
Supplement to “Sparse and Low-rank Tensor Estimation via Cubic
Sketchings”

This supplementary contains five parts: (1) Section A contains high-order interaction effect model using

our cubic sketching framework; (2) Section B includes detailed proofs for empirical moment estimator and

concentration results; (3) Section C provides additional proofs for the main theoretical results of this paper;

(2) Section D contains detailed proofs for the theoretical developments in the main theorems; (4) Section E

discusses the matrix form of gradient function and stochastic gradient descent; (5) Section F provides several

technical lemmas and their proofs.

A Application to High-Order Interaction Effect Models

In this section, we estimate high-order interaction effect models in the cubic sketching framework (see Figure

3). Specifically, we consider the following three-way interaction model

yl = ξ0 +

p∑
i=1

ξizli +

p∑
i,j=1

γijzlizlj +

p∑
i,j,k=1

ηijkzlizljzlk + εl, l = 1, . . . , n. (S.1)

Here ξ, γ, and η are coefficients for main effect, pairwise interaction, and triple-wise interaction, respectively.

Importantly, (S.1) can be reformulated as the following tensor form (also see the left panel in Figure 3)

yl = 〈B,xl ◦ xl ◦ xl〉+ εl, l = 1, . . . , n, (S.2)

where xl = (1, z>l )> ∈ Rp+1 and B ∈ R(p+1)×(p+1)×(p+1) is a tensor parameter corresponding to coefficients

in the following way: 
B[0,0,0] = ξ0,

B[1:p,1:p,1:p] = (ηijk)1≤i,j,k≤p,

B[0,1:p,1:p] = B[1:p,0,1:p] = B[1:p,1:p,0] = (γij/3)1≤i,j≤p,

B[0,0,1:p] = B[0,1:p,0] = B[1:p,0,0] = (ξi/3)1≤i≤p.

(S.3)

Figure 3: Illustration for interaction reformulation.

We next argue that it is reasonable to assume B is low rank and sparse in the tensor formulation of high-order

interaction models. First, in modern biomedical research such as Hung et al. (2016), only a small portion

of coefficients contribute to the response, leading to a highly sparse B. Further, Sidiropoulos and Kyrillidis

(2012) suggested that for the low-enough rank it is suitable to model sparse tensors as arising from sparse

loadings, saying CP-decomposition. Moreover, this low-rank-and-sparse assumption (or approximation) seems

necessary when the sample size is limited. Specifically, we assume B is of CP rank-K with s-sparse factors,

where K, s� p. It is easy to see that the number of parameters in (S.4) is K(p+ 1), which is significantly
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smaller than (p+ 1)3, the total number of parameters in the original three-way interaction effect model (S.1).

In this case, (S.2) can be written as

yl =
〈 K∑
k=1

ηkβk ◦ βk ◦ βk,xl ◦ xl ◦ xl
〉

+ εl, l = 1, . . . , n,

where ‖βk‖2 = 1, ‖βk‖0 ≤ s, k ∈ [K].

(S.4)

By assuming zl
iid∼ Np(0, Ip), the high-order interaction effect model (S.2) reduces to the symmetric tensor

estimation model (3.1) with the only difference that the first coordinate of xl, i.e., the intercept, is always

1. To accommodate this slight difference, we only need to adjust the initial unbiased estimate in the above

two-step procedure. We first obtain Ts by replacing xi therein by xl, where xl corresponds the l-th observation

Ts =
1

6n

n∑
l=1

ylxl ◦ xl ◦ xl −
1

6

p∑
j=1

(a ◦ ej ◦ ej + ej ◦ a ◦ ej + ej ◦ ej ◦ a),

where a =
1

n

n∑
l=1

ylxl,

(S.5)

then construct empirical-moment-based initial tensor Ts′ as

• For i, j, k 6= 0, Ts′[i,j,k] = Ts[i,j,k]. And Ts′[i,j,0] = Ts[i,j,0], Ts′[0,j,k] = Ts[0,j,k], Ts′[i,0,k] = Ts[i,0,k].

• For i 6= 0, Ts′[0,0,i] = Ts′[0,i,0] = Ts′[i,0,0] = 1
3Ts[0,0,i] −

1
6 (
∑p
k=1 Ts[k,k,i] − (p+ 2)ai).

• Ts′[0,0,0] = 1
2p−2 (

∑p
k=1 Ts[0,k,k] − (p+ 2)Ts[0,0,0]).

Lemma 4 verifies that Ts′ is an unbiased estimator for B.

Theoretical results in Section 4 imply the following upper and lower bound results in this particular example.

Corollary 1 . Suppose that z1, . . . ,zn are i.i.d. standard Gaussian random vectors and B satisfies Conditions

1, 2 and 3. The output, denoted as B̂, from the proposed Algorithms 1 and 2 based on Ts′ satisfies∥∥∥B̂ − B∥∥∥2

F
≤ Cσ

2Ks log p

n
(S.6)

with high probability. On the other hand, considering the following class of B,

Fp+1,K,s =

{
B :

B =
∑K
k=1 ηkβk ◦ βk ◦ βk, ‖βk‖0 ≤ s, for k ∈ [K],

B satisfies Conditions 1, 2, and 3,

}
.

then the following lower bound holds,

inf
B̂

sup
B∈Fp+1,K,s

E
∥∥∥B̂ − B∥∥∥2

F
≥ Cσ

2Ks log p

n
.

B Main Proofs

In this section, we provide detailed proofs for empirical moment estimator and concentration results in

Sections S.I and S.II.
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S.I Moment Calculation

We first introduce three lemmas to show that the empirical moment based tensors are all unbiased estimators

for the target low-rank tensor in the corresponding scenarios. Detail proofs of three lemmas are postponed to

Sections S.I.1, S.I.2 and S.I.3 in the supplementary materials.

Lemma 2 (Unbiasedness of moment estimator under non-symmetric sketchings). Consider a non-symmetric

tensor estimation model as follows

yi = 〈T ∗,Xi〉+ εi, Xi = ui ◦ vi ◦wi, i ∈ [n], (S.1)

where ui ∈ Rp1 ,vi ∈ Rp2 ,wi ∈ Rp3 are random vectors with i.i.d. standard normal entries. Again, we assume

T ∗ is sparse and low-rank in a similar sense that

T ∗ =

K∑
k=1

η∗kβ
∗
1k ◦ β∗2k ◦ β∗3k,

‖β∗1k‖2 = ‖β∗2k‖2 = ‖β∗3k‖2 = 1, max{‖β∗1k‖0, ‖β∗2k‖0, ‖β∗3k‖0} ≤ s.

(S.2)

Define the empirical-moment-based tensor T by

T :=
1

n

n∑
i=1

yiui ◦ vi ◦wi.

Then T is an unbiased estimator for T ∗, i.e.,

E(T ) =

K∑
k=1

η∗kβ
∗
1k ◦ β∗2k ◦ β∗3k.

The extension to the symmetric case is non-trivial due to the dependency among three identical sketching

vectors. We borrow the idea of high-order Stein’s identity, which was originally proposed in Janzamin et al.

(2014). To fix the idea, we present only third order result for simplicity. The extension to higher-order is

straightforward.

Theorem 5 (Third-order Stein’s Identity, (Janzamin et al., 2014)). Let x ∈ Rp be a random vector with joint

density function p(x). Define the third order score function S3(x) : Rp → Rp×p×p as S3(x) = −∇3p(x)/p(x).

Then for continuously differentiable function G(x) : Rp → R, we have

E [G(x) · S3(x)] = E
[
∇3G(x)

]
. (S.3)

In general, the order-m high-order score function is defined as

Sm(x) = (−1)m
∇mp(x)

p(x)
.

Interestingly, the high-order score function has a recursive differential representation

Sm(x) := −Sm−1(x) ◦ ∇ log p(x)−∇Sm−1(x), (S.4)

with S0(x) = 1. This recursive form is helpful for constructing unbiased tensor estimator under symmetric

cubic sketchings. Note that the first order score function S1(x) = −∇ log p(x) is the same as score function

in Lemma 24 (Stein’s lemma (Stein et al., 2004)). The proof of Theorem 5 relies on iteratively applying the

recursion representation of score function (S.4) and the first-order Stein’s lemma (Lemma 24). We provide

the detailed proof in Section S.IV for the sake of completeness.
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In particular, if x follows a standard Gaussian vector, each order score function can be calculated based on

(S.4) as follows,

S1(x) = x,S2(x) = x ◦ x− Id×d,

S3(x) = x ◦ x ◦ x−
p∑
j=1

(
x ◦ ej ◦ ej + ej ◦ x ◦ ej + ej ◦ ej ◦ x

)
.

(S.5)

Interestingly, if we let G(x) =
∑K
k=1 η

∗
k(x>β∗k)3, then

1

6
∇3G(x) =

K∑
k=1

η∗kβ
∗
k ◦ β∗k ◦ β∗k, (S.6)

which is exactly T ∗. Connecting this fact with (S.3), we are able to construct the unbiased estimator in the

following lemma through high-order Stein’s identity.

Lemma 3 (Unbiasedness of moment estimator under symmetric sketchings). Consider the symmetric tensor

estimation model (3.1) & (4.8). Define the empirical first-order moment m1 := 1
n

∑n
i=1 yixi. If we further

define an empirical third-order-moment-based tensor Ts by

Ts :=
1

6

[ 1

n

n∑
i=1

yixi ◦ xi ◦ xi −
p∑
j=1

(
m1 ◦ ej ◦ ej + ej ◦m1 ◦ ej + ej ◦ ej ◦m1

)]
,

then

E(Ts) =

K∑
k=1

η∗kβ
∗
k ◦ β∗k ◦ β∗k.

Proof. Note that yi = G(xi) + εi. Then we have

E
( 1

n

n∑
i=1

yiS3(x)
)

= E
( 1

n

n∑
i=1

(G(xi) + εi)S3(xi)
)
,

where S3(x) is defined in (S.5). By using the conclusion in Theorem 5 and the fact (S.6), we obtain

E(Ts) = E
( 1

6n

n∑
i=1

yiS3(x)
)

=

K∑
k=1

η∗kβ
∗
k ◦ β∗k ◦ β∗k,

since εi is independent of xi. This ends the proof. �

Although the interaction effect model (S.1) is still based on symmetric sketchings, we need much more careful

construction for the moment-based estimator, since the first coordinate of the sketching vector is always

constant 1. We give such an estimator in the following lemma.

Lemma 4 (Unbiasedness of moment estimator in interaction model). For interaction effect model (S.1),

construct the empirical moment based tensor Ts′ as following

• For i, j, k 6= 0, Ts′[i,j,k] = Ts[i,j,k]. And Ts′[i,j,0] = Ts[i,j,0], Ts′[0,j,k] = Ts[0,j,k], Ts′[i,0,k] = Ts[i,0,k].

• For i 6= 0, Ts′[0,0,i] = Ts′[0,i,0] = Ts′[i,0,0] = 1
3Ts[0,0,i] −

1
6 (
∑p
k=1 Ts[k,k,i] − (p+ 2)ai).

• Ts′[0,0,0] = 1
2p−2 (

∑p
k=1 Ts[0,k,k] − (p+ 2)Ts[0,0,0]).

The Ts′ is an unbiased estimator for B, i.e.,

E(Ts′) =

K∑
k=1

ηkβk ◦ βk ◦ βk.
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S.II Proof of Lemma 1: Concentration Inequalities

We aim to prove Lemma 1 in this subsection. This lemma provides key concentration inequalities of the

theoretical analysis for the main result. Before going into technical details, we introduce a quasi-norm called

ψα-norm.

Definition 1 (ψα-norm (Adamczak et al., 2011)). The ψα-norm of any random variable X and α > 0 is

defined as

‖X‖ψα := inf
{
C ∈ (0,∞) : E[exp(|X|/C)α] ≤ 2

}
.

Particularly, a random variable who has a bounded ψ2-norm or bounded ψ1-norm is called sub-Gaussian or

sub-exponential random variable, respectively. Next lemma provides an upper bound for the p-th moment of

sum of random variables with bounded ψα-norm.

Lemma 5 . Suppose X1, . . . , Xn are n independent random variables satisfying ‖Xi‖ψα ≤ b with α > 0,

then for all a = (a1, . . . , an) ∈ Rn and p ≥ 2,

(
E
∣∣∣ n∑
i=1

aiXi − E(

n∑
i=1

aiXi)
∣∣∣p) 1

p

≤
{
C1(α)b

(√
p‖a‖2 + p1/α‖a‖∞

)
, if 0 < α < 1;

C2(α)b
(√
p‖a‖2 + p1/α‖a‖α∗

)
, if α ≥ 1.

(S.7)

where 1/α∗ + 1/α = 1, C1(α), C2(α) are some absolute constants only depending on α.

If 0 < α < 1, (S.7) is a combination of Theorem 6.2 in Hitczenko et al. (1997) and the fact that the p-th

moment of a Weibull variable with parameter α is of order p1/α. If α ≥ 1, (S.7) follows from a combination

of Corollaries 2.9 and 2.10 in Talagrand (1994). Continuing with standard symmetrization arguments, we

reach the conclusion for general random variables. When α = 1 or 2, (S.7) coincides with standard moment

bounds for a sum of sub-Gaussian and sub-exponential random variables in Vershynin (2012). The detailed

proof of Lemma 5 is postponed to Section S.II.

When 0 < α < 1, by Chebyshev’s inequality, one can obtain the following exponential tail bound for the sum of

random variables with bounded ψα-norm. This lemma generalizes the Hoeffding-type concentration inequality

for sub-Gaussian random variables (see, e.g. Proposition 5.10 in Vershynin (2012)), and Bernstein-type

concentration inequality for sub-exponential random variables (see, e.g. Proposition 5.16 in Vershynin (2012)).

Lemma 6 . Suppose 0 < α < 1, X1, . . . , Xn are independent random variables satisfying ‖Xi‖ψα ≤ b.

Then there exists absolute constant C(α) only depending on α such that for any a = (a1, . . . , an) ∈ Rn and

0 < δ < 1/e2,

∣∣∣ n∑
i=1

aiXi − E(

n∑
i=1

aiXi)
∣∣∣ ≤ C(α)b‖a‖2(log δ−1)1/2 + C(α)b‖a‖∞(log δ−1)1/α

with probability at least 1− δ.

Proof. For any t > 0, by Markov’s inequality,

P
(∣∣∣ n∑

i=1

aiXi − E
( n∑
i=1

aiXi

)∣∣∣ ≥ t) = P
(∣∣∣ n∑

i=1

aiXi − E
( n∑
i=1

aiXi

)∣∣∣p ≥ tp)

≤
E
∣∣∣∑n

i=1 aiXi − E
(∑n

i=1 aiXi

)∣∣∣p
tp

≤
C(α)pbp

(√
p‖a‖2 + p1/α‖a‖∞

)p
tp

,
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where the last inequality is from Lemma 5. We set t such that exp(−p) = C(α)pbp(
√
p‖a‖2 + p1/α‖a‖∞)p/tp.

Then for p ≥ 2, ∣∣∣ n∑
i=1

aiXi − E
( n∑
i=1

aiXi

)∣∣∣ ≤ eC(α)b
(√

p‖a‖2 + p1/α‖a‖∞
)

holds with probability at least 1− exp(−p). Letting δ = exp(−p), we have that for any 0 < δ < 1/e2,∣∣∣ n∑
i=1

aiXi − E
( n∑
i=1

aiXi

)∣∣∣ ≤ C(α)b
(
‖a‖2(log δ−1)1/2 + ‖a‖∞(log δ−1)1/α

)
,

holds with probability at least 1− δ. This ends the proof. �

The next lemma provides an upper bound for the product of random variables in ψα-norm.

Lemma 7 (ψα for product of random variables). Suppose X1, . . . , Xm are m random variables (not necessarily

independent) with ψα-norm bounded by ‖Xj‖ψα ≤ Kj . Then the ψα/m-norm of
∏m
j=1Xj is bounded as∥∥∥∥∥∥

m∏
j=1

Xj

∥∥∥∥∥∥
ψα/m

≤
m∏
j=1

Kj .

Proof. For any {xj}mj=1 and α > 0, by using the inequality of arithmetic and geometric means we have(
|
m∏
j=1

xj
Kj
|
)α/m

=
( m∏
j=1

| xj
Kj
|α
)1/m

≤ 1

m

m∑
j=1

| xj
Kj
|α.

Since exponential function is a monotone increasing function, it shows that

exp
(
|
m∏
j=1

xj
Kj
|
)α/m

≤ exp
( 1

m

m∑
j=1

| xj
Kj
|α
)

=
( m∏
j=1

exp(| xj
Kj
|α)
)1/m

≤ 1

m

m∑
j=1

exp
(
| xj
Kj
|α
)
.

(S.8)

From the definition of ψα-norm, for j = 1, 2, . . . ,m, each individual Xj has

E
(

exp(
|Xj |
Kj

)α
)
≤ 2. (S.9)

Putting (S.8) and (S.9) together, we obtain

E
[

exp
(
|
∏m
j=1Xj∏m
j=1Kj

|
)α/m]

= E
[

exp
(
|
m∏
j=1

Xj

Kj
|
)α/m]

≤ 1

m

m∑
j=1

E
[

exp
(
|Xj

Kj
|
)α]
≤ 2.

Therefore, we conclude that the ψα/m-norm of
∏m
j=1Xj is bounded by

∏m
j=1Kj . �

Lemma 8 (Concentration inequality for sum of sub-Gaussian products). Suppose Xi = (x>1i, . . . ,x
>
mi)
> ∈

Rm×p, i ∈ [n] are n i.i.d random matrices. Here, xij is the j-th row of Xi and suppose it is an isotropic

sub-Gaussian vector. Then for any vectors a = (a1 . . . , an) ∈ Rn, {βj}mj=1 ⊆ Rp, and 0 < δ < 1, we have∣∣∣ n∑
i=1

ai

m∏
j=1

(x>ijβj)− E
( n∑
i=1

ai

m∏
j=1

(x>ijβj)
)∣∣∣

≤ C
m∏
j=1

‖βj‖2
(
‖a‖∞(log δ−1)m/2 + ‖a‖2(log δ−1)1/2

)
,
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with probability at least 1− δ for some constant C.

Note that in Lemma 8, entries in each matrixXi are not necessarily independent even {Xi}ni=1 are independent

matrices.

Proof of Lemma 8. Note that for any j = 1, 2, . . . ,m, the ψ2-norm of X>j βj is bounded by ‖βj‖2 (Vershynin,

2012). According to Lemma 7, the ψ2/m-norm of
∏m
j=1(X>j βj) is bounded by

∏m
j=1 ‖βj‖2. Directly applying

Lemma 6, we reach the conclusion. �

Proof of Lemma 1. We first start from the non-symmetric version in (S.1) and the proof follows three steps:

1. Truncate the first coordinate of x1i,x2i,x3i by a carefully chosen truncation level;

2. Utilize the high-order concentration inequality in Lemma 18 at order three;

3. Show that the bias caused by truncation is negligible.

With slightly abuse of notations, we denote a, x, y etc. as their first coordinate of a,x,y etc. Without loss of

generality, we assume p := max{p1, p2, p3}. By unitary invariance, we assume β1 = β2 = β3 = e1, where

e1 = (1, 0, . . . , 0)>. Then, it is equivalent to prove∥∥∥Mnsy − E(Mnsy)
∥∥∥
s

=
∥∥∥ 1

n

n∑
i=1

x1ix2ix3ix1i ◦ x2i ◦ x3i − e1 ◦ e1 ◦ e1

∥∥∥
s

≤ C(log n)3
(√s3 log3(p/s)

n2
+

√
s log(p/s)

n

)
.

Suppose x1 ∼ N (0, Ip1),x2 ∼ N (0, Ip2),x3 ∼ N (0, Ip3) and {x1i,x2i,x3i}ni=1 are n independent samples

of {x1,x2,x3}. And define a bounded event Gn for the first coordinate and its corresponding population

version,

Gn = {max
i
{|x1i|, |x2i|, |x3i|} ≤M},G = {max{|x1|, |x2|, |x3|} ≤M},

where M is a large constant to be specified later. Decomposing ‖Mnsy − E(Mnsy)‖s as∥∥∥Mnsy − E(Mnsy)
∥∥∥
s

≤
∥∥∥ 1

n

n∑
i=1

x1ix2ix3ix1i ◦ x2i ◦ x3i − E
(
x1x2x3x1 ◦ x2 ◦ x3

∣∣G)∥∥∥
s︸ ︷︷ ︸

M1:main term

+
∥∥∥E(x1x2x3x1 ◦ x2 ◦ x3

∣∣G)− e1 ◦ e1 ◦ e1

∥∥∥
s︸ ︷︷ ︸

M2:bias term

,

we will prove that M2 is negligible in terms of convergence rate of M1.

Bounding M1. For simplicity, we define x′1 = x1|G, x′2 = x2|G, x′3 = x3|G, and {x′1i,x′2i,x′3i}ni=1 are n

independent samples of {x′1,x′2,x′3}. According to the law of total probability, we have

P
(
M1 ≥ t

)
≤ P

(
Gcn
)

+ P
(∥∥∥ 1

n

n∑
i=1

x′1ix
′
1i ◦ x′3ix′2i ◦ x′i1x′3i − E

(
x′1x

′
1 ◦ x′2x′2 ◦ x′3x′3

)∥∥∥
s︸ ︷︷ ︸

M11

≥ t
)
.
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According to Lemma 20, the entry of x′1ix
′
1i, x

′
2ix
′
2i, x

′
3ix
′
3i are sub-Gaussian random variable with ψ2-norm

M2. Applying Lemma 18, we obtain

P
(
M11 ≥ C1M

6δn,s

)
≤ 1

p
,

where δn,s = ((s log(p/s))3/n2)1/2 + (s log(p/s)/n)1/2.

On the other hand,

P(Gcn) ≤ 3

n∑
i=1

P(|x1i| ≥M) ≤ 3ne1−C2M
2

Putting the above bounds together, we obtain

P
(
M1 ≥ C1M

6δn,s

)
≤ 1/s+ 3ne1−C2M

2

.

By setting M = 2
√

log n/C2, the bound of M1 reduces to

P
(
M1 ≥

64C1

C3
2

δn,s(log n)3
)
≤ 1

p
+

3e

n3
. (S.10)

Bounding M2. There exists % ∈ Sp−1 such that

M2 =
∣∣∣E(x1x2x3(x>1 %)(x>2 %)(x>3 %)

∣∣∣G)− (e>1 %)3∣∣∣.
Since x1j is independent of x1k for any j 6= k, E(x1(x>1 %)|G) = E(x2

1%1|G). Then

M2 =
∣∣∣E(x2

1x
2
2x

2
3%

3
1

∣∣∣G)− %3
1

∣∣∣
=

∣∣∣%3
1E
(
x2

1

∣∣∣|x1| ≤M
)
E
(
x2

2

∣∣∣|x2| ≤M
)
E
(
x2

3

∣∣∣|x3| ≤M
)
− %3

1

∣∣∣,
where the second equation comes from the independence among each coordinate of {x1i,x2i,x3i}.

By the basic property of Gaussian random variable, we can show

1 ≥ E
(
x2
i

∣∣|xi| ≤M) ≥ 1− 2Me−M
2/2, i = 1, 2, 3.

Plugging them into M2, we have

M2 ≤
∣∣%3

1

∣∣∣∣∣(1− 2Me−M
2/2
)3

− 1
∣∣∣

≤
∣∣∣12M2e−M

2

− 6Me−M
2/2 − 8M3e−3M2/2

∣∣∣
≤

∣∣∣26M3e−M
2/2
∣∣∣,

where the second inequality is due to ‖%‖22 = 1 and the last inequality holds for a large M > 0. By the choice

of M = 2
√

log n/C2, we have M2 ≤ 208/C
3/2
2 (log n)

3
2 /n2 for some constant C2. When n is large, this rate is

negligible comparing with (S.10)

Bounding M : We put the upper bounds of M1 and M2 together. After some adjustments for absolute

constant, it suffices to obtain

P
(
M1 +M2 ≤ C(log n)3

(√s3 log3(p/s)

n2
+

√
s log(p/s)

n

))
≥ 1− 10

n3
.

This concludes the proof of non-symmetric part. The proof of symmetric part remains similar and thus is

omitted here. �
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C Additional Proofs for Main Results

S.I Proof of Theorem 2: Initialization Effect

Theorem 2 gives an approximation error upper bound for the sparse-tensor-decomposition-based initial

estimator. In Step I of Section 3.1, the original problem can be reformatted to a version of tensor denoising:

Ts = T ∗ + E , where E = Ts − E(Ts). (S.1)

The key difference between our model (S.1) and recent work is that E arises from empirical moment

approximation, rather than the random observation noise considered in Anandkumar et al. (2014) and Sun

et al. (2017). Next lemma gives an upper bound for the approximation error.

Lemma 9 (Approximation error of Ts). Recall that E = Ts − E(Ts), where Ts is defined in (3.1). Suppose

Condition 4 is satisfied and s ≤ d ≤ Cs. Then

‖E‖s+d ≤ 2C1

K∑
k=1

η∗k

(√s3 log3(p/s)

n2
+

√
s log(p/s)

n

)
(log n)4 (S.2)

with probability at least 1− 5/n for some uniform constant C1.

Next we denote the following quantity for simplicity,

γ = C2 min
{R−1

6
−
√
K

s
,
R−1

4
√

5
− 2√

s

(
1 +

√
K

s

)2

}, (S.3)

where R is the singular value ratio, K is the CP-rank, s is the sparsity parameter, Γ is the incoherence

parameter and C2 is uniform constant.

Next lemma provides theoretical guarantees for sparse tensor decomposition method.

Lemma 10 . Suppose that the symmetric tensor denoising model (S.1) satisfies Conditions 1, 2 and 3 (i.e.,

the identifiability, parameter space and incoherence). Assume the number of initializations L ≥ KC3γ
−4

and the number of iterations N ≥ C4 log
(
γ/
(

1
η∗min
‖E‖s+d +

√
KΓ2

))
for constants C3, C4, the truncation

parameter s ≤ d ≤ Cs. Then the sparse-tensor-decomposition-based initialization satisfies

max
{
‖β(0)

k − β
∗
k‖2, |η

(0)
k − η

∗
k|
}
≤ C4

η∗min

‖E‖s+d +
√
KΓ2, (S.4)

for any k ∈ [K].

The proof of Lemma 10 essentially follows Theorem 3.9 in Sun et al. (2017), we thus omit the detailed proof

here. The upper bound in (S.4) contains two terms: C4

η∗min
‖E‖s+d and

√
KΓ2, which are due to the empirical

moment approximation and the incoherence among different βk, respectively.

Remark 4 . The guarantee of K-mean initialization scheme is hidden in Lemma 10 that provides a generic

error bound for the sparse-tensor-decomposition-based initialization. Initialized by sparse SVD (Algorithm

3), we can prove that the K-means clustering outputs K cluster centers that are sufficiently close to the true

components of the tensor.

Although the sparse tensor decomposition is not optimal in statistical rate, it does offer a reasonable initial

estimation provided enough samples. Equipped with (S.2) and Condition 2, the right side of (S.4) reduces to

C4

η∗min

‖E‖s+d +
√
KΓ2

≤ 2C1C4KR
(√s3 log3(p/s)

n2
+

√
s log(p/s)

n

)
(log n)4 +

√
KΓ2,
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with probability at least 1 − 5/n. Denote C0 = 4 · 2160 · C1C4. Using Conditions 3 and 5, we reach the

conclusion that

max
{
‖β(0)

k − β
∗
k‖2, |η

(0)
k − η

∗
k|
}
≤ K−1R−2/2160,

with probability at least 1− 5/n. �

S.II Proof of Theorem 1: Gradient Update

We first introduce the following lemma to illustrate the improvement of one step thresholded gradient update

under suitable conditions. The error bound includes two parts: the optimization error that describes one step

effect for gradient update, and the statistical error that reflects the random noise effect. The proof of Lemma

11 is given in Section S.IV in the supplementary materials. For notation simplicity, we drop the superscript

of η
(0)
k in the following proof.

Lemma 11 . Let t ≥ 0 be an integer. Suppose Conditions 1-5 hold and {β(t)
k , ηk} satisfies the following

upper bound
K∑
k=1

∥∥∥ 3
√
ηkβ

(t)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
≤ 4Kη

∗ 2
3

maxε
2
0, max

k∈[K]

∣∣∣ηk − η∗k∣∣∣ ≤ ε0, (S.5)

with probability at least 1−O(K/n), where ε0 = K−1R−
4
3 /2160. As long as the step size µ satisfies

0 < µ ≤ µ0 =
32R−20/3

3K[220 + 270K]2
, (S.6)

then {β(t+1)
k } can be upper bounded as

K∑
k=1

∥∥∥ 3
√
ηkβ

(t+1)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2

≤
(

1− 32µK−2R−
8
3

) K∑
k=1

∥∥∥ 3
√
ηkβ

(t)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2︸ ︷︷ ︸
optimization error

+ 2C0µ
2K−2R−

8
3 η
∗− 4

3
min

σ2s log p

n︸ ︷︷ ︸
statistical error

,

with probability at least 1−O(Ks/n).

In order to apply Lemma 11, we prove that the required condition (S.5) holds at every iteration step t by

induction. When t = 0, by (4.2) and Condition 2,∥∥∥β(0)
k − β

∗
k

∥∥∥
2
≤ ε0,

∣∣∣ηk − η∗k∣∣∣ ≤ ε0, for k ∈ [K],

holds with probability at least 1−O(1/n). Since the initial estimator output by first stage is normalized,

i.e., ‖β(0)
k ‖2 = ‖β∗k‖2 = 1, by triangle inequality we have∥∥∥ 3

√
ηkβ

(0)
k − 3

√
η∗kβ

∗
k

∥∥∥
2
≤

∥∥∥ 3
√
ηkβ

(0)
k − 3

√
η∗kβ

(0)
k + 3

√
η∗kβ

(0)
k − 3

√
η∗kβ

∗
k

∥∥∥
2

≤ | 3√ηk − 3
√
η∗k|+ 3

√
η∗k

∥∥∥β(0)
k − β

∗
k

∥∥∥
2
.

Note that ∣∣∣ 3
√
ηk − 3

√
η∗k

∣∣∣ ≤ ε0

( 3
√
ηk)2 + 3

√
ηkη∗k + ( 3

√
η∗k)2

≤ ε0
3
√
η∗k.

This implies ∥∥∥ 3
√
ηkβ

(0)
k − 3

√
η∗kβ

∗
k

∥∥∥
2
≤ 2 3

√
η∗kε0,
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with probability at least 1−O(1/n). Taking the summation over k ∈ [K], we have

K∑
k=1

∥∥∥ 3
√
ηkβ

(0)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
≤

K∑
k=1

4η
∗ 2

3
k ε2

0 ≤ 4Kη
∗ 2

3
maxε

2
0,

with probability at least 1−O(K/n), which means (S.5) holds for t = 0.

Suppose (S.5) holds at the iteration step t− 1, which implies

K∑
k=1

∥∥∥ 3
√
ηkβ

(t)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2

≤
(

1− 32µK−2R−
8
3

) K∑
k=1

∥∥∥ 3
√
ηkβ

(t−1)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
+ µ2C0K

−2R−
8
3 η
∗ 4

3
min

σ2s log p

n

≤4Kη
∗ 2

3
maxε

2
0 − µ

(
128KR−

8
3 η
∗ 2

3
maxε

2
0 − 2C0K

−2R−
8
3 η
∗ 4

3
min

σ2s log p

n

)
.

Since Condition 5 automatically implies

n

s log p
≥ C0σ

2R−
2
3 η
∗ 2

3
minK

64ε2
0

,

for a sufficiently large C0, we can obtain

K∑
k=1

∥∥∥ 3
√
ηkβ

(t)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
≤ 4Kη

∗ 2
3

maxε
2
0.

By induction, (S.5) holds at each iteration step.

Now we are able to use Lemma 11 recursively to complete the proof. Repeatedly using Lemma 11, we have

for t = 1, 2, . . . ,

K∑
k=1

∥∥∥ 3
√
ηkβ

(t+1)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2

≤
(

1− 32µK−2R−
8
3

)t K∑
k=1

∥∥∥ 3
√
ηkβ

(0)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
+
C0η

∗− 4
3

min

16

σ2s log p

n
,

with probability at least 1−O(tKs/n). This concludes the first part of Theorem 1.

When the total number of iterations is no smaller than

T ∗ =
log(C3η

∗−4/3
min σ2s log p)− log(64η

∗2/3
max Kε0n)

log(1− 32µK−2R−8/3)
,

the statistical error will dominate the whole error bound in the sense that

K∑
k=1

∥∥∥ 3
√
ηkβ

(T∗)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
≤ C3η

∗− 4
3

min

8

σ2s log p

n
, (S.7)

with probability at least 1−O(T ∗Ks/n).

The next lemma shows that the Frobenius norm distance between two tensors can be bounded by the distances

between each factors in their CP decomposition. The proof of this lemma is provided in Section S.V.
11



Lemma 12 . Suppose T and T ∗ have CP-decomposition T =
∑K
k=1 ηkβk ◦βk ◦βk and T ∗ =

∑K
k=1 η

∗
kβ
∗
k ◦

β∗k ◦ β∗k. If |ηk − η∗k| ≤ c, then

∥∥∥T −T ∗
∥∥∥2

F
≤ 9(1 + c)

( K∑
k=1

∥∥∥ 3
√
ηkβk − 3

√
η∗kβ

∗
k

∥∥∥2

2

)( K∑
k=1

( 3
√
η∗k)4

)

Denote T̂ =
∑K
k=1 ηkβ

(T∗)
k ◦ β(T∗)

k ◦ β(T∗)
k . Combing (S.7) and Lemma 12, we have

∥∥∥T̂ −T ∗
∥∥∥2

F
≤ 9(1 + ε0)

C3η
∗− 4

3
min

8

σ2s log p

n
Kη
∗ 4

3
max,

=
9C3R

4

σ2Ks log p

n
,

with probability at least 1−O(TKs/n). By setting C1 = 9C2/4, we complete the proof of Theorem 1. �

S.III Proofs of Theorems 4: Minimax Lower Bounds

We first consider the proof of lower bound on a more general version of non-symmetric tensor estimation.

Consider the class of incoherent sparse and low-rank tensors F = {T : T =
∑K
k=1 β1k ◦ β2k ◦ β3k, ‖βi,k‖0 ≤

s for i = 1, 2, 3, k = 1, . . . ,K} and the measurement tensor can be written as Xi = ui ◦ vi ◦wi. Without

loss of generality we assume p = max{p1, p2, p3}. We uniformly randomly generate {Ω(k,m)}m=1,...,M
k=1,...,K

as MK

subsets of {1, . . . , p} with cardinality of s. Here M > 0 is a large integer to be specified later. Then we

construct {β(k,m)}m=1,...,M
k=1,...,K

⊆ Rp as

β
(k,m)
j =

{ √
λ, if j ∈ Ω(k,m);

0, if j /∈ Ω(k,m).

λ > 0 will also be specified a little while later. Clearly, ‖β(k,m1) − β(k,m2)‖22 ≤ 2sλ for any 1 ≤
k ≤ K, 1 ≤ m1,m2 ≤ M . Additionally, |Ω(k,m1) ∩ Ω(k,m2)| satisfies the hyper-geometric distribution:

P
(∣∣Ω(k,m1) ∩ Ω(k,m2)

∣∣ = t
)

=
(st)(

p−s
s−t)

(ps)
.

Let w(k,m1,m2) =
∣∣Ω(k,m1) ∩ Ω(k,m2)

∣∣, then for any s/2 ≤ t ≤ s,

P
(
w(k,m1,m2) = t

)
=

s···(s−t+1)
t! · (p−s)···(p−2s+t+1)

(s−t)!
p···(p−s+1)

s!

≤
(
s

t

)
·
(

s

p− s+ 1

)t
≤2s

(
s

p− s+ 1

)t
≤
(

4s

p− s+ 1

)t
.

Thus, if η > 0, the moment generating function of w(k,m1,m2) − s
2 satisfies

E exp
(
η
(
w(k,m1,m2) − s

2

))
≤ exp(0) · P

(
w(k,m1,m2) ≤ s

2

)
+

s∑
t=bs/2c+1

exp
(
η
(
t− s

2

))
· P
(
w(k,m1,m2) = t

)

≤1 +

s∑
t=bs/2c+1

(4s/(p− s+ 1))
t
exp (η(t− s/2))

≤1 + (4s/(p− s+ 1))
s/2 1

1− 4s/(p− s+ 1) · eη
.

12



By setting η = log((p− s+ 1)/(8s)), we have

P

(
K∑
k=1

w(k,m1,m2) ≥ 3sK

4

)
= P

(
K∑
k=1

w(k,m1,m2) − sK

2
≥ sK

4

)

≤
E exp

(
η(
∑K
k=1 w

(k,m1,m2) − sK
2 )
)

exp
(
η · sK4

) =

∏K
k=1 E exp

(
η(w(k,m1,m2) − s

2 )
)

exp(η · sK4 )

≤
(

1 + (4s/(p− s+ 1))s/2 · 2
)K

exp

(
−sK

4
log

(
p− s+ 1

8s

))
≤ exp (−c0sK log(p/s))

for some small uniform constant c0 > 0.

Next we choose M = bexp(c0/2 · sK log(p/s))c. Note that

‖β(k,m1) − β(k,m2)‖22 = λ ·
(∣∣∣Ω(k,m1) \ Ω(k,m2)

∣∣∣+
∣∣∣Ω(k,m2) \ Ω(k,m1)

∣∣∣)
=λ
(∣∣∣Ω(k,m1)

∣∣∣+
∣∣∣Ω(k,m2)

∣∣∣− 2
∣∣∣Ω(k,m1) ∩ Ω(k,m2)

∣∣∣)
=2λ

(
s−

∣∣∣Ω(k,m1) ∩ Ω(k,m2)
∣∣∣) ,

then we further have

P

(
K∑
k=1

‖β(k,m1) − β(k,m2)‖22 ≥
sKλ

2
,∀1 ≤ m1 < m2 ≤M

)

=P

(
K∑
k=1

w(k,m1,m2) ≤ 3K

4
,∀1 ≤ m1, < m2 ≤M

)

≥1− M(M − 1)

2
exp (−c0sK log(p/s))

>1−M2 exp (−c0sK log(p/s)) ≥ 0,

which means there are positive probability that
{
β(k,m)

}
k=1,...,K
m=1,...,M

satisfy

sKλ

2
≤ min

1≤m1<m2≤M

K∑
k=1

∥∥∥β(k,m1) − β(k,m2)
∥∥∥2

2

≤ max
1≤m1<m2≤M

K∑
k=1

∥∥∥β(k,m1) − β(k,m2)
∥∥∥2

2
≤ 2sKλ.

(S.8)

For the rest of the proof, we fix
{
β(k,m)

}
k=1,...,K
m=1,...,M

to be the set of vectors satisfying (S.8).

Next, recall the canonical basis ek = (0, . . . ,

k-th︷︸︸︷
1 , 0, · · · , 0) ∈ Rp. Define

T (m) =

K∑
k=1

β(k,m) ◦ ek ◦ ek, 1 ≤ m ≤M.

For each tensor T (m) and n i.i.d. Gaussian sketches ui,vi,wi ∈ Rp, we denote the response

y(m) =
{
y

(m)
i

}n
i=1

, y
(m)
i = 〈ui ◦ vi ◦wi,T (m)〉+ εi,

13



where εi
iid∼ N(0, σ2), i = 1, . . . , n. Clearly,

(
y(m),u,v,w

)
follows a joint distribution, which may vary

based on different values of m.

In this step, we analyze the Kullback-Leibler divergence between different distribution pairs:

DKL

(
(y(m1),u,v,w), (y(m2),u,v,w)

)
:= E(y(m1),u,v,w) log

(p(y(m1),u,v,w)

p(y(m2),u,v,w)

)
.

Note that conditioning on fixed values of u,v,w,

y
(m)
i ∼ N

(
K∑
k=1

(β(k,m)>ui) · (e(k)>vi) · (e(k)>wi), σ
2

)
.

By the KL-divergence formula for Gaussian distribution,

E(y(m1),u,v,w)

(
p(y(m1),u,v,w)

p(y(m2),u,v,w)

∣∣∣u,v,w)

=
1

2

n∑
i=1

(
K∑
k=1

((
β(k,m1) − β(k,m2)

)>
ui

)(
e(k)>vi

)(
e(k)>wi

))2

σ−2.

Therefore, for any m1 6= m2,

DKL

(
(y(m1),u,v,w), (y(m2),u,v,w)

)
=Eu,v,w

1

2

n∑
i=1

(
K∑
k=1

(β(k,m1) − β(k,m2))>ui)(e
(k)>vi)(e

(k)>wi)

)2

σ−2

=
σ−2

2

n∑
i=1

K∑
k=1

Eu((β(k,m1) − β(k,m2))>ui)
2Ev(e(k)>vi)

2Ew(e(k)>wi)
2

=
nσ−2

2

K∑
k=1

‖β(k,m1) − β(k,m2)‖22 ≤ σ−2nKsλ.

Meanwhile, for any 1 ≤ m1 < m2 ≤M ,

‖T (m1) −T (m2)‖F =

∥∥∥∥∥
K∑
k=1

(β(k,m1) − β(k,m2)) ◦ e(k) ◦ e(k)

∥∥∥∥∥
F

=

√√√√ K∑
k=1

∥∥β(k,m1) − β(k,m2)
∥∥2

2

(S.8)

≥
√
sKλ

2
.

By generalized Fano’s Lemma (see, e.g., Yu (1997)),

inf
T̂

sup
T ∈F

E‖T̂ −T ‖F ≥
√
sKλ

2

(
1− σ−2nKsλ+ log 2

logM

)
.

Finally we set λ = cσ2

n log(p/s) for some small constant c > 0, then

inf
T̂

sup
T ∈F

E‖T̂ −T ‖2F ≥
(

inf
T̂

sup
T ∈F

E‖T̂ −T ‖F
)2

≥ cσ2sK log(p/s)

n
.

which has finished the proof of non-symmetric tensor estimation model.
14



For the proof for Theorem 4, without loss of generality we assume K is a multiple of 3. We first partition

{1, . . . , p} into two subintervals: I1 = {1, . . . , p − K/3}, I2 = {p − K/3 + 1, . . . , p}, randomly generate

{Ω(k,m)}m=1,...,M
k=1,...,K/3

as (MK/3) subsets of {1, . . . , p−K/3}, and construct {β(k,m)}m=1,...,M
k=1,...,K

⊆ Rp−K/3 as

β(k,m) =

{ √
λ, if j /∈ Ω(k,m);

0, if j /∈ Ω(k,m).

With M = exp(csK log(p/s)) and similar techniques as previous proof, one can show there exists positive

possibility that

sKλ

6
≤ min

1≤m1<m2≤M

K/3∑
k=1

‖β(k,m1) − β(k,m2)‖22

≤ max
1≤m1<m2≤M

K/3∑
k=1

‖β(k,m1) − β(k,m2)‖22 ≤
2sK

3
λ.

We then construct the following candidate symmetric tensors by blockwise design,

T (m) ∈ Rp×p×p,


T (m)

[I1,I2,I2] =
∑K/3
k=1 β

(k,m) ◦ e(k) ◦ e(k),

T (m)
[I2,I1,I2] =

∑K/3
k=1 e

(k) ◦ β(k,m) ◦ e(k),

T (m)
[I2,I2,I1] =

∑K/3
k=1 e

(k) ◦ e(k) ◦ β(k,m),

T (m)
[I1,I1,I1], T

(m)
[I1,I1,I2], T

(m)
[I1,I2,I1], T

(m)
[I2,I1,I1], T

(m)
[I2,I2,I2] are all zeros.

Then we can see for any u ∈ Rp,

〈T (m),u ◦ u ◦ u〉 = 3

K/3∑
k=1

(
β(k,m)>uI1

)
·
(
e(k)>uI2

)2

.

The rest of the proof essentially follows from the proof of non-asymmetric tensor estimation model. �

S.IV Proof of Theorem 5: High-order Stein’s Lemma

The proof of this theorem follows from the one of Theorem 6 in Janzamin et al. (2014). For the sake of

completeness, we restate the detail here. Applying the recursion representation of score function (S.4), we

have

E
[
G(x)S3(x)

]
= E

[
G(x)

(
− S2(x) ◦ ∇x log p(x)−∇xS2(x)

)]
= −E

[
G(x)S2(x) ◦ ∇x log p(x)

]
− E

[
G(x)∇xS2(x)

)]
.

Then, we apply the first-order Stein’s lemma (see Lemma 24) on function G(x)S2(x) and obtain

E
[
G(x)S3(x)

]
= E

[
∇x
(
G(x)S2(x)

)]
− E

[
G(x)∇xS2(x)

)]
= E

[
∇xG(x)S2(x) +∇xS2(x)G(x)

]
− E

[
G(x)∇xS2(x)

)]
= E

[
∇xG(x)S2(x)

]
.

Repeating the above argument two more times, we reach the conclusion. �
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D Proofs of Several Lemmas

S.I Proofs of Lemmas 3, and 4: Moment Calculation

In this subsection, we present the detail proofs of moment calculation, including non-symmetric case,

symmetric case, and interaction model.

S.I.1 Proof of Lemma 2

By the definition of {yi} in (S.1) & (S.2), we have

E
( 1

n

n∑
i=1

yiui ◦ vi ◦wi
)

= E
( 1

n

n∑
i=1

εiui ◦ vi ◦wi
)

+ E
( 1

n

n∑
i=1

K∑
k=1

η∗k(β∗>1k ui)(β
∗>
2k vi)(β

∗>
3k wi)ui ◦ vi ◦wi

)
.

(S.1)

First, we observe E(εiui ◦vi ◦wi) = 0 due to the independence between εi and {ui,vi,wi}. Then, we consider

a single component from a single observation

M = E((β∗>1k ui)(β
∗>
2k vi)(β

∗>
3k wi)ui ◦ vi ◦wi), i ∈ [n], k ∈ [K].

For notation simplicity, we drop the subscript i for i-th observation and k for k-th component such that

M = E
(

(β∗>1 u)(β∗>2 v)(β∗>3 w)u ◦ v ◦w
)
∈ Rp1×p2×p3 . (S.2)

Each entry of M can be calculated as follows

Mijk = E
(

(β∗>1 u)(β∗>2 v)(β∗>3 w)uivjwk

)
= E

(
(β∗1iui +

∑
m 6=i

β∗1mum)ui

)
E
(

(β∗2jui +
∑
m 6=j

β∗2mvm)vj

)
×E
(

(β∗3kwk +
∑
m 6=k

β∗3mwm)wk

)
= β∗1iβ

∗
2jβ
∗
3k,

which implies M = β1 ◦ β2 ◦ β3. Combining with n observations and K components, we can obtain

E
(
T
)

=
1

n

n∑
i=1

K∑
k=1

η∗kβ1k ◦ β2k ◦ β3k.

This finished our proof. �

S.I.2 Proof of Lemma 3

In this subsection, we provide an alternative and more direct proof for Lemma 3. We consider a similar single

component with a symmetric structure, namely, Ms = E
(

(β∗>x)3x ◦x ◦x
)

. Based on the symmetry of both

underlying tensor and sketchings, we will verify the following three cases:
16



• When i = j = k, then

Msiii = E
(
β∗i xi +

∑
m 6=i

β∗mxm

)3

x3
i

= E
(
β∗3i x

3
i + 3β∗2i x

2
i

(∑
m 6=i

β∗mxm
)

+3β∗i xi
(∑
m6=i

β∗mxm
)2

+
(∑
m 6=i

β∗mxm
)3)

x3
i

= 15β∗3i + 9β∗i
∑
m 6=i

β∗2m = 9β∗i + 6β∗3i .

The last equation is due to ‖β∗‖2 = 1.

• When i 6= j 6= k, then

Msijk = E
(
β∗i xi + β∗j xj + β∗kxk +

∑
m 6=i,j,k

β∗mxm

)3

xixjxk

= E
(
β∗i xi + β∗j xj + β∗kxk

)3
xixjxk

= 6β∗i β
∗
j β
∗
k .

• When i = j 6= k, then

Msiik = E
(
β∗i xi + β∗kxk +

∑
m 6=i,k

β∗mxm

)3

x2
ixk

= 9β∗2i β
∗
k + 3β∗3k + 3β∗k

( ∑
m6=i,k

β∗2m
)

= 9β∗2i β
∗
k + 3β∗k

(∑
m6=i

β∗2m
)

= 3β∗k + 6β∗2i β
∗
k .

Therefore, it is sufficient to calculate Ms by

Ms =3

K∑
k=1

η∗k

( p∑
m=1

β∗k ◦ em ◦ em + em ◦ β∗k ◦ em + em ◦ em ◦ β∗k
)

+ 6

K∑
k=1

η∗kβ
∗
k ◦ β∗k ◦ β∗k.

The first term is the bias term due to correlations among symmetric sketchings. Denote M1 = 1
n

∑n
i=1 yixi

and note that E
(

1
n

∑n
i=1 yixi

)
= 3

∑K
k=1 η

∗
kβ
∗
k. Therefore, the empirical first-order moment M1 could be

used to remove the bias term as follows

E
(
Ms −

p∑
m=1

(
M1 ◦ em ◦ em + em ◦M1 ◦ em + em ◦ em ◦M1

))
= 6

K∑
k=1

η∗kβ
∗
k ◦ β∗k ◦ β∗k.

This finishes our proof. �

17



S.I.3 Proof of Lemma 4

As before, consider a single component first. For notation simplicity, we drop the subscript l for l-th

observation and k for k-th component. Since each component is normalized, the entry-wise expectation of

(β>x)3x ◦ x ◦ x can be calculated as[
E(β>x)3x ◦ x ◦ x

]
0,0,0

= 3β0 − 2β3
0[

E(β>x)3x ◦ x ◦ x
]

0,0,i
= 3βi[

E(β>x)3x ◦ x ◦ x
]

0,i,i
= 6β0β

2
i + 3β0[

E(β>x)3x ◦ x ◦ x
]

0,i,j
= 6β0βiβj[

E(β>x)3x ◦ x ◦ x
]
i,i,i

= 6β3
i + 9βi[

E(β>x)3x ◦ x ◦ x
]
i,i,j

= 6β2
i βj + 3βj[

E(β>x)3x ◦ x ◦ x
]
i,j,k

= 6βiβjβk.

Due to the symmetric structure and non-randomness of first coordinate, there are bias appearing for each

entry. For i, j, k 6= 0, we could use
∑p
m=1(a ◦ em ◦ em + em ◦ a ◦ em + em ◦ em ◦ a) to remove the bias as

shown in the previous proof of Lemma 3. For the subscript involving 0, the following two calculations work

for removing the bias,

E
(1

3
Ts −

1

6
(

p∑
k=1

Ts,[k,k,i] − (p+ 1)ai)
)

= β2
0βi.

E
( 1

2p− 2
(

p∑
k=1

Ts[0,k,k] − (p+ 2)Ts[0,0,0])
)

= β3
0 .

This ends the proof. �

S.II Proof of Lemma 5

Without loss of generality, we assume ‖Xi‖ψα = 1 and EXi = 0 throughout this proof. Let β = (log 2)1/α

and Zi = (|Xi| − β)+, where (x)+ = x if x ≥ 0 and (x)+ = 0 if else. For notation simplicity, we define

‖X‖p = (E|X|p)1/p for a random variable X. The following step is to estimate the moment of linear

combinations of variables {Xi}ni=1.

According to the symmetrization inequality (e.g., Proposition 6.3 of Ledoux and Talagrand (2013)), we have

∥∥∥ n∑
i=1

aiXi

∥∥∥
p
≤ 2
∥∥∥ n∑
i=1

aiεiXi

∥∥∥
p

= 2
∥∥∥ n∑
i=1

aiεi|Xi|
∥∥∥
p
, (S.3)

where {εi}ni=1 are independent Rademacher random variables and we notice that εiXi and εi|Xi| are identically

distributed. Moreover, if |Xi| ≥ β, the definition of Zi implies that |Xi| = Zi + β. And if |Xi| < β, we have

Zi = 0. Thus, we have |Xi| ≤ Zi + β at any time and it leads to

2
∥∥∥ n∑
i=1

aiεi|Xi|
∥∥∥
p
≤ 2

∥∥∥ n∑
i=1

aiεi(β + Zi)
∥∥∥
p
. (S.4)

18



By triangle inequality,

2
∥∥∥ n∑
i=1

aiεi(β + Zi)
∥∥∥
p
≤ 2
∥∥∥ n∑
i=1

aiεiZi

∥∥∥
p

+ 2
∥∥∥ n∑
i=1

aiεiβ
∥∥∥
p
. (S.5)

Next, we will bound the second term of the RHS of (S.5). In particular, we will utilize Khinchin-Kahane

inequality, whose formal statement is included in Lemma 25 for the sake of completeness. From Lemma 25

we have ∥∥∥ n∑
i=1

aiεiβ
∥∥∥
p
≤

(p− 1

2− 1

)1/2∥∥∥ n∑
i=1

aiεiβ
∥∥∥

2

≤ β
√
p
∥∥∥ n∑
i=1

aiεi

∥∥∥
2
. (S.6)

Since {εi}ni=1 are independent Rademacher random variables, some simple calculations implies

(
E
( n∑
i=1

εiai

)2)1/2

=
(
E
( n∑
i=1

ε2
i a

2
i + 2

∑
1≤i<j≤n

εiεjaiaj

))1/2

=
( n∑
i=1

a2
iEε2

i + 2
∑

1≤i<j≤n

aiajEεiEεj
)1/2

=
( n∑
i=1

a2
i

)1/2

= ‖a‖2. (S.7)

Combining inequalities (S.4)-(S.7),

2
∥∥∥ n∑
i=1

aiεi|Xi|
∥∥∥
p
≤ 2
∥∥∥ n∑
i=1

aiεiZi

∥∥∥
p

+ 2β
√
p‖a‖2. (S.8)

Let {Yi}ni=1 are independent symmetric random variables satisfying P(|Yi| ≥ t) = exp(−tα) for all t ≥ 0.

Then we have

P(Zi ≥ t) ≤P(|Xi| ≥ t+ β) = P (exp(|Xi|α) ≥ exp((t+ β)α))

≤(E|Xi|α) · exp(−(t+ β)α) ≤ 2 exp(−(t+ β)α)

≤2 exp(−tα − βα) = P(|Yi| ≥ t),

which implies ∥∥∥ n∑
i=1

aiεiZi

∥∥∥
p
≤
∥∥∥ n∑
i=1

aiεiYi

∥∥∥
p

=
∥∥∥ n∑
i=1

aiYi

∥∥∥
p
, (S.9)

since εiYi and Yi have the same distribution due to symmetry. Combining (S.8) and (S.9) together, we reach∥∥∥ n∑
i=1

aiXi

∥∥∥
p
≤ 2β

√
p‖a‖2 + 2

∥∥∥ n∑
i=1

aiYi

∥∥∥
p
. (S.10)

For 0 < α < 1, it follows Lemma 23 that∥∥∥ n∑
i=1

aiYi

∥∥∥
p
≤ C1(α)(

√
p‖a‖2 + p1/α‖a‖∞), (S.11)

where C1(α) is some absolute constant only depending on α.
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For α ≥ 1, we will combine Lemma 22 and the method of the integration by parts to pass from tail bound

result to moment bound result. Recall that for every non-negative random variable X, integration by parts

yields the identity

EX =

∫ ∞
0

P(X ≥ t)dt.

Applying this to X = |
∑n
i=1 aiYi|p and changing the variable t = tp, then we have

E|
n∑
i=1

aiYi|p =

∫ ∞
0

P
(
|
n∑
i=1

aiYi| ≥ t
)
ptp−1dt

≤
∫ ∞

0

2 exp
(
− cmin

( t2

‖a‖22
,

tα

‖a‖αα∗

))
ptp−1dt, (S.12)

where the inequality is from Lemma 22 for all p ≥ 2 and 1/α+ 1/α∗ = 1. In this following, we bound the

integral in three steps:

1. If t2

‖a‖22
≤ tα

‖a‖α
α∗

, (S.12) reduces to

E|
n∑
i=1

aiYi|p ≤ 2p

∫ ∞
0

exp
(
− c t2

‖a‖22

))
tp−1dt.

Letting t′ = ct2/‖a‖22, we have

2p

∫ ∞
0

exp
(
− c t2

‖a‖22

))
tp−1dt =

p‖a‖p2
cp/2

∫ ∞
0

e−t
′
t′p/2−1dt′

=
p‖a‖p2
cp/2

Γ(
p

2
) ≤ p‖a‖p2

cp/2
(
p

2
)p/2,

where the second equation is from the density of Gamma random variable. Thus,

(
E|

n∑
i=1

aiYi|p
) 1
p ≤ p1/p

(2c)1/2

√
p‖a‖2 ≤

√
2√
c

√
p‖a‖2. (S.13)

2. If t2

‖a‖22
> tα

‖a‖α
α∗

, (S.12) reduces to

E|
n∑
i=1

aiYi|p ≤ 2p

∫ ∞
0

exp
(
− c tα

‖a‖αα∗

))
tp−1dt.

Letting t′ = ctα/‖a‖αα∗ , we have

2p

∫ ∞
0

exp
(
− c tα

‖a‖αα∗

))
tp−1dt =

2p‖a‖pα∗
αcp/α

∫ ∞
0

e−t
′
t′p/α−1dt′

=
2

α

p‖a‖pα∗
cp/α

Γ(
p

α
) ≤ 2

α

p‖a‖pα∗
cp/α

(
p

α
)p/α.

Thus, (
E|

n∑
i=1

aiYi|p
) 1
p ≤ 2p1/p

(cα)1/α
p1/α‖a‖α∗ ≤

4

(cα)1/α
p1/α‖a‖α∗ . (S.14)

3. Overall, we have the following by combining (S.13) and (S.14),

(
E|

n∑
i=1

aiYi|p
) 1
p ≤ max

(√2

c
,

4

(cα)1/α

)(√
p‖a‖2 + p1/α‖a‖α∗

)
.
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After denoting C2(α) = max
(√

2
c ,

4
(cα)1/α

)
, we reach

∥∥∥ n∑
i=1

aiYi

∥∥∥
p
≤ C2(α)

(√
p‖a‖2 + p1/α‖a‖α∗

)
. (S.15)

Since 0 < β < 1, the conclusion can be reached by combining (S.10),(S.11) and (S.15). �

S.III Proof of Lemma 9

Firstly, let us consider the non-symmetric perturbation error analysis using model (S.1). According to Lemma

2, the exact form of E = T − E(T ) is given by

E =
1

n

n∑
i=1

yiui ◦ vi ◦wi −
K∑
k=1

η∗kβ
∗
1k ◦ β∗2k ◦ β∗3k.

We decompose it by a concentration term (E1) and a noise term (E2) as follows,

E =
1

n

n∑
i=1

〈ui ◦ vi ◦wi,
K∑
k=1

η∗kβ
∗
1k ◦ β∗2k ◦ β∗3k〉ui ◦ vi ◦wi −

K∑
k=1

η∗kβ
∗
1k ◦ β∗2k ◦ β∗3k︸ ︷︷ ︸

E1

+
1

n

n∑
i=1

εiui ◦ vi ◦wi︸ ︷︷ ︸
E2

.

Bounding E1: For k-th componet of E1, we denote

E1k =
1

n

n∑
i=1

〈ui ◦ vi ◦wi,β∗1k ◦ β∗2k ◦ β∗3k〉ui ◦ vi ◦wi − β∗1k ◦ β∗2k ◦ β∗3k.

By using Lemma 1 and s ≤ d ≤ Cs, it suffices to have for some absolute constant C11,

‖E1k‖s+d ≤ C11δn,p,s, where δn,p,s = (log n)3
(√s3 log3(p/s)

n2
+

√
s log(p/s)

n

)
,

with probability at least 1−10/n3, where ‖·‖s+d is the sparse tensor spectral norm defined in (2.3). Equipped

with the triangle inequality, the sparse tensor spectral norm for E1 can be bounded by

‖E1‖s+d ≤ C11δn,p,s

K∑
k=1

η∗k, (S.16)

with probability at least 1− 10K/n3.

Bounding E2: Note that the random noise {εi}ni=1 is independent of sketching vector {ui,vi,wi}. For fixed

{εi}ni=1, applying Lemma 18, we have for some absolute constant C12∥∥∥ 1

n

n∑
i=1

εiui ◦ vi ◦wi
∥∥∥
s+d
≤ C12‖ε‖∞C11δn,p,s,

with probability at least 1− 1/p. According to Lemma 21, we have

P
(
‖E2‖s+d ≥ C12σ log nδn,p,s

)
≤ 1

p
+

3

n
≤ 4

n
. (S.17)
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Bounding E: Putting (S.16) and (S.17) together, we obtain

‖E‖s+d ≤
(
C11

K∑
k=1

η∗k + C12σ log n
)
δn,p,s,

with probability at least 1− 5/n. Under Condition 4, we have

‖E‖s+d ≤ 2C1

K∑
k=1

η∗kδn,p,s log n,

with probability at least 1− 5/n.

The perturbation error analysis for the symmetric tensor estimation model and the interaction effect model is

similar since the empirical-first-order moment converges much faster than the empirical-third-order moment.

So we omit the detailed proof here. �

S.IV Proof of Lemma 11

Lemma 11 quantifies one step update for thresholded gradient update. The proof consists of two parts.

First, we evaluate an oracle estimator {β̃(t+1)
k }Kk=1 with known support information, which is defined as

β̃
(t+1)
k = ϕµ

φh(β
(t)
k )

(
β

(t)
k −

µ

φ
∇kL(β

(t)
k )F (t)

)
. (S.18)

Here,

• h(β
(t)
k ) is the k-th component of h(B(t)) defined in (3.2).

• ∇BL(B) = (∇1L(β1), · · · ,∇KL(βK)).

• F (t) = ∪Kk=1F
(t)
k , where F

(t)
k = supp(β∗k) ∪ supp(β

(t)
k ).

• For a vector x ∈ Rp and a subset A ⊂ {1, . . . , p}, we denote xA ∈ Rp by keeping the coordinates of x

with indices in A unchanged, while changing all other components to zero.

We will show that β̃
(t+1)
k converges as a geometric rate for optimization error and an optimal rate for

statistical error. See Lemma 13 for details.

Second, we aim to prove that β̃
(t+1)
k and β

(t+1)
k are almost equivalent with high probability. See Lemma 14

for details. For simplicity, we drop the superscript of β
(t)
k , F (t) in the following proof, and denote β̃

(t+1)
k ,

β
(t+1)
k and F (t+1) by β̃+

k , β̃+
k and F+, respectively.

Lemma 13 . Suppose Conditions 1-5 hold. Assume (S.5) is satisfied and |F | . Ks. As long as the step size

µ ≤ 32R−20/3/(3K[220 + 270K]2), we obtain the upper bound for {β̃+
k },

K∑
k=1

∥∥∥ 3
√
ηkβ̃

+
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
≤
(

1− 32µ
R−

8
3

K2

) K∑
k=1

∥∥∥ 3
√
ηkβk − 3

√
η∗kβ

∗
k

∥∥∥2

2

+ 2C3µ
2R−

8
3 η
∗− 4

3
min

σ2K−2s log p

n
,

(S.19)

with probability at least 1− (21K2 + 11K + 4Ks)/n.

The proof of Lemma 13 is postponed to the Section S.VI. Next lemma guarantees that with high probability,

{β+
k }Kk=1 is equivalent to the oracle update {β̃+

k }Kk=1 with high probability.
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Lemma 14 . Recall that the truncation level h(βk) is defined as

h(βk) =

√
4 log np

n

√√√√ n∑
i=1

( K∑
k=1

ηk(x>i βk)3 − yi
)2(

ηk(x>i βk)2
)2

. (S.20)

If |F | . Ks, we have β+
k = β̃+

k for any k ∈ [K] with probability at least 1− (n2p)−1 and F+ ⊂ F .

The proof of Lemma 14 is postponed to the Section S.VI. By using Lemma 14 and induction, we have

F (t+1) ⊂ · · ·F (1) ⊂ F (0) = ∪Kk=1supp(β∗k) ∪ supp(β
(0)
k ).

It implies for every t, we have |F (t)| . Ks. Combining with Lemmas 13 and 14 together, we obtain with

probability at least 1− (21K2 + 11K + 4Ks)/n,

K∑
k=1

∥∥∥ 3
√
ηkβ

+
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
≤
(

1− 32µK−2R−
8
3

) K∑
k=1

∥∥∥ 3
√
ηkβk − 3

√
η∗kβ

∗
k

∥∥∥2

2

+ 2C3µ
2R−

8
3 η
∗− 4

3
min

σ2K−2s log p

n
,

(S.21)

This ends the proof. �

S.V Proof of Lemma 12

We consider a more general setting that the tensor is not necessary to be symmetric such that

T =

K∑
k=1

ηkβk ◦ βk ◦ βk,T ∗ =

K∑
k=1

η∗kβ
∗
k ◦ β∗k ◦ β∗k.

Based on the CP low-rank structure of true tensor parameter T ∗, we can explicitly write down the distance

between T and T ∗ under tensor Frobenius norm as follows∥∥∥T −T ∗
∥∥∥2

F
=
∑
i1,i2,i3

( K∑
k=1

ηkβki1βki2βki3 −
K∑
k=1

η∗kβ
∗
ki1β

∗
ki2β

∗
ki3

)2

.

For notation simplicity, denote β̄k = 3
√
ηkβk, β̄

∗
k = 3

√
η∗kβ

∗
k. Then

∥∥∥T −T ∗
∥∥∥2

F
=
∑
i1,i2,i3

( K∑
k=1

β̄ki1 β̄ki2 β̄ki3 −
K∑
k=1

β̄∗ki1 β̄
∗
ki2 β̄

∗
ki3

)2

=
∑
i1,i2,i3

( K∑
k=1

(β̄ki1 − β̄∗ki1)β̄∗ki2 β̄
∗
ki3 +

K∑
k=1

β̄ki1(β̄ki2 − β̄∗ki2)β̄∗ki3

+

K∑
k=1

β̄ki1 β̄ki2(β̄ki3 − β̄∗ki3)
)2

= RHS.

Since (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we have

RHS ≤3
∑
i1,i2,i3

[
(

K∑
k=1

(β̄ki1 − β̄∗ki1)β̄∗ki2 β̄
∗
ki3)2 + (

K∑
k=1

β̄ki1(β̄ki2 − β̄∗ki2)β̄∗ki3)2

+ (

K∑
k=1

β̄ki1 β̄ki2(β̄ki3 − β̄∗ki3))2
]
.
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Equipped with Cauchy-Schwarz inequality, RHS can be further bounded by

RHS ≤ 3
∑
i1,i2,i3

[ K∑
k=1

(β̄ki1 − β̄∗ki1)2
K∑
k=1

β̄∗2ki2 β̄
∗2
ki3

+

K∑
k=1

(β̄ki2 − β̄∗ki2)2
K∑
k=1

β̄2
ki1 β̄

∗2
ki3

+

K∑
k=1

(β̄ki3 − β̄∗ki3)2
K∑
k=1

β̄2
ki2 β̄

2
ki1

]
At the same time, using ηk ≤ (1 + c)η∗k for k ∈ [K],∥∥∥T −T ∗

∥∥∥2

F
≤ 3

[ p∑
i1=1

K∑
k=1

(β̄ki1 − β̄∗ki1)2(

p∑
i2=1

p∑
i3=1

K∑
k=1

β̄∗2ki2 β̄
∗2
ki3)

+

p∑
i2=1

K∑
k=1

(β̄ki2 − β̄∗ki2)2(

p∑
i1=1

p∑
i3=1

K∑
k=1

β̄2
ki1 β̄

∗2
ki3)

+

p∑
i3=1

K∑
k=1

(β̄ki3 − β̄∗ki3)2(

p∑
i2=1

p∑
i1=1

K∑
k=1

β̄2
ki2 β̄

2
ki1)
]

= 3
( K∑
k=1

‖β̄k − β̄∗k‖22
)( K∑

k=1

( 3
√
η∗k)4 +

K∑
k=1

( 3
√
η∗k)2( 3

√
ηk)2 +

K∑
k=1

( 3
√
ηk)4

)
≤ 9(1 + c)

( K∑
k=1

‖β̄k − β̄∗k‖22
)( K∑

k=1

( 3
√
η∗k)4

)
.

For the non-symmetric tensor estimation model, we have∥∥∥T −T ∗
∥∥∥2

F
=
∑
i1,i2,i3

( K∑
k=1

ηkβ1ki1β2ki2β3ki3 −
K∑
k=1

η∗kβ
∗
1ki1β

∗
2ki2β

∗
3ki3

)2

.

Following the same strategy above, we obtain∥∥∥T −T ∗
∥∥∥2

F
≤3(1 + c)

( K∑
k=1

‖β̄1k − β̄∗1k‖22 +

K∑
k=1

‖β̄2k − β̄∗2k‖22

+

K∑
k=1

‖β̄3k − β̄∗3k‖22
)( K∑

k=1

( 3
√
η∗k)4

)
.

This ends the proof. �

S.VI Proof of Lemma 13

First of all, let us state a lemma to illustrate the effect of weight φ.

Lemma 15 . Consider {yi}ni=1 come from either non-symmetric tensor estimation model (S.1) or symmetric

tensor estimation model (3.1). Suppose Conditions 3-5 hold. Then φ = 1
n

∑n
i=1 y

2
i is upper and lower bounded

by

(16− 6Γ3 − 9Γ)(

K∑
k=1

η∗k)2 ≤ 1

n

n∑
i=1

y2
i ≤ (16 + 6Γ3 + 9Γ)(

K∑
k=1

η∗k)2,

with probability at least 1− (K2 +K + 3)/n, where Γ is the incoherence parameter.
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According to Lemma 15, 1
n

∑n
i=1 y

2
i approximates (

∑K
k=1 η

∗
k)2 up to some constants with high probability.

Moreover, we know that from (S.5), maxk |ηk−η∗k| ≤ ε0 for some small ε0. Based on those two facts described

above, we replace ηk by η∗k and φ by (
∑K
k=1 η

∗
k)2 for the sake of completeness. Note that this change could

only result in some constant scale changes for final results. Similar simplification was used in matrix recovery

scenario (Tu et al., 2015). Therefore, we define the weighted estimator and weighted true parameter as

β̄k = 3
√
η∗kβk, β̄∗k = 3

√
η∗kβ

∗
k. Correspondingly, define the gradient function ∇kL(β̄k) on F as

∇kL(β̄k)F =
6 3
√
η∗k
n

n∑
i=1

( K∑
k′=1

(x>iF β̄k′)
3 − yi

)
(x>iF β̄k)2xiF ,

and its noiseless version as

∇kL̃(β̄k)F =
6 3
√
η∗k
n

n∑
i=1

( K∑
k′=1

(x>iF β̄k′)
3 −

K∑
k′=1

(x>iF β̄
∗
k′)

3
)

(x>iF β̄k)2xiF . (S.22)

According to the definition of thresholding function in Section 3.2, β̃+
k can be written as

β̃+
k = βk −

µ

φ
∇kL(β̄k)F +

µ

φ
h(β̄k)γk,

where γk ∈ Rp satisfies supp(γk) ⊂ F , ‖γk‖∞ ≤ 1 and h(β̄k) is defined as

h(β̄k) =

√
4 log(np)

n

√√√√ n∑
i=1

( K∑
k=1

(x>iF β̄k)3 − yi
)2

η
∗ 2

3
k (x>iF β̄k)2. (S.23)

Moreover, we denote zk = β̄k − β̄∗k. With a little abuse of notations, we also drop the subscript F in this

section for notation simplicities.

We expand and decompose the sum of square error by three parts as follows:

K∑
k=1

∥∥∥ 3
√
η∗kβ̃

+
k − 3

√
η∗kβ

∗
k

∥∥∥2

2

=

K∑
k=1

∥∥∥zk − µ 3
√
η∗k
φ
∇kL(β̄k) +

µ 3
√
η∗k
φ

h(β̄k)γk

∥∥∥2

2

=

K∑
k=1

∥∥∥zk − µ 3
√
η∗k
φ
∇kL(β̄k)

∥∥∥2

2︸ ︷︷ ︸
A: gradient update effect

+

K∑
k=1

∥∥∥µ 3
√
η∗k
φ

h(β̄k)γk

∥∥∥2

2︸ ︷︷ ︸
B: threshoding effect

+

K∑
k=1

〈
zk − µ

3
√
η∗k
φ
∇kL(β̄k),

µ 3
√
ηk

φ
h(β̄k)γk

〉
︸ ︷︷ ︸

C: cross term

.

(S.24)

In the following proof, we will bound three parts sequentially.
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S.VI.1 Bounding gradient update effect

In order to separate the optimization error and statistical error, we use the noiseless gradient ∇kL̃(β̄k) as a

bridge such that A can be decomposed as

A =

K∑
k=1

‖zk‖22 − 2µ

K∑
k=1

〈 3
√
η∗k
φ
∇kL(β̄k), zk

〉
+ µ2

K∑
k=1

∥∥∥ 3
√
η∗k
φ
∇kL(β̄k)

∥∥∥2

2

≤
K∑
k=1

‖zk‖22 − 2µ

K∑
k=1

〈 3
√
η∗k
φ
∇kL̃(β̄k), zk

〉
︸ ︷︷ ︸

A1

+2µ2
K∑
k=1

∥∥∥ 3
√
η∗k
φ
∇kL̃(β̄k)

∥∥∥2

2︸ ︷︷ ︸
A2

+ 2µ2
K∑
k=1

∥∥∥ 3
√
η∗k
φ

(
∇kL̃(β̄k)−∇kL(β̄k)

)∥∥∥2

2︸ ︷︷ ︸
A3

+ 2µ

K∑
k=1

〈
zk,

3
√
η∗k
φ

(
∇kL̃(β̄k)−∇kL(β̄k)

)〉
︸ ︷︷ ︸

A4

,

(S.25)

where A1 and A2 quantify the optimization error, A3 quantifies the statistical error, and A4 is a cross term

which can be negligible comparing with the rate of the statistical error. The lower bound for A1 and upper

bound for A2 together coincide with the verification of regularity conditions in the matrix recovery case

(Candès et al., 2015).

Step One: Lower bound for A1. Plugging in φ = (
∑K
k=1 η

∗
k)2, we have

K−2R−
2
3 η
∗− 4

3
max ≤

( 3
√
η∗k)2

φ
=

( 3
√
η∗k)2

(
∑K
k=1 η

∗
k)2
≤ K−2R

2
3 η
∗− 4

3
min . (S.26)

According to the definition of noiseless gradient ∇kL̃(βk) and zk, A1 can be expanded and decomposed
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sequentially by nine terms,

A1 ≥K−2R−
2
3 η
∗− 4

3
max

[ 6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)(x
>
i β̄k′)

2
K∑
k=1

(x>i zk)(x>i β̄
∗
k)2
)
⇐ A11

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)(x
>
i β̄k′)

2
K∑
k=1

2(x>i zk)2(x>i β̄
∗
k)
)
⇐ A12

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)(x
>
i β̄k′)

2
K∑
k=1

(x>i zk)3
)
⇐ A13

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
2(x>i β̄k′)

K∑
k=1

(x>i zk)(x>i β̄
∗
k)2
)
⇐ A14

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
2(x>i β̄k′)

K∑
k=1

2(x>i zk)2(x>i β̄
∗
k)
)
⇐ A15

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
2(x>i β̄k′)

K∑
k=1

(x>i zk)2(x>i β̄
∗
k)
)
⇐ A16

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
3
K∑
k=1

(x>i zk)(x>i β̄
∗
k)2
)
⇐ A17

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
3
K∑
k=1

2(x>i zk)2(x>i β̄
∗
k)
)
⇐ A18

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
3
K∑
k=1

(x>i zk)3
)]
⇐ A19,

(S.27)

where A11 is the main term according to the order of β̄∗k, while A12 to A19 are remainder terms. The proof

of lower bound for A11 to A19 follows two steps:

1. Calculate and lower bound the expectation of each term through Lemma S.1: high-order Gaussian

moment;

2. Argue that the empirical version is concentrated around their expectation with high probability through

Lemma 8: high-order concentration inequality.

Bounding A11. Note that A11 involves the product of dependent Gaussian vectors. This brings difficulties

on both the calculation of expectations and the use of concentration inequality. According to the high-order

Gaussian moment results in Lemma S.1, the expectation of A11 can be calculated explicitly as

E(A11) = 36

K∑
k=1

K∑
k′=1

(β̄∗>k′ β̄
∗
k)2(z>k′zk)⇐ I1

+ 72

K∑
k=1

K∑
k′=1

(β̄∗>k′ β̄
∗
k)(z>k′ β̄

∗
k)(z>k β̄

∗
k′)⇐ I2

+ 108

K∑
k=1

K∑
k′=1

(β̄∗>k′ β̄
∗
k)(z>k′ β̄

∗
k′)(z

>
k β̄
∗
k)⇐ I3

+ 54

K∑
k=1

K∑
k′=1

(β̄∗>k′ β̄
∗
k′)(β̄

∗>
k β̄∗k)(z>k′zk)⇐ I4.

(S.28)
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Note that I1 to I4 involve the summation of K2 term. To use incoherence Condition 3, we isolate K terms

with k = k′. Then, I1 to I4 could be lower bounded as

I1 ≥ 36η
∗4/3
min

[ K∑
k=1

‖zk‖22 − Γ2
( K∑
k=1

‖zk‖2
)2]

I2 ≥ 72η
∗4/3
min

[ K∑
k=1

(z>k β̄
∗
k)2 − Γ

( K∑
k=1

‖zk‖2
)2]

I3 ≥ 108η
∗4/3
min

[ K∑
k=1

(z>k β̄
∗
k)2 − Γ

( K∑
k=1

‖zk‖2
)2]

I4 ≥ 54η
∗4/3
min

∥∥∥ K∑
k=1

zk

∥∥∥2

2
≥ 0,

where Γ is the incoherence parameter. Putting the above four bounds together, they jointly provide

E(A11) ≥ 36η
∗4/3
min

K∑
k=1

‖zk‖22 −
(

36η
∗4/3
min Γ2 + 180η

∗4/3
min Γ

)( K∑
k=1

‖zk‖2
)2

. (S.29)

On the other hand, repeatedly using Lemma 8, we obtain that with probability at least 1− 1/n,∣∣∣ 1
n

n∑
i=1

(
(x>i zk′)(x

>
i β̄
∗
k′)

2(x>i zk)(x>i β̄
∗
k)2 − E(x>i zk′)(x

>
i β̄
∗
k′)

2(x>i zk)(x>i β̄
∗
k)2
)∣∣∣

≤ C (log n)3

√
n

( 3
√
η∗max)4‖zk′‖2‖zk‖2.

Taking the summation over k, k′ ∈ [K], it could further imply that for some absolute constant C,∣∣∣A11 − E(A11)
∣∣∣ ≤ 18C

(log n)3

√
n

( 3
√
η∗max)4

( K∑
k=1

‖zk‖2
)2

, (S.30)

with probability at least 1−K2/n. Combining (S.29) and (S.30), we obtain with probability at least 1−K2/n,

K−2R−
2
3 η
∗− 4

3
max A11

≥
[
36K−2R−

8
3 −K−

3
2

(
216R−

8
3 Γ + 18C

(log n)3

√
n

)] K∑
k=1

‖zk‖22,
(S.31)

where R = η∗max/η
∗
min. Here, we use the fact Γ ≤ 1 and (

∑K
k=1 ‖zk‖2)2 ≤ K(

∑K
k=1 ‖zk‖22).

Bounding A12 to A19: For remainder terms, we follow the same proof strategy. According to Lemma S.1,

the expectation of A12 can be calculated as

E(A12) = 36

K∑
k=1

K∑
k′=1

(z>k β̄
∗>
k′ )2(z>k′ β̄

∗
k)⇐ I1

+72

K∑
k=1

K∑
k′=1

(z>k β̄
∗
k′)(β̄

∗>
k′ β̄

∗
k)(z>k′zk)⇐ I2

+108

K∑
k=1

K∑
k′=1

(z>k β̄k′)(z
>
k′ β̄
∗
k′)(z

>
k β̄
∗
k)⇐ I3

+54

K∑
k=1

K∑
k′=1

(β̄∗>k′ β̄
∗
k′)(z

>
k′ β̄
∗
k)(z>k zk)⇐ I4.
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Let us analyze I1 first. Under (S.5), ‖zk‖2 ≤ ε0
3
√
η∗k, it suffices to show that

K∑
k=1

K∑
k′=1

(z>k β̄k′)
2(z>k′ β̄

∗
k) ≥ −

K∑
k=1

K∑
k′=1

‖zk‖22‖β̄∗k′‖22‖z′k‖2‖β̄∗k‖2

≥ −η
∗ 4

3
maxε0

( K∑
k=1

‖zk‖2
)2

.

This immediately implies a lower bound for E(A12) after we bound similarly for I2, I3 and I4,

E(A12) ≥ −270η
∗ 4

3
maxε0

( K∑
k=1

‖zk‖2
)2

. (S.32)

By Lemma 8, we obtain for some absolute constant C,

K−2R−
2
3 η
∗− 4

3
max A12

≥K−2R−
2
3 η
∗− 4

3
max

[
E(A12)− 18Cη

∗ 4
3

maxε0

( K∑
k=1

‖zk‖2
)2 (log n)3

√
n

]
≥−K−1R−

2
3 ε0

(
270 + 18C

(log n)3

√
n

)( K∑
k=1

‖zk‖22
)
,

(S.33)

with probability at least 1−K2/n. The detail derivation is the same as in (S.31), so we omit here.

Similarly, the lower bounds of A13 to A19 can be derived as follows

K−
1
2 η
∗− 4

3
max A14 ≥ −K

1
2 ε0

(
270 + 18C

(log n)3

√
n

)( K∑
k=1

‖zk‖22
)

K−
1
2 η
∗− 4

3
max A13, A15, A17 ≥ −K

1
2 ε2

0

(
270 + 18C

(log n)3

√
n

)( K∑
k=1

‖zk‖22
)

K−
1
2 η
∗− 4

3
max A16, A18 ≥ −K

1
2 ε3

0

(
270 + 18C

(log n)3

√
n

)( K∑
k=1

‖zk‖22
)

K−
1
2 η
∗− 4

3
max A19 ≥ −K

1
2 ε4

0

(
270 + 18C

(log n)3

√
n

)( K∑
k=1

‖zk‖22
)
.

(S.34)

Putting (S.31), (S.33) and (S.34) together, we have with probability at least 1− 9K2/n,

A1 ≥
[
36K−2R−

8
3 −K−

3
2

(
2160R−

3
3 Γ + 18C

(log n)3

√
n

)
−8ε0K

−1R−
2
3

(
270 + 18C

(log n)3

√
n

)]( K∑
k=1

‖zk‖22
)
.

For the above bound,

• When the sample size satisfies n ≥ (18CK1/2R8/3(log n)3)2, we have

max
{

18K−
3
2C

(log n)3

√
n

, 8ε0K
−1R−

2
3 18C

(log n)3

√
n

}
≤ K−2R−

8
3 .

• When ε0 ≤ K−1R−2/2160, we have

8ε0K
−1R−

2
3 270 ≤ K−2R−

8
3 .
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• When the incoherence parameter satisfies Γ ≤ K−1/2/216, we have

K−
3
2 2160R−

8
3 Γ ≤ K−2R−

8
3 .

Note that those above conditions can be fulfilled by Conditions 3, 5 and (S.5). Thus, we are able to simplify

A1 by

A1 ≥ 32K−2R−
8
3

( K∑
k=1

‖zk‖22
)
, (S.35)

with probability at least 1− 9K2/n.

Step Two: Upper bound for A2. We observe the fact that

A2 =

K∑
k=1

∥∥∥ 1

φ
3
√
η∗k∇kL̃(β̄k)

∥∥∥2

2

= sup
w∈SKs−1

∣∣∣〈 K∑
k=1

3
√
η∗k
φ
∇kL̃(β̄k),w

〉∣∣∣2, (S.36)

where S is a unit sphere. It is equivalent to show for any w ∈ SKs−1, A′2 = |〈
∑K
k=1

3
√
η∗k
φ ∇kL̃(β̄k),w〉| is

upper bounded. According to the definition of noiseless gradient (S.22), A′2 is explicitly written as

A′2 =
6

n

n∑
i=1

( K∑
k′=1

(x>i β̄k′)
3 −

K∑
k′=1

(x>i β̄
∗
k′)

3
)( K∑

k=1

( 3
√
η∗k)2

φ
(x>i β̄k)2(x>i w)

)
.

Following by (S.26) and (S.27), similar decomposition can be made for A′2 as follows, where the only difference

is that we replace one x>i zk by x>i w.

A′2 ≤ K−2R
2
3 η
∗− 4

3
min

[ 6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)(x
>
i β̄k′)

2
K∑
k=1

(x>i w)(x>i β̄
∗
k)2
)
⇐ A′21

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)(x
>
i β̄k′)

2
K∑
k=1

2(x>i zk)(x>i w)(x>i β̄
∗
k)
)
⇐ A′22

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)(x
>
i β̄k′)

2
K∑
k=1

(x>i zk)2(x>i w)
)
⇐ A′23

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
2(x>i β̄k′)

K∑
k=1

(x>i w)(x>i β̄
∗
k)2
)
⇐ A′24

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
2(x>i β̄k′)

K∑
k=1

2(x>i zk)(x>i w)(x>i β̄
∗
k)
)
⇐ A′25

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
2(x>i β̄k′)

K∑
k=1

(x>i zk)(x>i w)(x>i β̄
∗
k)
)
⇐ A′26

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
3
K∑
k=1

(x>i w)(x>i β̄
∗
k)2
)
⇐ A′27

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
3
K∑
k=1

2(x>i zk)(x>i w)(x>i β̄
∗
k)
)
⇐ A′28

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
3
K∑
k=1

(x>i zk)2(x>i w)
)]
.⇐ A′29
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Let’s bound A′21 first. By using the same technique when calculating E(A11) in (S.28), we derive an upper

bound for E(A′21),

E(A′21) ≤ 36η
∗ 4

3
max

( K∑
k=1

‖zk‖2 + (K − 1)

K∑
k=1

Γ‖zk‖2
)

+ 180η
∗ 4

3
max

( K∑
k=1

‖zk‖2 + (K − 1)

K∑
k=1

Γ‖zk‖2
)

+ 54η
∗ 4

3
max

(
K

K∑
k=1

‖zk‖2
)
.

Equipped with Lemma 1 and the definition of tensor spectral norm (2.3), it suffices to bound A′21 by

R
2
3 η
∗− 4

3
min K−

1
2A′21 ≤ K−2R2

[
216 + 54K + 216KΓ + 18CKδn,p,s

]( K∑
k=1

‖zk‖2
)

with probability at least 1− 10K2/n3, where δn,p,s is defined in (2).

The upper bounds for A′22 to A′29 follow similar forms. Combining them together, we can derive an upper

bound for A′2 as follows

A′2 ≤ K−2R2
[
216 + 270K + 18CKδn,p,s

]( K∑
k=1

‖zk‖2
)

≤ K−2R2
[
220 + 270K

]( K∑
k=1

‖zk‖2
)
,

with probability at least 1− 90K2/n3, where the second inequality utilizes Condition 5. Therefore, the upper

bound of A2 is given as follows

A2 ≤ K−1R4[220 + 270K]2
( K∑
k=1

‖zk‖22
)
, (S.37)

with probability at least 1− 90K2/n3.

Step Three: Upper bound for A3. By the definition of noisy gradient and noiseless gradient, A3 is

explicitly written as

A3 =

K∑
k=1

∥∥∥ ( 3
√
η∗k)2

φ

6

n

n∑
i=1

εi(x
>
i β̄k)2xi

∥∥∥2

2

≤ K−4R
4
3 η
∗− 8

3
min

K∑
k=1

(√
Ksmax

j

6

n

n∑
i=1

εi(x
>
i β̄k)2xij

)2

,

where the second inequality comes from (S.26). For fixed {εi}ni=1, applying Lemma 8, we have

∣∣∣ n∑
i=1

εi(x
>
i β̄k)2xij − E

( n∑
i=1

εi(x
>
i β̄k)2xij

)∣∣∣ ≤ C(log n)
3
2 ‖ε‖2‖β̄k‖22,

with probability at least 1− 1/n. Together with Lemma 21, we obtain for any j ∈ [Ks],

∣∣∣ 6
n

n∑
i=1

εi(x
>
i β̄k)2xij

∣∣∣ ≤ 6CC0σ‖β̄k‖22
(log n)3/2

√
n

,
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with probability at least 1− 4/n, where σ is the noise level. According to (S.5),

∥∥∥β̄k − β̄∗k∥∥∥2

2
≤

K∑
k=1

∥∥∥β̄k − β̄∗k∥∥∥2

2
≤ Kη

∗ 2
3

maxε
2
0,

which further implies ‖β̄k‖22 ≤ (1 +K
1
2 ε0)2η

∗ 2
3

max. Equipped with union bound over j ∈ [Ks],

max
j∈[Ks]

∣∣∣ 6
n

n∑
i=1

εi(x
>
i β̄k)2xij

∣∣∣ ≤ 6CC0σ(1 +K
1
2 ε0)2( 3

√
η∗max)2 (log n)3/2

√
n

,

with probability at least 1− 4Ks/n. Letting C = 6C0(Ce)−2/3(1 +K
1
2 ε0)2,

A3 ≤ Cη
∗− 4

3
min R

8
3σ2K−2 s(log n)3

n
, (S.38)

with probability at least 1− 4Ks/n.

Step Four: Upper bound for A4. This cross term can be written as

A4 = 2

K∑
k=1

µ

φ
( 3
√
η∗k)2

( 1

n

n∑
i=1

εi(x
>
i β̄k)2(x>i zk)

)
.

To bound this term, we take the same step in Step Three which fixes the noise term {εi}ni=1 first. Similarly,

we obtain with probability at least 1− 4K/n,

A4 ≤ 2Cσ
(log n)

3
2

√
n

K−1R
4
3 η
∗− 2

3
min . (S.39)

This term is negligible in terms of the order when comparing with (S.38).

Summary. Putting the bounds (S.35), (S.37), (S.38) and (S.39) together, we achieve an upper bound for

gradient update effect as follows,

A ≤
(

1− 64µK−2R−
8
3 + 2µ2K−1R4[220 + 270K]2

) K∑
k=1

‖zk‖22

+ 4µCK−2η
∗− 4

3
min R

8
3
σ2s(log n)3

n
,

(S.40)

with probability at least 1− (18K2 + 4K + 4Ks)/n. �

S.VI.2 Bounding thresholding effect

The thresholding effect term in (S.24) can also be decomposed into optimization error and statistical error.

Recall that B can be explicitly written as

B =

K∑
k=1

∥∥∥µη∗ 2
3

k

φ

4
√

log(np)

n

√√√√ n∑
i=1

( K∑
k′=1

(x>i β̄k′)
3 − yi

)2

(x>i β̄k)4γk

∥∥∥2

2
,
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where supp(γk) ⊂ Fk and ‖γk‖∞ ≤ 1. By using (a+ b)2 ≤ 2(a2 + b2), we have

B ≤µ2 64Ks log p

n

[ 1

n

n∑
i=1

( K∑
k′=1

(x>i β̄k′)
3 −

K∑
k′=1

(x>i β̄
∗
k′)

3
)( K∑

k=1

η
∗ 4

3
k

φ2
(x>i β̄k)4

)
︸ ︷︷ ︸

B1:optimization error

+
1

n

n∑
i=1

ε2i

K∑
k=1

η
∗ 4

3
k

φ2
(x>i β̄k)4

︸ ︷︷ ︸
B2:statistical error

]
.

Bounding B1. This optimization error term shares similar structure with (S.36) but with higher order.

Therefore, we follow the same idea as we did in bounding (S.36). Following by (S.26) and some basic

expansions and inequalities,

B1 ≤K−2R
4
3 η
∗− 8

3
min

1

n

( K∑
k′=1

(x>i β̄k′)
3 −

K∑
k′=1

(x>i β̄
∗
k′)

3
)( K∑

k=1

(x>i β̄k)4
)

≤K−2R
4
3 η
∗− 8

3
min

[ 1

n

n∑
i=1

( K∑
k=1

3K(x>i zk)6 + 9K(x>i zk)4(x>i β̄
∗
k)2

+ 9K(x>i zk)2(x>i β̄
∗
k)4
) K∑
k′=1

(x>i β̄k′)
4
]
.

The main term is (x>i zk)2(x>i β̄
∗
k)4 according to the order of β̄∗k. We bound the main term first. Note that

there exists some positive large constant C such that

E
( 1

n

n∑
i=1

(x>i zk)2(x>i β̄
∗
k′)

4(x>i β̄k′)
4
)
≤ C‖zk‖22‖β̄∗k‖42‖β̄k′‖42.

Together with Lemma 8 and (S.5), we have

K∑
k=1

K∑
k′=1

( 1

n

n∑
i=1

(x>i zk)2(x>i β̄
∗
k′)

4(x>i β̄k′)
4
)

≤C
(

1 +
(log n)5

√
n

)
K2η

∗ 8
3

max(1 +K
1
2 ε0)4

K∑
k=1

‖zk‖22.

with probability at least 1− 3K2/n. Overall, the upper bound of B1 takes the form

B1 ≤K−2R
4
3 η
∗− 8

3
min

[
18C

(
1 +

(log n)5

√
n

)
K2η

∗ 8
3

max(1 +K
1
2 ε0)4

K∑
k=1

‖zk‖22
]

≤R418C
(

1 +
(log n)5

√
n

)
(1 +K

1
2 ε0)4

K∑
k=1

‖zk‖22,

(S.41)

with probability at least 1− 3K2/n.

Bounding B2. We rewrite B2 by

B2 =

K∑
k=1

η
∗ 4

3
k

φ2

( 1

n

n∑
i=1

ε2i (x
>
i β̄k)4

)
.
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For fixed {εi}ni=1, accordingly to Lemma 8, we have

∣∣∣ n∑
i=1

ε2i (x
>
i β̄k)4 − E

( n∑
i=1

ε2i (x
>
i β̄k)4

)∣∣∣ ≤ C(log n)2‖ε2‖2‖β̄k‖42.

Note that E((x>i β̄k)4) = 3‖β̄k‖42. It will reduce to

1

n

n∑
i=1

ε2i (x
>
i β̄k)4 ≤

( 3

n

n∑
i=1

ε2i + C
(log n)2

n
‖ε2‖2

)
‖β̄k‖42.

From Lemma 21, with probability at least 1− 3/n,

| 1
n

n∑
i=1

ε2i | ≤ C0σ
2,

1

n
‖ε2‖2 ≤ C0

σ2

√
n
.

Combining the above two inequalities, we obtain

∣∣∣ 1
n

n∑
i=1

ε2i (x
>
i β̄k)4

∣∣∣ ≤ 6C0σ
2‖β̄k‖42, (S.42)

with probability at least 1− 7/n. Plugging in the definition of φ and (S.5), B2 is upper bounded by

B2 ≤ 6C0σ
2(1 +K

1
2 ε0)4η

∗− 4
3

min R
8
3K−3, (S.43)

with probability at least 1− 7K/n.

Summary. Putting the bounds (S.41) and (S.43) together, we have similar upper bound for thresholded

effect,

B ≤ C2µ
2R4

K∑
k=1

‖zk‖22 + C3µ
2η
∗− 4

3
min R

8
3K−2σ

2s log p

n
, (S.44)

with probability at least 1− (3K2 + 7K)/n. �

S.VI.3 Ensemble

From the definition of γk, it’s not hard to see actually the cross term C is equal to zero. Combining the

upper bound of gradient update effect (S.40) and thresholding effect (S.44) together, we obtain

K∑
k=1

∥∥∥ 3
√
ηkβ̃

+
k − 3

√
η∗kβ

∗
k

∥∥∥2

2

≤
(

1− 64µK−2R−
8
3 + 3µ2K−1R4[220 + 270K]2

)( K∑
k=1

‖zk‖22
)

+ 2C3µ
2R

8
3 η
∗− 4

3
min

σ2K−2s log p

n
.

As long as the step size µ satisfies

0 < µ ≤ 32R−20/3

3K[220 + 270K]2
,
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we reach the conclusion

K∑
k=1

∥∥∥ 3
√
ηkβ̃

+
k − 3

√
η∗kβ

∗
k

∥∥∥2

2

≤
(

1− 32µK−2R−
8
3

) K∑
k=1

∥∥∥ 3
√
ηkβk − 3

√
η∗kβ

∗
k

∥∥∥2

2

+ 2C3µ
2R−

8
3 η
∗− 4

3
min

σ2K−2s log p

n
,

(S.45)

with probability at least 1− 4Ks/n. �

S.VII Proof of Lemma 14

Let us consider k-th component first. Without loss of generality, suppose F ⊂ {1, 2, . . . ,Ks}. For j =

Ks+ 1, . . . , p,

∂

∂βkj
L(βk) =

2

n

n∑
i=1

( K∑
k=1

ηk(x>i βk)3 − yi
)
ηk(x>i βk)2xij , (S.46)

and it’s not hard to see the independence between {x>i βk, yi} and xij . Applying standard Hoeffding’s

inequality, we have with probability at least 1− 1
n2p2 ,

∣∣∣ ∂

∂βkj
L(βk)

∣∣∣ ≤ √4 log(np)

n

√√√√ n∑
i=1

(

K∑
k=1

ηk(x>i βk)3 − yi)2(ηk(x>i βk))2 = h(βk).

Equipped with union bound, with probability at least 1− 1
n2p ,

max
Ks+1≤j≤p

∣∣∣ ∂

∂βkj
L(βk)

∣∣∣ ≤ h(βk).

Therefore, according to the definition of thresholding function ϕ(x), we obtain the following equivalence,

ϕµ
φh(βk)

(
βk −

µ

φ
∇βkL(βk)

)
= ϕµ

φh(βk)

(
βk −

µ

φ
∇βkL(βk)F

)
, (S.47)

holds for k ∈ [K], with probability at least 1− 1
n2p . (S.47) also provides that supp(β+

k ) ⊂ F for every k ∈ [K],

which further implies F+ ⊂ F . Now we end the proof. �

S.VIII Proof of Lemma 15

First, we consider symmetric case. According to the definition of {yi}ni=1 from symmetric tensor estimation

model (3.1), we separate the random noise εi by the following expansion,

1

n

n∑
i=1

y2
i =

1

n

n∑
i=1

[ K∑
k=1

η∗k(x>i β
∗
k)3 + εi

]2
=

1

n

n∑
i=1

(

K∑
k=1

η∗k(x>i β
∗
k)3)2

︸ ︷︷ ︸
I1

+
2

n

n∑
i=1

εi

K∑
k=1

η∗k(x>i β
∗
k)3

︸ ︷︷ ︸
I2

+
1

n

n∑
i=1

ε2i︸ ︷︷ ︸
I3

. (S.48)
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Bounding I1. We expand i-th component of I1 as follows

(

K∑
k=1

η∗k(x>i β
∗
k)3)2

=

K∑
k=1

η∗k(x>i β
∗
k)6 + 2

∑
ki<kj

η∗kiη
∗
kj (x

>
i β
∗
ki)

3(x>i β
∗
kj )

3.

(S.49)

As shown in Corollary S.1, the expectations of above two parts takes forms of

E(x>i β
∗
ki)

3(x>i β
∗
kj )

3 = 6(β∗>ki β
∗
kj )

3 + 9(β∗>ki β
∗
kj )‖β

∗
ki‖

2
2‖β∗kj‖

2
2

E(x>i β
∗
k)6 = 15‖β∗k‖22.

Recall that ‖β∗k‖2 = 1 for any k ∈ [K] and Condition 3 implies for any ki 6= kj , |β∗>ki β
∗
kj
| ≤ Γ, where Γ is the

incoherence parameter. Thus, E(x>i β
∗
ki

)3(x>i β
∗
kj

)3 is upper bounded by∣∣∣E(x>i β
∗
ki)

3(x>i β
∗
kj )

3
∣∣∣ ≤ 6Γ3 + 9Γ, for any ki 6= kj . (S.50)

By using the concentration result in Lemma 8, we have with probability at least 1− 1/n∣∣∣ 1
n

n∑
i=1

(x>i β
∗
k)6 − E(

1

n

n∑
i=1

(x>i β
∗
k)6)

∣∣∣ ≤ C1
(log n)3

√
n

,

∣∣∣ 1
n

n∑
i=1

(x>i β
∗
ki)

3(x>i β
∗
kj )

3 − E(
1

n

n∑
i=1

(x>i β
∗
ki)

3(x>i β
∗
kj )

3)
∣∣∣ ≤ C1

(log n)3

√
n

.

(S.51)

Putting (S.49),(S.50) and (S.51) together, this essentially provides an upper bound for I1, namely

1

n

n∑
i=1

(

K∑
k=1

η∗k(x>i β
∗
k)3)2 ≤

(
15 + 6Γ3 + 9Γ + 2C1

(log n)3

√
n

)
(

K∑
k=1

η∗k)2, (S.52)

with probability at least 1−K2/n.

Bounding I2. Since the random noise {εi}ni=1 is of mean zero and independent of {xi}, we have

E(εi

K∑
k=1

η∗k(x>i β
∗
k)3) = 0.

By using the independence and Corollary 8, we have

P
( 1

n

n∑
i=1

εi(x
>
i β
∗
k)3 ≥ C2

(log n)
3
2

n

√
nσ
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≤ P
( 1

n

n∑
i=1

εi(x
>
i β
∗
k)3 ≥ C2

(log n)
3
2

n

√
nσ
∣∣∣‖ε‖2 ≤ C0σ

√
n
)

+ P
(
‖ε‖2 ≥ C0

√
nσ
)

≤ 1

n
+

3

n
=

4

n
.

This further implies that

1

n

n∑
i=1

K∑
k=1

η∗k(x>i β
∗
k)3εi ≤ (

K∑
k=1

η∗k)C2
(log n)

3
2

√
n

σ, (S.53)
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with probability at least 1− 4K/n.

Bounding I3. As shown in Lemma 21, the random noise εi with sub-exponential tail satisfies

1

n

n∑
i=1

ε2i ≤ C3σ
2. (S.54)

with probability at least 1− 3/n.

Overall, putting (S.52), (S.53) and (S.54) together, we have with probability at least 1− (K2 + 4K + 3)/n,

1
n

∑n
i=1 y

2
i

(
∑K
k=1 η

∗
k)2
≤ 15 + 6Γ3 + 9Γ + 2C1

(log n)3

√
n

+
2C2σ

(
∑K
k=1 η

∗
k)

(log n)
3
2

√
n

+
C3σ

2

(
∑K
k=1 η

∗
k)2

.

Under Conditions 4 & 5, the above bound reduces to

1

n

n∑
i=1

y2
i ≤ (16 + 6Γ3 + 9Γ)(

K∑
k=1

η∗k)2,

with probability at least 1− (K2 + 4K+ 3)/n. The proof of lower bound is similar, and hence is omitted here.

Similar results will also hold for non-symmetric tensor estimation model. Throughout the proof, the only

difference is that

E(u>i β
∗
1k)2(v>i β

∗
2k)2(w>i β

∗
3k)2 = 1.

�

E Matrix Form Gradient and Stochastic Gradient descent

S.I Matrix Formulation of Gradient

In this section, we provide detail derivations for (3.5).

Lemma S.1. Let η = (η1, . . . , ηK) ∈ RK×1,X = (x1, . . . ,xn) ∈ Rp×n and B = (β1, . . . ,βK) ∈ Rp×K . The

gradient of symmetric tensor estimation empirical risk function (3.3) can be written in a matrix form as

follows

∇BL(B,η) =
6

n
[((B>X)>)3η − y]>[(((B>X)>)2 � η>)> �X]>.

Proof. First let’s have a look at the gradient for k-th component,

∇Lk(βk) =
6

n
(

K∑
k=1

ηk(x>i βk)3 − yi)ηk(x>i βk)xi ∈ Rp×1, for k = 1, . . . ,K.

Correspondingly, each part can be written as a matrix form,

((B>X︸ ︷︷ ︸
K×n

)>)3η − y ∈ Rn×1

(((B>X)>)2 � η>)> �X ∈ RpK×n.

This implies that [((B>X)>)3η − y]>[(((B>X)>)2 � η>)> � X]> ∈ R1×pK . Note that

∇BL(B,η) = (∇L1(β1)>, . . . ,∇LK(βK)>) ∈ R1×pK . The conclusion can be easily derived. �
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S.II Stochastic Gradient descent

Stochastic thresholded gradient descent is a stochastic approximation of the gradient descent optimization

method. Note that the empirical risk function (3.3) that can be written as a sum of differentiable functions.

Followed by (3.5), the gradient of (3.3) evaluated at i-th sketching {yi,xi} can be written as

∇BLi(B,η) = [((B>xi)
>)3η − yi][(((B>xi)>)2 � η>)> � xi]> ∈ R1×pK ,

Thus, the overall gradient ∇BLi(B,η) defined in (3.5) can be expressed as a summand of ∇BLi(B,η),

∇BLi(B,η) =
1

n

n∑
i=1

∇BLi(B,η).

The thresholded step remains the same as Step 3 in Algorithm1. Then the symmetric update of stochastic

thresholded gradient descent within one iteration is summarized by

vec(B(t+1)) = ϕµSGD
φ h(B(t))

(
vec(B(t))− µSGD

φ
∇BLi(B(t))

)
.

F Technical Lemmas

Lemma 16 . Suppose x ∈ Rp is a standard Gaussian random vector. For any non-random vector a, b, c ∈ Rp,
we have the following tensor expectation calculation,

E
(

(a>x)(b>x)(c>x)x ◦ x ◦ x
)

=
(
a ◦ b ◦ c+ a ◦ c ◦ b+ b ◦ a ◦ c+ b ◦ c ◦ a+ c ◦ b ◦ a+ c ◦ a ◦ b

)
+ 3

p∑
m=1

(
a ◦ em ◦ em(b>c) + em ◦ b ◦ em(a>c) + em ◦ em ◦ c(a>b)

)
,

(S.1)

where em is a canonical vector in Rp.

Proof. Recall that for a standard Gaussian random variable x, its odd moments are zero and even moments

are E(x6) = 15,E(x4) = 4. Expanding the LHS of (S.1) and comparing LHS and RHS, we will reach the

conclusion. Details are omitted here. �

Lemma 17 . Suppose u ∈ Rp1 ,v ∈ Rp2 ,w ∈ Rp3 are independent standard Gaussian random vectors. For

any non-random vector a ∈ Rp1 , b ∈ Rp2 , c ∈ Rp3 , we have the following tensor expectation calculation

E
(

(a>u)(b>v)(c>w)u ◦ v ◦w
)

= a ◦ b ◦ c. (S.2)

Proof. Due to the independence among u,v,w, the conclusion is easy to obtain by using the moment of

standard Gaussian random variable. �

Note that in the left side of (S.1), it involves an expectation of rank-one tensor. When multiplying any

non-random rank-one tensor with same dimensionality, i.e. a1 ◦ b1 ◦ c1, on both sides, it will facilitate us to

calculate the expectation of product of Gaussian vectors, see next Lemma for details.

Lemma S.1. Suppose x ∈ Rp is a standard Gaussian random vector. For any non-random vector a, b, c,d ∈
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Rp, we have the following expectation calculation

E(x>a)6 = 15‖a‖62,
E(x>a)5(x>b) = 15‖a‖42(a>b),

E(x>a)4(x>b)2 = 12‖a‖22(a>b)2 + 3‖a‖42‖b‖22,
E(x>a)3(x>b)3 = 6(a>b)3 + 9(a>b)‖a‖22‖b‖22,
E(x>a)3(x>b)2(x>c) = 6(a>b)2(a>c) + 6(a>b)(b>c)(a>a)

+3(a>c)(b>b)(a>a),

E(x>a)2(x>b)(x>c)2(x>d) = 2(a>c)2(b>d) + 4(a>c)(b>c)(a>d)

+6(a>c)(a>b)(c>d) + 3(c>x)(b>d)(a>a).

Proof. Note that E((x>a)3(x>b)3) = E((x>a)3〈x ◦ x ◦ x, b ◦ b ◦ b〉). Then we can apply the general result

in Lemma 16. Comparing both sides, we will obtain the conclusion. Others part follows the similar strategy. �

Next lemma provides a probabilistic concentration bound for non-symmetric rank-one tensor under tensor

spectral norm.

Lemma 18 . Suppose X = (x>1 , · · · ,x>n )>,Y = (y>1 , · · · ,y>n )>,Z = (z>1 , · · · , z>n )> are three n×p random

matrices. The ψ2-norm of each entry is bounded, s.t. ‖Xij‖ψ2
= Kx, ‖Yij‖ψ2

= Ky, ‖Zij‖ψ2
= Kz. We

assume the row of X,Y ,Z are independent. There exists an absolute constant C such that,

P
(∥∥∥ 1

n

n∑
i=1

[
xi ◦ yi ◦ zi − E(xi ◦ yi ◦ zi)

]∥∥∥
s
≥ CKxKyKzδn,p,s

)
≤ p−1.

P
(∥∥∥ 1

n

n∑
i=1

[
xi ◦ xi ◦ xi − E(xi ◦ xi ◦ xi)

]∥∥∥
s
≥ CK3

xδn,p,s

)
≤ p−1.

Here, ‖·‖s is the sparse tensor spectral norm defined in (2.3) and δn,p,s =
√
s log(ep/s)/n+

√
s3 log(ep/s)3/n2.

Proof. Bounding spectral norm always relies on the construction of the ε-net. Since we will bound a sparse

tensor spectral norm, our strategy is to discrete the sparse set and construct the ε-net on each one. Let us

define a sparse set B0 = {x ∈ Rp, ‖x‖2 = 1, ‖x‖0 ≤ s}. And let B0,s be the s-dimensional set defined by

B0,s = {x ∈ Rs, ‖x‖2 = 1}. Note that B0 is corresponding to s-sparse unit vector set which can be expressed

as a union of subsets of dimension s by expanding some zeros, namely B0 = ∪ B0,s. There should be at most(
p
s

)
≤ ( eps )s such set B0,s.

Recalling the definition of sparse tensor spectral norm in (2.3), we have

A =
∥∥∥ 1

n

n∑
i=1

[
xi ◦ yi ◦ zi − E(xi ◦ yi ◦ zi)

]∥∥∥
s

= sup
χ1,χ2,χ3∈B0

∣∣∣ 1
n

n∑
i=1

[
〈xi,χ1〉〈yi,χ2〉〈zi,χ3〉 − E(〈xi,χ1〉〈yi,χ2〉〈zi,χ3〉)

]∣∣∣.
Instead of constructing the ε-net on B0, we will construct an ε-net for each of subsets B0,s. Define NB0,s

as

the 1/2-set of B0,s. From Lemma 3.18 in Ledoux (2005), the cardinality of N0,s is bounded by 5s. By Lemma

19, we obtain

sup
χ1,χ2,χ3∈B0,s

∣∣∣ 1
n

n∑
i=1

[
〈xi,χ1〉〈yi,χ2〉〈zi,χ3〉 − E(〈xi,χ1〉〈yi,χ2〉〈zi,χ3〉)

]∣∣∣
≤23 sup

χ1,χ2,χ3∈NB0,s

∣∣∣ 1
n

n∑
i=1

[
〈xi,χ1〉〈yi,χ2〉〈zi,χ3〉 − E(〈xi,χ1〉〈yi,χ2〉〈zi,χ3〉)

]∣∣∣. (S.3)

39



By rotation invariance of sub-Gaussian random variable, 〈xi,χ1〉, 〈yi,χ2〉, 〈zi,χ3〉 are still sub-Gaussian

random variables with ψ2-norm bounded by Kx,Ky,Kz, respectively. Applying Lemma 8 and union bound

over NB0,s
, the right hand side of (S.3) can be bounded by

P
(

RHS ≥ 8KxKyKzC
(√ log δ−1

n
+

√
(log δ−1)3

n2

))
≤ (5s)3δ,

for any 0 < δ < 1.

Lastly, taking the union bound over all possible subsets B0,s yields that

P
(
A ≥ 8KxKyKzC

(√ log δ−1

n
+

√
(log δ−1)3

n2

))
≤ (

ep

s
)s(5s)3δ = (

125ep

s
)sδ.

Letting p−1 = ( 125ep
s )sδ, we obtain with probability at least 1− 1/p

A ≤ CKxKyKz

(√s log(p/s)

n
+

√
s3 log3(p/s)

n2

)
,

with some adjustments on constant C. The proof for symmetric case is similar to non-symmetric case so we

omit here. �

Lemma 19 (Tensor Covering Number(Lemma 4 in Nguyen et al. (2015) )). Let N be an ε-net for a set B

associated with a norm ‖ · ‖. Then, the spectral norm of a d-mode tensor A is bounded by

sup
x1,...,xd−1∈B

‖A ×1 x1 . . .×d−1 xd−1‖2

≤
( 1

1− ε

)d−1

sup
x1···xd−1∈N

‖A ×1 x1 · · · ×d−1 xd−1‖2.

This immediately implies that the spectral norm of a d-mode tensor A is bounded by

‖A‖2 ≤ (
1

1− ε
)d−1 sup

x1...xd−1∈N
‖A ×1 x1 · · · ×d−1 xd−1‖2,

where N is the ε-net for the unit sphere Sn−1 in Rn.

Lemma 20 (Sub-Gaussianess of the Product of Random Variables). Suppose X1 is a bounded random

variable with |X1| ≤ K1 almost surely for some K1 and X2 is a sub-Gaussian random variable with Orlicz

norm ‖X2‖ψ2
K2. Then X1X2 is still a sub-Gaussian random variable with Orlicz norm ‖X1X2‖ψ2

= K1K2.

Proof: Following the definition of sub-Gaussian random variable, we have

P
(∣∣X1X2

∣∣ > t
)

= P
(∣∣X2

∣∣ > t∣∣X1

∣∣) ≤ P
(∣∣X2

∣∣ > t∣∣K1

∣∣) ≤ exp
(

1− t2/K2
1K

2
2

)
,

holds for all t ≥ 0. This ends the proof. �

Lemma 21 (Tail Probability for the Sum of Sub-exponential Random Variables (Lemma A.7 in Cai et al.

(2016))). Suppose ε1, . . . , εn are independent centered sub-exponential random variables with

σ := max
1≤i≤n

‖εi‖ψ1
.
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Then with probability at least 1− 3/n, we have∣∣∣ 1
n

n∑
i=1

εi

∣∣∣ ≤ C0σ

√
log n

n
,
∥∥ε∥∥∞ ≤ C0σ log n,

∣∣∣ 1
n

n∑
i=1

ε2i

∣∣∣ ≤ C0σ
2,
∣∣∣ 1
n

n∑
i=1

ε4i

∣∣∣ ≤ C0σ
4,

for some constant C0.

Lemma 22 (Tail Probability for the Sum of Weibull Distributions (Lemma 3.6 in Adamczak et al. (2011))).

Let α ∈ [1, 2] and Y1, . . . , Yn be independent symmetric random variables satisfying P(|Yi| ≥ t) = exp(−tα).

Then for every vector a = (a1, . . . , an) ∈ Rn and every t ≥ 0,

P
(
|
n∑
i=1

aiYi| ≥ t
)
≤ 2 exp

(
− cmin

( t2

‖a‖22
,

tα

‖a‖αα∗

))

Proof. It is a combination of Corollaries 2.9 and 2.10 in Talagrand (1994).

Lemma 23 (Moments for the Sum of Weibull Distributions (Corollary 1.2 in Bogucki (2015))). Let

X1, X2, . . . , Xn be a sequence of independent symmetric random variables satisfying P(|Yi| ≥ t) = exp(−tα),

where 0 < α < 1. Then, for p ≥ 2 and some constant C(α) which depends only on α,∥∥∥∥∥
n∑
i=1

aiXi

∥∥∥∥∥
p

≤ C(α)(
√
p‖a‖2 + p1/α‖a‖∞).

Lemma 24 (Stein’s Lemma (Stein et al., 2004)). Let x ∈ Rd be a random vector with joint density function

p(x). Suppose the score function ∇x log p(x) exists. Consider any continuously differentiable function

G(x) : Rdx → R. Then, we have

E
[
G(x) · ∇x log p(x)

]
= −E

[
∇xG(x)

]
.

Lemma 25 (Khinchin-Kahane Inequality (Theorem 1.3.1 in De la Pena and Giné (2012))). Let {ai}ni=1 a

finite non-random sequence, {εi}ni=1 be a sequence of independent Rademacher variables and 1 < p < q <∞.

Then ∥∥∥ n∑
i=1

εiai

∥∥∥
q
≤
(q − 1

p− 1

)1/2∥∥∥ n∑
i=1

εiai

∥∥∥
p
.

Lemma 26 . Suppose each non-zero element of {xk}Kk=1 is drawn from standard Gaussian distribution and

‖xk‖0 ≤ s for k ∈ [K]. Then we have for any 0 < δ ≤ 1,

P
(

max
1≤k1<k2≤K

|〈xk1 ,xk2〉| ≤ C
√
s
√

logK + log 1/δ
)
≥ 1− δ,

where C is some constant.

Proof. Let us denote Sk1k2 ⊂ [1, 2, . . . , p] as an index set such that for any i, j ∈ Sk1k2 , we have xk1i 6= 0

and xk2j 6= 0. From the definition of Sk1k2 , we know that |Sk1k2 | ≤ s and x>k1xk2 =
∑p
j=1 xk1jxk2j =∑

j∈Sk1k2
xk1jxk2j . We apply standard Hoeffding’s concentration inequality,

P
(
|〈xk1 ,xk2〉| ≥ t

)
= P

(
|
∑

j∈Sk1k2

xk1jxk2j | ≥ t
)
≤ e exp

(
− ct2

s

)
.

Letting ct2/s = log(1/δ), we reach the conclusion.
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