Stein Variational Inference for Discrete Distributions

Appendix
A Additional Experimental Result

Result on Categorical Distribution We apply our algorithm to sample from one-dimensional categorical
distribution p.(z) shown in red bars in Fig. [7| defined on Z := {—1,—0.5,0,0.5,1} with corresponding probabili-
ties {0.1,0.2,0.3,0.1,0.3}. The blue dash line is the surrogate distribution p(z) = po(z), where the base function
po(x) is the p.d.f. of standard Gaussian distribution. The red dash line is the transformed piecewise continuous
density p.(z) « po(z)p«(T(x)), where I'(x) = a; if € [g;—1,7;) and n; is i/5-th quantile of standard Gaussian
distribution. We apply Algorithm [I| to draw a set of samples {z;}?_; (shown in green dots) to approximate
the transformed target distribution. Then we can obtain a set of samples {z;}?; by z; = I'(x;)), to get an
approximation of the original categorical distribution.

0.6 0.6 0.6 0.6 e Target
0.5 0.5 0.5 0.5 Approximated Density
—————— Transformed Target
0.4 = 0.4 0.4 i 0.4 i g
o N - N\ urrogate

0.3 0.3 K (0.3 / (0.3 /[Particles
0.2 0.2 0.2 0.2 g\
0.1{ J_ l 0.1 l J _l 0.1 1J l \ 0.1 / l l \\\
0.0 oo 1 - 0.0,,9-- > D 0.0- () oo flod @ | 0.0- Z"o I IIr .

3-2-10 1 2 3 "=3-2-10 1 2 -3-2-10 1 2 3 "=3-2-10 1 2 3

(a) Oth iteration (b) 25th iteration (c) 50th iteration (d) 100th iteration

Figure 7: Evolution of real-valued particles {x;}_; (in green dots) by our discrete sampler in Alg on a one-
dimensional categorical distribution. (a-d) shows particles {z'} at iteration 0, 10, 50 and 100 respectively.
The categorical distribution is defined on states z € {—1,-0.5,0,0.5,1} denoted by a1, as, a3, a4, az, with
probabilities {0.1,0.2,0.3,0.1,0.3} denoted by ¢1, ¢, ¢3, ¢4, c5, respectively. p.(z = a;) = ¢;. The base function
is po(z), shown in blue line. The transformed target to be sampled p.(x) o po(z)p«(I'(z)), where I'(z) = a;
if x € [m—1,m) and n; is i/5-th quantile of standard Gaussian distribution. The surrogate distribution p(z) is
chosen as po(z). We obtain discrete samples {z;}7; by z; = I'(z;).

As shown in Fig[7 the empirical distribution of the discretized sample {z;}7_; (shown in green bars) aligns
closely with the true distribution (the red bars) when the algorithm converges (e.g., at the 100-th iteration).

Results on Bernoulli RBM The probability model is given in and the score function is derived in
Section 5.3 (Han & Liu, 2017). We also evaluate the sample quality based on the mean square error (MSE)
between the estimation and the ground truth value. From Fig. a), we can see that when fixing the dimension
of the distribution p.(z), our sampling method has much lower MSE than Gibbs and DHMC. In Fig. (b), as
the dimension of the model increases, our sampling method has relatively better MSE than that of Gibbs and
DHMC.

s -6~ Gibbs -0
—+— DHMC
10 -©— GF-SVGD -22
w -175 w
"zn g -2.4
o —2.00 o
';\ -
9 -225 g -26
-2.50
-28
=275
-3.0
10 50 100 25 50 75 100 125 150 175 200
Number of samples Dimensions
(a) Fix dimension (b) Fix sample size

Figure 8: Bernoulli RBM with number of visible units M = 25. In (a), we fix the dimension of visible variables d = 100
and vary the number of samples {z’}}_;. In (b), we fix the number of samples n = 100 and vary the dimension of visible
variables d. We calculate the MSE for estimating the mean E[z] (lower is better).

Jun Han', Fan Ding?, Xianglong Liu?, Lorenzo Torresani', Jian Peng®, Qiang Liu*

B Training BNN Algorithm

In this section, we provide the procedure of our principled ensemble algorithm to train binarized neural network.
We train an ensemble of n neural networks (NN) with the same architecture (n > 2). Let w? be the binary weight
of model i, for i = 1,--- ,n, and p,(w?; D) be the target probability model with softmax layer as last layer given
the data D. Learning the target probability model is framed as drawing n samples {w?}"™_; to approximate the
posterior distribution p,(w”; D). We apply multi-dimensional transform F to transform the original discrete-
valued target to the target distribution of real-valued w € R%. Let po(w) be the base function, which is the
product of the p.d.f. of the standard Gaussian distribution over the dimension d. Based on the derivation in
Section 3, the distribution of w has the form p.(w;D) o p.(sign(w); D)po(w) with weight w and the sign
function is applied to each dimension of w. To backpropagate the gradient to the non-differentiable target, we
construct a surrogate probability model p(w; D) which approximates sign(w) in the transformed target by o(x)
and relax the binary activation function {—1,1} by o, where o is defined by (??), denoted by p(o(w); D)po(w).
Here p(o(w); D) is a differentiable approximation of p,(sign(w); D). Then we apply GF-SVGD to update {w;}

to approximate the transformed target distribution of p.(w; D) of w as follows, w; +~ w;+ g Aw;, Vi =1,--- ,n,
Awiey 5[V log p(w;s Di)k(wjw;) +Vu, k(wjw;)] (18)
j=1

where D; is batch data ¢ and p; = p(w;; D;)/pe(w;; D;), H(t) def Z?=1 I(u; > t)/n, v; = (H(w;))~! and
Q= 2?21 7;- Note that we don’t need to calculate the cumbersome term po(w) as it can be canceled from the
ratio between the surrogate distribution and the transformed distribution. In practice, we find a more effective
way to estimate this density ratio denoted by ;. Intuitively, this corresponds to assigning each particle a weight
according to the rank of its density ratio in the population. Algorithm [3]on Appendix [B|can be viewed as a new

form of ensemble method for training NN models with discrete parameters.

Algorithm 3 GF-SVGD on training BNN
Inputs: training set D and testing set Diest
Outputs: classification accuracy on testing set.
Initialize full-precision models {w'}? ; and its binary form {w?}? ; where w? = sign(w?).
while not converge do
-Sample n batch data {D;}7_;.
-Calculate the true likelihood p.(w;; D;) o ps(sign(w;); D;)po(x)
-Relax w! with o(w;)
-Relax each sign activation function to the smooth function defined in (??) to get p
-Calculate the surrogate likelihood p(w®; D;) o< p(o(w;); D;)po(x)
~w; < w; + Aw;, Vi =1,--- ,n, where Aw; is defined in .
-Clip {w;} to interval (—1,1) for stability.
end while
-Calculate the probability output by softmax layer p(w?; Diest)
-Calculate the average probability f(wp; Diest) < D oieq P(W?; Dyest)
Output test accuracy from f(wp; Diest)-

C Transform Discrete Samples to Continuous Samples for Goodness-of-fit Test

Let F be the c.d.f. of Gaussian base density pg. Let us first illustrate how to transform one-dimensional samples
{7}, to continuous samples.
1. Given discrete data {z;}_,. Let {a;}/, are possible discrete states. Assume K is large so that for any z;,
we have z; = a; for one j.
2. For any z; such as z; = a;, randomly sample y; € [2F,). We obtain data {y;}7;.
3. Apply = F~1(y), we obtain data {z;}7.
For & = (2!, ,2%), let F(z) = (Fi(21), -, Fa(z?), where F; is the c.d.f. of Gaussian density po;(z?). We

apply the above one-dimensional transform to each dimension of {z;}_,, z; = (2} z4). We can easily obtain
the continuous data {x;}]—;.

i 0 %

Stein Variational Inference for Discrete Distributions

D Proofs

In the following, we prove proposition 4.

Proposition 4 Assume I' is an even partition of po(x), and p.(x) = Kpo(x)p.(I'(x)), where K severs as a
normalization constant, then (p., I') is a continuous parameterisation of p,.

Proof. We just need to verify that @I) holds.

[pe(ajtia: = (@)l

= K/po(:c)p*(F(:c))I[[ai =T'(x)]dx

= K/po(m)p*(ai)ﬂ[ai =T'(x)]dx

= Kp.(a;) /po(m)ﬂ[ai =TI'(x)]dx

= p* (ai)7
where the last step follows . O
E Detail of Experiments and Network Architecture
In all experiments, we use RBF kernel k(x, ') = exp(— ||z —'||?/h) for the updates of our proposed algorithms;
the bandwidth h is taken to be h=med?/(2log(n + 1)) where med is the median of the current n particles. Adam

optimizer [Kingma & Bal (2014) is applied to our proposed algorithms for accelerating convergence. ¢ = 0.0001
works for all the experiments.

We use the same AlexNet as|Zhu et al.| (2018]), which is illustrated in the following.

Layer Type Parameters
1 Conv Depth: 96, K: 11 x 11, S: 4, P:0
2 Relu -
3 MaxPool K:3x3,S:2
4 BatchNorm -
5 Conv Depth: 256, K: 5 x5, S: 1, P:1
6 Relu -
7 MaxPool K:3x3,S:2
8 BatchNorm -
9 Conv Depth: 384, K: 3 x 3, S: 1, P:1
10 Relu -
11 Conv Depth: 384, K: 3 x3,8S: 1, P:1
12 Relu -
13 Conv Depth: 256, K: 3 x3,S: 1, P:1
14 Relu -
15 MaxPool K:3x3,S:2
16 Dropout p=20.5
17 FC Width=4096
18 Relu -
19 Dropout p=20.5
20 FC Width=4096
21 Relu -
22 FC Width=10

Table 1: Architecture of AlexNet. "K” denotes kernel size; ”S” denotes stride; "P” denotes padding.

	Additional Experimental Result
	Training BNN Algorithm
	Transform Discrete Samples to Continuous Samples for Goodness-of-fit Test
	Proofs
	Detail of Experiments and Network Architecture

