P (ZS ≥ t0) ≤ 2Φ(−η)Φ(η). (27)

Thus combine (26)(27), we showed that for |S| > d0 =
max{d1, d2}, we have

M2(ZS , t0)

P (ZS < t0) P (ZS ≥ t0)
≥ c0
|S|

where c0 =
v20φ

2(−η)
4Φ(η)Φ(−η) > 0 . That concludes the proof.

Lemma B.2. There exists positive constants c1, c2
that only depend on the unknown fixed component
functions such that for any 0 < x < 1

P

(
sup
t
|Ln(Z, t)− L(Z, t)| ≤ x

)
≥ 1−c1 exp(−c2nx2)

(28)

proof of lemma B.2. Let µL = E[Y 1Z<t]
P(Z<t) , µR =

E[Y 1Z≥t]
P(Z≥t) and nL =

∑
i 1{Zi < t}, nR =

∑
i 1{Zi ≥ t}

. Define

L̃n(Z, t) =
1

n

 ∑
i:Zi<t

(Yi − µL)
2

+
∑
i:Zi≥t

(Yi − µR)
2


(29)

Then

L̃n(Z, t)− Ln(Z, t) =

1

n

∑
i:Zi<t

(ȲL − µL)(2Yi − µL − ȲL)

+
1

n

∑
i:Zi≥t

(ȲR − µR)(2Yi − µR − ȲR)

=
nL
n

(ȲL − µL)2 +
nR
n

(ȲR − µR)2 (30)

Also we can write ȲL − µL as

1

nL

∑
i

(Yi1{Zi < t} − E[Y 1{Z < t}]
P(Z < t)

)

=
n

nL

1

n

∑
i

(Yi1{Zi < t} − E[Y 1{Z < t}])

+ E[Y 1{Z < t}]( n
nL
− 1

P(Z < t)
) (31)

Since 1{Zi < t} − P(Z < t) and Yi1{Zi < t} −
E[Y 1{Z < t}] are i.i.d mean 0 bounded random vari-
ables (and the bound doesn’t depend on t), from Bern-
stain inequality, for any t and x > 0, we have

P

(
1

n

∣∣∣∣∣∑
i

1{Zi < t} − P(Z < t)

∣∣∣∣∣ ≥ x
)
≤ 2 exp(−c1nx2)

(32)

and

P

(
1

n

∣∣∣∣∣∑
i

Yi1{Zi < t} − E[Y 1{Z < t}]

∣∣∣∣∣ ≥ x
)
≤ 2 exp(−c2nx2)

(33)
where c1, c2 are positive constants that don’t depend on t.
Combine (31)(32)(33), with proper change of the constants
c1, c2, we conclude that, for all t and any x > 0

P
(∣∣ȲL − µL

∣∣ ≥ x) ≤ c1 exp(−c2nx2) (34)

We can apply the same argument to ȲR − µR. Thus for
any x > 0,

P

(
sup
t

∣∣∣L̃n(Z, t)− Ln(Z, t)
∣∣∣ ≥ x) ≤ c1 exp(−c2nx) (35)

for proper constants c1, c2. When x < 1, the right hand
side of (35) ≤ c1 exp(−c2nx2). Thus we only need to prove

P

(
sup
t

∣∣∣L̃n(Z, t)− L(Z, t)
∣∣∣ ≥ x) ≤ c1 exp(−c2nx2) (36)

This also follows from Bernstain inequality, since L̃n(Z, t)−
L(Z, t) is the average of i.i.d mean 0 random variables

wi := (Yi − µL)2 1{Zi < t}+(Yi − µR)2 1{Zi ≥ t}−L(Z, t)

wi is also bounded (since Yi are bounded) and the bound
doesn’t depend on t.

Now let’s go back to the proof of main theorem. From
(18) and lemma B.1 and B.2, the failure probability
of identifying the correct half group that contains the
important feature is bounded by c1 exp(−c2nx2) with
x = c0s

4d . Given δ ∈ (0, 1), since GTGBM performs at
most es log( 2s

δ ) log2(ds ) times of comparing two split-
ted groups of variables (assume we generate es log( 2s

δ )
random subsets) , by union bound and theorem 4.1,
the overal failure probability is bounded by

δ

2
+ c1es log(

2s

δ
) log2(

d

s
) exp(−c2nx2)

with x = c0s
4d . Solve n for

c1es log(
2s

δ
) log2(

d

s
) exp(−c2nx2) ≤ δ

2

with x = c0s
4d gives the conclusion.

C Optimal Hyperparameters to
Reproduce Results on Public
Datasets

Here we give additional details required to reproduce
the results we obtained on all 3 public datasets. We
used the train/test split that was provided online in
all the cases: 6000/1000 for Gisette, 80000, 20000 for
Epsilon and 100K, 100K for Flight Delay
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For tuning the hyperparameters, we further split the
train set into an 80-20 train and validation set, and
cross-validate on the latter. Table 5 lists the optimal
hyperparameters for all the algorithms used. ‘α’ is the
minimum fraction of data in an internal node (param-
eter that controls the size of a single tree).

Table 5: Optimal hyperparameters for all methods
Dataset Method µ shrinkage ε α
Gisette GBDT - 0.1 0.02

GBFS 1.1 0.1 0.02
A-GBM 0.01 0.1 0.02
GT-GBM 0.001 0.1 0.02

Epsilon GBDT - 0.1 0.02
GBFS 2.0 0.1 0.02
A-GBM 0.0004 0.1 0.02
GT-GBM 0.0001 0.1 0.02

Flight GBDT - 0.1 0.1
GBFS 4 0.1 0.1
A-GBM 0.0004 0.1 0.1
GT-GBM 0.0002 0.1 0.1

D Performance When All Features
Are Used

For the sake of completeness, we provide the optimum hy-
perparameter values as well as the results obtained on the
public datasets when we use all the available features to
train the model. Note that we report this performance for
the sake of comparison, and as we mentioned earlier, such
a method is not practical in the applications we consider.
The results are provided in Table D

Table 6: Performance of the full GBDT model on all
public datasets
Dataset Method shrinkage ε α AUC
Gisette GBDT-Full 0.1 0.02 99.33
Epslion GBDT-Full 0.1 0.02 92.34
Flight GBDT-Full 0.1 0.1 71.74

E Performance on Internal
Classification Datasets

For the internal classification dataset, we compute the area
under the ROC curve, and the Precision at 2. The task
in both cases is to identify items in response to query-
item pairs that have been marked as “incorrect." We see
from Table 7 that GBDT-topK methods are suboptimal,
and GT-GBM matches or outperforms GBFS, while being
vastly superior in terms of training time.

F Multitask Results on M2

There are 4 countries in total. Again, we hypothesize that
there will be features that might be common across coun-

Table 7: Comparison of various methods for the clas-
sification tasks (C1 and C2). In both cases, GBDT-
topK is suboptimal, and GT-GBM narrowly outper-
forms GBFS. Bold numbers indicate the best result.

Dataset Measure GBDT-topK GBFS GT-GBM
C1 AUC_ROC 0.918 0.922 0.920

prec@k=2 0.751 0.770 0.773
RMSE 0.260 0.258 0.258

C2 AUC_ROC 0.910 0.910 0.912
prec@k=2 0.874 0.875 0.878

RMSE 0.219 0.218 0.218

Figure 5: Performance on M2, for Area Under
Precision-Recall curves. As in the previous experi-
ment, using both task-specific and across-task features
is beneficial. The performance boosts for tasks T2-
T4 arise from using the data from T1, which has the
largest and cleanest dataset.

tries that we can use, and country specific features that de-
pend on the items available, and vagaries of the languages
spoken in those countries. We aim to see if combining in-
formation from various sources and training joint models
helps to achieve better metrics as compared to training
models individually. Figure 5 again shows that the multi-
task GTGBM outperforms the single task and traditional
multitask counterparts.


