Supplement to “Sparse and Low-rank Tensor Estimation via Cubic
Sketchings”

This supplementary contains five parts: (1) Section A contains high-order interaction effect model using
our cubic sketching framework; (2) Section B includes detailed proofs for empirical moment estimator and
concentration results; (3) Section C provides additional proofs for the main theoretical results of this paper;
(2) Section D contains detailed proofs for the theoretical developments in the main theorems; (4) Section E
discusses the matrix form of gradient function and stochastic gradient descent; (5) Section F provides several
technical lemmas and their proofs.

A Application to High-Order Interaction Effect Models

In this section, we estimate high-order interaction effect models in the cubic sketching framework (see Figure
3). Specifically, we consider the following three-way interaction model

p p p
=%+ Gai+ > vVijmiai+ Y Migrzuzias e, 1=1,...,mn. (S.1)

i=1 ij=1 i,5,k=1

Here &, =, and ) are coefficients for main effect, pairwise interaction, and triple-wise interaction, respectively.
Importantly, (S.1) can be reformulated as the following tensor form (also see the left panel in Figure 3)

y={B,xioxiox))+¢, l=1,...,n, (S.2)

where z; = (1,2,)T € RPF! and B € ReHD*(+D)x(P+1) js 3 tensor parameter corresponding to coefficients
in the following way:
Bio,0,0; = o
B[l:p,l:p,l:p] = (nijk)lfi,j,kﬁpv (S 3)
Bio,1:p,1:0) = Bpip,0,15) = Bup1p,0) = (%ig/3)1<ii<ps '
Bi0,0.1:p) = Bo,1:p.0] = Bji:p,0,0) = (§i/3)1<i<p-

Three-way interaction: XXXy

Two-way interaction: X;X;

(17 2y 'EX)
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(L Xy, X2,X3) o (1, Xy, Xz, X3) o (1, X, X5, X3) € RP*PXP

Figure 3: Illustration for interaction reformulation.

We next argue that it is reasonable to assume B is low rank and sparse in the tensor formulation of high-order
interaction models. First, in modern biomedical research such as Hung et al. (2016), only a small portion
of coefficients contribute to the response, leading to a highly sparse B. Further, Sidiropoulos and Kyrillidis
(2012) suggested that for the low-enough rank it is suitable to model sparse tensors as arising from sparse
loadings, saying CP-decomposition. Moreover, this low-rank-and-sparse assumption (or approximation) seems
necessary when the sample size is limited. Specifically, we assume B is of CP rank-K with s-sparse factors,
where K, s < p. It is easy to see that the number of Parameters in (S.4) is K(p + 1), which is significantly



smaller than (p + 1)3, the total number of parameters in the original three-way interaction effect model (S.1).
In this case, (S.2) can be written as

K

yl:<Z77k5k0ﬁkOﬁk,mlowlowl>+el, l=1,...,n,
k=1 (S.4)

where [[Bkll2 =1, |[IBkllo <s, k€ [K]

By assuming z; “ N, (0, I,), the high-order interaction effect model (S.2) reduces to the symmetric tensor
estimation model (3.1) with the only difference that the first coordinate of a;, i.e., the intercept, is always
1. To accommodate this slight difference, we only need to adjust the initial unbiased estimate in the above
two-step procedure. We first obtain 7 by replacing x; therein by x;, where x; corresponds the [-th observation

6
= (S.5)

1 n
where a = — x,
LS

P
1 & 1
Ts 6—2 ylwlowlowl—fg (aoejoej—I—ejoaoej—i—ejoejoa),

then construct empirical-moment-based initial tensor 7y as

o Fori,j, k #0, Topijr = Tofigr- And Topigo) = Talig0ps Tsrio,5,6) = Tso,4.k)> Tsr(i,0,k) = Ts[i,0,k)-
o For i #0, Toj0,0,i] = Tor[0,1,0) = To'[5,0,0] = 3 750,0,1] — & Dot Tsieri] — (0 + 2)as).
* To10,00 = 353 (et ook = (0 +2)Tejo,0,0))-

Lemma 4 verifies that T,/ is an unbiased estimator for B.
Theoretical results in Section 4 imply the following upper and lower bound results in this particular example.
Corollary 1 . Suppose that z1, ..., z, are i.i.d. standard Gaussian random vectors and B satisfies Conditions

1, 2 and 3. The output, denoted as f)’\7 from the proposed Algorithms 1 and 2 based on Ty satisfies

|B-5| < T toler (5.6

n

with high probability. On the other hand, considering the following class of B,

F g, B= mBroBioBrllBilo < s. for k € [K],
pHLEs " B satisfies Conditions 1, 2, and 3, '

then the following lower bound holds,

~ 2 2Ksl
inf  sup EHB—BHF ZCLng.

BBG.F+1K§ n

B Main Proofs

In this section, we provide detailed proofs for empirical moment estimator and concentration results in

Sections S.I and S.II. 5



S.I Moment Calculation

We first introduce three lemmas to show that the empirical moment based tensors are all unbiased estimators
for the target low-rank tensor in the corresponding scenarios. Detail proofs of three lemmas are postponed to
Sections S.I.1, S.I.2 and S.I.3 in the supplementary materials.

Lemma 2 (Unbiasedness of moment estimator under non-symmetric sketchings). Consider a non-symmetric
tensor estimation model as follows

yi = (77, 23) + e, Zi=ujov;ow;, i€ [n], (s.1)

where u; € RP!, v; € RP2 w,; € RP3 are random vectors with i.i.d. standard normal entries. Again, we assume
J* is sparse and low-rank in a similar sense that

K
T* = ZUZ/@IIC o B, © B3y,
k=1

(S.2)
1B1kll2 = 1Bakll2 = 183k ll2 = 1, max{|[Billo, Baxllo: Bk llo} < s.

Define the empirical-moment-based tensor 7 by
1 n
T = ﬁz;yluz 0 v; 0 Wj.
i—

Then 7 is an unbiased estimator for 7%, i.e.,

K
E(T) = Z N&B1k © Bak © Ba-

k=1

The extension to the symmetric case is non-trivial due to the dependency among three identical sketching
vectors. We borrow the idea of high-order Stein’s identity, which was originally proposed in Janzamin et al.
(2014). To fix the idea, we present only third order result for simplicity. The extension to higher-order is
straightforward.

Theorem 5 (Third-order Stein’s Identity, (Janzamin et al., 2014)). Let € R be a random vector with joint
density function p(z). Define the third order score function Sz(z) : RP — RPXP*P as S3(x) = —V3p(x)/p(z).
Then for continuously differentiable function G(x) : R? — R, we have

E[G(z) - Ss(x)] = E [V3G()] . (S.3)

In general, the order-m high-order score function is defined as

m V"p(x)

Interestingly, the high-order score function has a recursive differential representation
Sm(m) = m—l(m) o Vlng(.’B) - V‘Sm—l(m)7 (84)

with Sp(x) = 1. This recursive form is helpful for constructing unbiased tensor estimator under symmetric
cubic sketchings. Note that the first order score function S;(x) = —Vlogp(x) is the same as score function
in Lemma 24 (Stein’s lemma (Stein et al., 2004)). The proof of Theorem 5 relies on iteratively applying the
recursion representation of score function (S.4) and the first-order Stein’s lemma (Lemma 24). We provide
the detailed proof in Section S.IV for the sake of comfleteness.



In particular, if & follows a standard Gaussian vector, each order score function can be calculated based on
(S.4) as follows,

Si(z) =2,8(x) =xox — Igxa,
P (S.5)

Ss(x)=xoxox— g (woejoej—l—ejowoej—l—ejoejo:z:).
=1

Interestingly, if we let G(x) = ZkK:l ni(x " B5)3, then

fv3 Z 1B 0 By © By, (S.6)

which is exactly 7*. Connecting this fact with (S.3), we are able to construct the unbiased estimator in the
following lemma through high-order Stein’s identity.

Lemma 3 (Unbiasedness of moment estimator under symmetric sketchings). Consider the symmetric tensor
estimation model (3.1) & (4.8). Define the empirical first-order moment m; := £ 3" | y;;. If we further
define an empirical third-order-moment-based tensor T4 by

[ E Y;iL; OL; O Ty — E (mloejoej—l—ejomloej—i—ejoejoml)},
Jj=1

then
K
= 0B o By o By
k=1
Proof. Note that y; = G(x;) + €;. Then we have

B(LY us@) =B(L Y @)+ w)si@).

=1

where S3(z) is defined in (S.5). By using the conclusion in Theorem 5 and the fact (S.6), we obtain

n K
(T =25, S isila)) = Y nibi o 5o i

since ¢; is independent of ;. This ends the proof. |

Although the interaction effect model (S.1) is still based on symmetric sketchings, we need much more careful
construction for the moment-based estimator, since the first coordinate of the sketching vector is always
constant 1. We give such an estimator in the following lemma.

Lemma 4 (Unbiasedness of moment estimator in interaction model). For interaction effect model (S.1),
construct the empirical moment based tensor Ty as following

o Fori,j, k #0, Topiju) = Tofigr- And Topigo) = Talig0ps Tsrio,5,6) = Tsl0,4.k)> Ts(i,0,k) = Ts[i,0,k]-
e For i #0, Tyj0,0,i = Ter(0,1,0) = To'(5,0,0] = 3 750,0,] — & Ot Tsiesi] — (0 + 2)aq).
® To0,00 = 21, 5 (> ket Too.e.6) — (0 +2)Tip0,0,0])-

The Ty is an unbiased estimator for B, i.e.,

K
)= kB 0 B © B

k=1 4



S.IT Proof of Lemma 1: Concentration Inequalities

We aim to prove Lemma 1 in this subsection. This lemma provides key concentration inequalities of the
theoretical analysis for the main result. Before going into technical details, we introduce a quasi-norm called
q-norm.

Definition 1 (¢),-norm (Adamczak et al., 2011)). The ¢4-norm of any random variable X and a > 0 is
defined as

Xl = inf {0 € (0,00) : Elexp(|X|/C)?] < 2}.

Particularly, a random variable who has a bounded s-norm or bounded 1-norm is called sub-Gaussian or
sub-exponential random variable, respectively. Next lemma provides an upper bound for the p-th moment of
sum of random variables with bounded ,-norm.

Lemma 5 . Suppose X;i,...,X, are n independent random variables satisfying ||X;||y, < b with a > 0,
then for all a = (a1,...,a,) € R" and p > 2,

n n » 1
(E‘ ZazXz —E(Z ale) )p
i=1 i=1

< { Ci(a)b(ypllallz +p*lalls),  f0<a<l;
- Co(a)b(y/Bllallz + p/|lalla~), if a>1.

where 1/a* 4+ 1/a =1, Cy(a), C2(«) are some absolute constants only depending on «.

If 0 < a <1, (S.7) is a combination of Theorem 6.2 in Hitczenko et al. (1997) and the fact that the p-th
moment of a Weibull variable with parameter a is of order p*/®. If a > 1, (S.7) follows from a combination
of Corollaries 2.9 and 2.10 in Talagrand (1994). Continuing with standard symmetrization arguments, we
reach the conclusion for general random variables. When o =1 or 2, (S.7) coincides with standard moment
bounds for a sum of sub-Gaussian and sub-exponential random variables in Vershynin (2012). The detailed
proof of Lemma 5 is postponed to Section S.II.

When 0 < a < 1, by Chebyshev’s inequality, one can obtain the following exponential tail bound for the sum of
random variables with bounded ) ,-norm. This lemma generalizes the Hoeffding-type concentration inequality
for sub-Gaussian random variables (see, e.g. Proposition 5.10 in Vershynin (2012)), and Bernstein-type
concentration inequality for sub-exponential random variables (see, e.g. Proposition 5.16 in Vershynin (2012)).

Lemma 6 . Suppose 0 < o < 1, Xy,..., X, are independent random variables satisfying ||X;/y, < b.
Then there exists absolute constant C'(«) only depending on « such that for any a = (a1,...,a,) € R™ and
0<d<1/e?

< C(a)bllall2(log 5~)? + C(a)bllallo(log 6~1) "/

’ i aiXi — E(i CLZXl)
i=1 i=1

with probability at least 1 — §.

Proof. For any t > 0, by Markov’s inequality,

i=1 i=1 i=1 i=1

n n p
]E‘ Dy @iXi — E( 2i1 aiXi)
<
< >

P
> t”)

p
Cla)w (yalallz +p'/*all)
tp

9
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where the last inequality is from Lemma 5. We set ¢ such that exp(—p) = C(a)Pb?(\/pllal|2 +p'/ || alloc)P/tP.

Then for p > 2,
Sk -5( 3 )

holds with probability at least 1 — exp(—p). Letting 6 = exp(—p), we have that for any 0 < § < 1/e2,

>0~ 530k, < Clap(lalons) 2 + ] lors) ).
i=1 i=1

holds with probability at least 1 — d. This ends the proof. |

< eC(a)p(VBllalla +p/ alluc)

The next lemma provides an upper bound for the product of random variables in 1,-norm.

Lemma 7 (¢, for product of random variables). Suppose X7, ..., X, are m random variables (not necessarily
independent) with t,-norm bounded by || Xy, < Kj. Then the 1y /,,-norm of H;"':l X, is bounded as

m

11 gﬁK
j=1

el
J Ya/m

Proof. For any {:vj} *, and a > 0, by using the inequality of arithmetic and geometric means we have
TN\ (TT 1% e\ Y™ L\
(TL2)™" = (1) "<
j=1"" j=1 7 j=1
Since exponential function is a monotone increasing function, it shows that
T %\ 1S~ % ja
s/ < it 7
e (TN e (5 X1E1)
j=1 j=1
= (TTewt )" < e (I217).
Jj=1 Jj=1
From the definition of 1),-norm, for j = 1,2,...,m, each individual X; has

|§ |) )<2 (S.9)

J

(S.8)

E(exp(

Putting (S.8) and (S.9) together, we obtain
1, X o/ "X, ol
elow (e i) ] =l (L1720

1 X @
< — ]E[ ( 2 ) ] <2.
< L3 e[ (1321)"] <
Therefore, we conclude that the 9 /p-norm of [/, X; is bounded by []", K [ |

Lemma 8 (Concentration inequality for sum of sub-Gaussian products). Suppose X; = (z{;,...,z,}.)" €

R™*P 4 € [n]| are n i.i.d random matrices. Here, x;; is the j-th row of X; and suppose it is an isotropic
sub-Gaussian vector. Then for any vectors @ = (a1 ...,a,) € R, {B;}]L; CRP, and 0 < § < 1, we have

‘ gai f[l(az;ﬂj) - E(éai f[l(mgﬁ])ﬂ

< CTT 18512 (llalloc(log 6712 + [lalls (10g 7)),
Jj=1 6



with probability at least 1 — § for some constant C'.

Note that in Lemma 8, entries in each matrix X; are not necessarily independent even { X} ; are independent
matrices.

Proof of Lemma 8. Note that for any j = 1,2,...,m, the 1)3-norm of XjTﬁj is bounded by [|3;||2 (Vershynin,
2012). According to Lemma 7, the 15 /,,,-norm of H;nzl(X;,Bj) is bounded by H;n:l |B;ll2. Directly applying
Lemma 6, we reach the conclusion. |

Proof of Lemma 1. We first start from the non-symmetric version in (S.1) and the proof follows three steps:

1. Truncate the first coordinate of @;, x2;, x3; by a carefully chosen truncation level;
2. Utilize the high-order concentration inequality in Lemma 18 at order three;
3. Show that the bias caused by truncation is negligible.
With slightly abuse of notations, we denote a,x,y etc. as their first coordinate of a,x,y etc. Without loss of

generality, we assume p := max{p1, p2,p3}. By unitary invariance, we assume B; = B2 = 33 = e, where
e; = (1,0,...,0)". Then, it is equivalent to prove

n
1
HMnsy - E(Mnsy)H = Hﬁ g T13X2;XL34L1 © L2; © L3; — €1 0€10€
S - s

- C(logn)3( /S?’loi?;(p/S)+ /Slogép/S))'

Suppose 1 ~ N(0,I,,),z2 ~ N(0,1,,),x3 ~ N(0,I,,) and {@1;, T2;, x3;}!, are n independent samples
of {x1,x2,x3}. And define a bounded event G, for the first coordinate and its corresponding population

version,
G = {max{fay], [22i], |23} < M}, G = {max{[z1], |22], [3]} < M},
where M is a large constant to be specified later. Decomposing || Mysy — E(Mysy)||s as

s~ 20080

n
1
< n g T1iT2;T3iT1; © T2; © T3; — B 212223@1 0 T2 0 ws‘g
S
i=1

M :main term

)
S

+ HE(mlxgxg,ml oxy 0 w3|g> —ejoejoe;

M5 :bias term
we will prove that My is negligible in terms of convergence rate of M.

Bounding M;. For simplicity, we define @} = x1|G, x4 = x2|G, x4 = x3|G, and {x;, x5, x5, }7, are n
independent samples of {x}, x}, x4}. According to the law of total probability, we have

P(un =) <)

21&).
S

n
1
/ A / A / A / / / ! / /
+ P( Hﬁ E L1;L7; O T3;To; O Ty L3; — IE3<x1w1 O ToZy O x3w3>

May



According to Lemma 20, the entry of zf,x!;, x5,x5,;, x4, x5, are sub-Gaussian random variable with ¢-norm
M?. Applying Lemma, 18, we obtain

)

P(Mu > C1M65n,s) <

D=

where 6, s = ((slog(p/s))?/n?)'/2 + (slog(p/s)/n)'/>.
On the other hand,
P(Gr) <3 B(len| > M) < 3ne! =M
=1

Putting the above bounds together, we obtain
IP’(Ml > 01M65n,3) < 1/s+ 3nel=C2M?,

By setting M = 24/logn/Cs, the bound of M; reduces to

64C,
3

1 3
dn,s(log n)‘°’) < Tt 772 (S.10)

P(M =
Bounding M,. There exists o € SP~! such that
3
My = [E(w12505 (2] 0)(@] 0) (@] 0)| ) — (] o).
Since 1, is independent of zy, for any j # k, E(x1(z] 0)|G) = E(2301|G). Then
My = |E(a3adadel]g) - o

|o1E (31| < 0 )E (a5 lzal < M )E(a3]las| < 1) - o

)
where the second equation comes from the independence among each coordinate of {x1;, @2, T3;}.

By the basic property of Gaussian random variable, we can show
1> E(x$|\xi| < M) >1-2Me M2 =123

Plugging them into M5, we have

3
My < o] (1 - 2me )
< ‘12M26_M2 _6Me M2 _gppBe3ME /2
< ’26M36*M2/2‘,

where the second inequality is due to ||g||3 = 1 and the last inequality holds for a large M > 0. By the choice
of M = 24/logn/Cy, we have My < 208/03/2(10g n)% /n? for some constant Cy. When n is large, this rate is
negligible comparing with (S.10)

Bounding M: We put the upper bounds of M; and M, together. After some adjustments for absolute
constant, it suffices to obtain

P(Ml + M, < C(logn)?’(\/@—k \/@)) >1- %

This concludes the proof of non-symmetric part. The proof of symmetric part remains similar and thus is
omitted here. ]




C Additional Proofs for Main Results

S.I Proof of Theorem 2: Initialization Effect

Theorem 2 gives an approximation error upper bound for the sparse-tensor-decomposition-based initial
estimator. In Step I of Section 3.1, the original problem can be reformatted to a version of tensor denoising;:

Ts=9"+E&, where &=7T,—E(T;). (S.1)

The key difference between our model (S.1) and recent work is that £ arises from empirical moment
approximation, rather than the random observation noise considered in Anandkumar et al. (2014) and Sun
et al. (2017). Next lemma gives an upper bound for the approximation error.

Lemma 9 (Approximation error of 7;). Recall that & = T, — E(7;), where T is defined in (3.1). Suppose
Condition 4 is satisfied and s < d < Cs. Then

o s31og®(p/s) slog(p/s)
IElera < 200 ni(y/ UL (log n)* (S.2)
+d k—lnk( n n ) g

with probability at least 1 — 5/n for some uniform constant C;.

Next we denote the following quantity for simplicity,

'y:Cgmin{Rgl—\/f,i;;—jg(l-l-\/f)Q}, (5.3)

where R is the singular value ratio, K is the CP-rank, s is the sparsity parameter, I' is the incoherence
parameter and C5 is uniform constant.

Next lemma provides theoretical guarantees for sparse tensor decomposition method.

Lemma 10 . Suppose that the symmetric tensor denoising model (S.1) satisfies Conditions 1, 2 and 3 (i.e.,
the identifiability, parameter space and incoherence). Assume the number of initializations L > K Gy~

and the number of iterations N > Cy log (’y/ (n%||5||s+d +V KFQ)) for constants Cs, Cy, the truncation

nin

parameter s < d < C's. Then the sparse-tensor-decomposition-based initialization satisfies

0 . 0 . Cy
max {81 = Bil2, Il = nil} < €]l ora+ VET?, (S4)

for any k € [K].

The proof of Lemma 10 essentially follows Theorem 3.9 in Sun et al. (2017), we thus omit the detailed proof
here. The upper bound in (S.4) contains two terms: ¢+ ||€||s4+q and vKT?, which are due to the empirical

Mmin

moment approximation and the incoherence among different 3y, respectively.

Remark 4 . The guarantee of K-mean initialization scheme is hidden in Lemma 10 that provides a generic
error bound for the sparse-tensor-decomposition-based initialization. Initialized by sparse SVD (Algorithm
3), we can prove that the K-means clustering outputs K cluster centers that are sufficiently close to the true
components of the tensor.

Although the sparse tensor decomposition is not optimal in statistical rate, it does offer a reasonable initial
estimation provided enough samples. Equipped with (S.2) and Condition 2, the right side of (S.4) reduces to
Cy

*
min

- 2010417{1?,( /s310g32(p/8) N /slog(p/S))(logn)4+\/7{F2’
n 9 n

||g||8+d + \/EIQ




with probability at least 1 — 5/n. Denote Cy = 4 - 2160 - C1Cy4. Using Conditions 3 and 5, we reach the
conclusion that

maX{Hﬁ;(cO) — B2, IU,EO) - n,’;\} < K~*R72/2160,

with probability at least 1 —5/n. |

S.IT Proof of Theorem 1: Gradient Update

We first introduce the following lemma to illustrate the improvement of one step thresholded gradient update
under suitable conditions. The error bound includes two parts: the optimization error that describes one step
effect for gradient update, and the statistical error that reflects the random noise effect. The proof of Lemma
11 is given in Section S.IV in the supplementary materials. For notation simplicity, we drop the superscript

of r],(co) in the following proof.

Lemma 11 . Let ¢t > 0 be an integer. Suppose Conditions 1-5 hold and {ﬁ , Mk} satisfies the following
upper bound

2 2
3 ) 3/—%g* <4K*3 2 ’ 7*’< S5
e B |, < A miaxso, mad [k — 1k | < €o, (S.5)

k=1
4
with probability at least 1 — O(K/n), where eg = K~1R™3/2160. As long as the step size u satisfies

32R_20/3
3K[220 + 270K]%"

0<p<po= (5.6)

then {,Bl(fﬂ)} can be upper bounded as

t+1)

* 3cr 2slogp

2K-2R~5 i ,
n

8~ s,

K
8
< (1 - 32uK*2R—3)

RS statistical error
optimization error

with probability at least 1 — O(Ks/n).

In order to apply Lemma 11, we prove that the required condition (S.5) holds at every iteration step ¢ by
induction. When ¢t = 0, by (4.2) and Condition 2,

S €0,

)

- —n;;‘ < e, for k € [K],

holds with probability at least 1 — O(1/n). Since the initial estimator output by first stage is normalized,
O nasn . . .
ie., I8 2 = |1B%ll2 = 1, by triangle inequality we have

(0)

< mﬂ,@ - Wzﬂé‘” + %:ﬁ;(f) = VB,
< — i (0)
Note that c Sy
B Ty (e SV
This implies
l(eO) - 3/%31* ) < 2¢/nieo,




with probability at least 1 — O(1/n). Taking the summation over k € [K], we have

2
— VB,

K 2 2
* 5 * 5
< § 4n, % ef < 4K nmixeg,
k=1

with probability at least 1 — O(K/n), which means (S.5) holds for ¢ = 0.

Suppose (S.5) holds at the iteration step ¢ — 1, which implies

BY — ¢/ ﬁk

k=1
2R S (t=1) 2 ** o%slogp
S(l e Rig) = /B +M2COK R™3p3 2250
*3 8 «2 4 %]
ARkt — (128K R 3 mded — 200K 2R mmﬂ)
n

Since Condition 5 automatically implies

min

slogp 64<3 ’

n Coo’R™ 377 3 K
>
for a sufficiently large Cy, we can obtain

2
<4K nmaxao

\fﬂk

k=1
By induction, (S.5) holds at each iteration step.

Now we are able to use Lemma 11 recursively to complete the proof. Repeatedly using Lemma 11, we have
fort=1,2,...,

(t+1) \/>5k

k=1
8\t
< (1 - 32MK‘2R_3> 3
k=1

with probability at least 1 — O(¢tKs/n). This concludes the first part of Theorem 1.

4
Conyiy 02slogp
16 n

2
— /B t

When the total number of iterations is no smaller than

log(an;;f/gaQs logp) — log(6477ma/x Kegn)

T =
log(1 — 32uK —2R—8/3) ’

the statistical error will dominate the whole error bound in the sense that

I~

Csn,. 3 o2slogp
min S.7
o’ 7°5108P, (5.7

2
— /B , S

with probability at least 1 — O(T*Ks/n).

The next lemma shows that the Frobenius norm distance between two tensors can be bounded by the distances
between each factors in their CP decomposition. Th(i Proof of this lemma is provided in Section S.V.



Lemma 12 . Suppose .7 and .7* have CP-decomposition .7 = Z,Ic{:l NPk o Bro By and T* = Zszl B o
By o B5. I |mk — ni| < ¢, then

K K

* <03 [orms. - vim]?) (S

k=1 k=1

Hy—y*

Denote 7 = Zszl nk,B,(cT*) o ﬂ,(CT*) o ,GI(CT*). Combing (S.7) and Lemma 12, we have

4
—~ 2 Can -3 0251 LA
(7= = 90 +eq) = min T8 gy
_ 9C3R 0’ K slogp
4 n ’

with probability at least 1 — O(T Ks/n). By setting C; = 9C5/4, we complete the proof of Theorem 1. W

S.III Proofs of Theorems 4: Minimax Lower Bounds

We first consider the proof of lower bound on a more general version of non-symmetric tensor estimation.
Consider the class of incoherent sparse and low-rank tensors F = {7 : = Zle Bk © Bak © Bk, ||Bikllo <
sfori=1,2,3k=1,..., K} and the measurement tensor can be written as Z; = u; o v; o w;. Without

loss of generality we assume p = max{pi, p2,ps}. We uniformly randomly generate {Q(k’m)}m=1,..., mas MK
k=1,...K
subsets of {1,...,p} with cardinality of s. Here M > 0 is a large integer to be specified later. Then we

construct {B*F™},,—1  a CRP as
k=1, K

ﬁ(’fﬂn) _ Vv, if j e Qlm),
! 0, ifj¢Qkm,

A > 0 will also be specified a little while later. Clearly, ||3%™1) — gkm2)|2 < 25\ for any 1 <
E < K,1 < mi,my < M. Additionally, |Q%*™1) 0 Q(Fm2)| satisfies the hyper-geometric distribution:

P (|Q(/€,m1) n Q(k,m2)| — t) — %.

Let w(k-mim2) — |Q(k’m1) N Q(k”m)!, then for any s/2 <t < s,

s-(s—t+1)  (p—s)--(p—2s+t+1)
!

t
(kymi,ma2) _ 1) — t! (s—1)! s\ (s
P(“’ t) lp_stl) <<t p—s+1
t t
() < ()
p—s+1 p—s+1

Thus, if > 0, the moment generating function of w®*m1.m2) _ 5 satisfies
E exp (7] (w(k’ml’"”) — g))
: (kymai,ma) o 5 y — Y. (k,ma,ma) _
<exp(0) P(w mmz) < 2)—|— Z exp(n(t 2)) ]P’(w mm —t>
t=[s/2]+1
<1+ Y (As/(p—s+1) exp(n(t — s/2))
t=[s/2]+1
1

s _s s/2 .
<1+ s/(p—s+1)) 1—4s/(p—spp1)-en



By setting n = log((p — s + 1)/(8s)), we have

3sK sK sK
(k,;m1,m2) > — (kymi,ma) _ > 20
(Y ) (3 o o)

k=1

K mq, 1M S
Bew (n0iy wtm ) - 50) T Bep (r(wt) - 3)

exp (1 *°) exp( + *1)

(i o) o (- (2512

<exp (—cosK log(p/s))

for some small uniform constant co > 0.

Next we choose M = |exp(co/2 - sK log(p/s))|. Note that
|3k _ glema) |2 — . (‘Q(k,ml) \ QUem2)
=\ (‘Q(k’ml) +

=22 (i — [ @) n Qke)

4 ‘Q(k,mz) \ Q)

)

)

’Q(kv”w) _

9 ‘Q(k,ml) A Qlkm2)

).

then we further have

1

K
KA
<Z”ﬁ(/€m1) kmg)”gZSQ ,V1<m1<m2<M>
k—

K

Z (ksma,m2) < % V1 <mq, < mg <M>

k=1

M(M - 1)
2

>1 — M? exp (—cosK log(p/s)) >0

>1— exp (—cosK log(p/s))

which means there are positive probability that {,B(k s } k= 1 K satisfy

1.,

sKA
< (k ml) (k 77L2
2 1<m1<m2<M Z Hﬂ /8 2
S.8
) (5.8)
< max Z Hﬁ(k’ml) — Blkm2) , < 2sK\.

1<mi<mo<M %

For the rest of the proof, we fix {ﬁ(k e } k= 1 .k to be the set of vectors satisfying (S.8).
1. M
k-th
X . =
Next, recall the canonical basis e, = (0,..., 1 ,0,---,0) € RP. Define

K
T (m) :Zﬂ(k’m)oekoek, 1<m< M.
k=1

For each tensor .7 (™) and n i.i.d. Gaussian sketches u;, v;, w; € R?, we denote the response

(m) _ { (m)}” Y™ = gr(m .
Yy Yi i1’ 13 <ulovzow“ >+617



where ¢; -~ N(0,0%), i=1,...,n. Clearly, (y(m),u,v,w) follows a joint distribution, which may vary
based on different values of m.

In this step, we analyze the Kullback-Leibler divergence between different distribution pairs:

p(y(ml)’u7v7 w))

D <<m1)7”7(m2>”7);:1€m 1(
KL (y u,v 'UJ) (y u,v ’UJ) (y( 1)7u,’u,’w) 8 p(y(m2)7uvvaw)

Note that conditioning on fixed values of u, v, w,
K
ygm) ~ N (Z(/@(km@)'l’ui) . (e(k)'l',ui) . (e(k)Twi)702> )
k=1

By the KL-divergence formula for Gaussian distribution,

p(y'™) u,v,w)
E(y(ml);u,v,‘w) <(:lJ(TnZ),’ll,,’l],’l,l]) "UM v, w

(S (e - ) ) (607 (7)) o

Therefore, for any my # mo,

_9 n K
:UT Z u((ﬂ(k mi) _Ig(k,mg)) ) E ( (k)T ) E ( (k)T )
=1 k=1
no 2 K
== > gt — glkma) |2 < 02K s

Meanwhile, for any 1 < mj < mo < M,

K

S (B — glkma)) o eh) o (k)

k=1

|7 (M) — 72| p =

F

5 58) [SKA
[P :

K
Z Hﬁ(k,ml) — Bma) |7 "> 5
k=1

By generalized Fano’s Lemma (see, e.g., Yu (1997)),

1nf sup ]E||9 T >

sK\ (1 B U_QnKs)\—i—logQ)
T TeF 2 '

log M
Finally we set A = % log(p/s) for some small constant ¢ > 0, then

2 2
A = K1
inf sup E|7 — 7% > (lr/lf sup E||.T — ﬂF) > cas—og(p/s).
T TeF T TeF

n

which has finished the proof of non-symmetric tensor1 Estimation model.



For the proof for Theorem 4, without loss of generality we assume K is a multiple of 3. We first partition
{1,...,p} into two subintervals: Iy = {1,...,p — K/3},I, = {p — K/3 + 1,...,p}, randomly generate

{QUem)y 1w as (MK/3) subsets of {1,...,p — K/3}, and construct {3%™},, 1 CRPE/3 a5
k=1,...,K/3 k=1,....K

Blkm) — VA, if j ¢ Qlem).
0, if j ¢ QUkm),

With M = exp(esK log(p/s)) and similar techniques as previous proof, one can show there exists positive
possibility that

K/3
sK\
< i (k,my1) _ g(k,ma)|2
o < 1Sm1rr<n£2SMkZ:1 [Fe; Blkm2)|2
K/3
2sK
< (}{),’I’I’Ll) _ (k,mz) 2 < .
< 1@?2%@2_:1 [Fé; plmIE < ==\

We then construct the following candidate symmetric tensors by blockwise design,

7—[%7:%2712] = Ef:;f /G(k,m) o e(k) o e(k)’
m K/3 m
T(m) ¢ Rpxpxp ﬁ12,11712] =D k=1 el o glkm) o (k)
) T[ITIQ = ZkK:/f e®) o k) o gllm)
]

(m) (m) (m) (m) (m)
7-[11,11’11 ’7111711,12]’ 7&1,[2,11]’ 7-[12,11711]’7-[12,12,12] are all zeros.

Then we can see for any u € RP,

K/3 )
(T wouou) = 3]; (ﬁ(k,m)'l'uh) . (e(k)Tub) .

The rest of the proof essentially follows from the proof of non-asymmetric tensor estimation model. |

S.IV Proof of Theorem 5: High-order Stein’s Lemma

The proof of this theorem follows from the one of Theorem 6 in Janzamin et al. (2014). For the sake of
completeness, we restate the detail here. Applying the recursion representation of score function (S.4), we
have

E[G@)Si(z)] = E[G@)(-S:(@) 0 Valogp(a) - Vasa(a) )]
_— _E [G(m)SQ(a:) 0V, log p(aj)} - ]E[G(a:)vm&(m))]

Then, we apply the first-order Stein’s lemma (see Lemma 24) on function G(x)Sz2(x) and obtain

E[G@)Si(z)] = E[Va(G@)S:))] - E[G(2)VaS(@))]
= E[VaG(2)S:() + VaSi(2)G(x)| - E[G(2)VaS:(@)) ]
- E[VwG(m)Sg(:I:)].
Repeating the above argument two more times, we reach the conclusion. |
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D Proofs of Several Lemmas

S.I Proofs of Lemmas 3, and 4: Moment Calculation

In this subsection, we present the detail proofs of moment calculation, including non-symmetric case,
symmetric case, and interaction model.

S.I.1 Proof of Lemma 2

By the definition of {y;} in (S.1) & (S.2), we have

n

1 « 1
E(*Zyiuioviowi) ZE(*ZQW O'Uz'owi>
= =
K

FE(S S 81w (B3] 0 (B3 wiyus 0 v 0w ).
=1 k=1

First, we observe E(e;u; 0ov; ow;) = 0 due to the independence between €; and {u;, v;, w;}. Then, we consider
a single component from a single observation

M = E((B) w:) (B3 v:) (B3] wi)u; 0 v; owy), i € [, k € [K].
For notation simplicity, we drop the subscript ¢ for i-th observation and k for k-th component such that
M= E(( Ta) (85T ) (85T w)u o v o w) € RP1XP2Xpa (S.2)

Each entry of M can be calculated as follows

My, = E((87Tw)(B5v)(8; w)uvjuwy.)
= E((Btui + Y B )i )E((B3yu + Y Bivm)vs)
m#i m#j
<E((B5pwe+ Y Bimwn)wr)
m#k

which implies M = 3 o B2 o B3. Combining with n observations and K components, we can obtain
1 n K
E(T) = - Z Z"ﬁ;ﬂlk © Bak © Bsk.
i=1 k=1

This finished our proof. |

S.I.2 Proof of Lemma 3

In this subsection, we provide an alternative and more direct proof for Lemma 3. We consider a similar single
component with a symmetric structure, namely, M, = ]E((,B*Ta:)3m oxo ac) Based on the symmetry of both
underlying tensor and sketchings, we will verify the fi)élowing three cases:



e When i = j =k, then

M, = E(Bmi+ 5;1%)3:5?
m#i
= (8% + 3822 ( ) Brm)
m#£i
136 ( Y Buwm)” + (D Brm)” )
m#i m#£i
= 15877+ 987 Y By =987 +68;°.
m#i
The last equation is due to [|3*||2 = 1.

e When i # j # k, then

3
Ms,, = E(ﬂfﬂcrf—ﬂ}kﬂfj + Brak + Z 5;19%) LT T
m£i,j,k
* * * 3
= E(B xi—i—/jjxj—i—ﬁkmk) TiTjTg
= 65;B; 0%

e When i = j # k, then

3

m#£i,k

= 98B +36° +36;( D B2
m#i,k
96285 +36; (> B2)
m#i
3B% + 6575

Therefore, it is sufficient to calculate M, by

K P
M5:3Zn7§(Zﬁzoemoem+emoﬁ,’;oem+emoemoﬁZ)

k=1 m=1
K
+6 1B o B o B
k=1

The first term is the bias term due to correlations among symmetric sketchings. Denote M; = %Z?:l YiT;
and note that E(% Dy yiwi) =3 2521 n;08%. Therefore, the empirical first-order moment M; could be
used to remove the bias term as follows

p
E(MS—Z (Mloemoem+emOM1oem—i—emoemOMl))

m=1

K
= 6 niBroBioB;
k=1

This finishes our proof. ]
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S.I.3 Proof of Lemma 4

As before, consider a single component first. For notation simplicity, we drop the subscript ! for I-th
observation and k for k-th component. Since each component is normalized, the entry-wise expectation of
(BTx)3x o x o x can be calculated as

_IE(,BTw)Sm oz o) =38y — 283

] lo,0,0

E(B x)zoxox o = 3B;
_E(r@TiB)SiB oo 0ii 650037 + 300
E@ o) zozoa| =668i5

L 40,2,7
E(BTz)*zoxox| =687 +98

2,1,

_E(ﬁ—rw)?’a: oz o) _

1%,

= 6537 B; + 35,

-E(,BT$)33} oxo a:_ = 68:8; Bk-
L 4,7,

Due to the symmetric structure and non-randomness of first coordinate, there are bias appearing for each
entry. For i, j, k # 0, we could use Z&Zl(a 0€n0em+ €e,no0ace,+e,oe,oa)torremove the bias as
shown in the previous proof of Lemma 3. For the subscript involving 0, the following two calculations work
for removing the bias,

1 1,
E(57 - 5O Totkea = 0+ Dai)) = 536

1 P
E<2p — 9 (; Ts0k0 — P+ 2)%[0,0,0})) =53

This ends the proof. |

S.II Proof of Lemma 5

Without loss of generality, we assume || X;|,, = 1 and EX; = 0 throughout this proof. Let 3 = (log2)'/®
and Z; = (|X;| — 8)+, where (z)1 = z if > 0 and (z)4 = 0 if else. For notation simplicity, we define
| X, = (E|X|P)}/? for a random variable X. The following step is to estimate the moment of linear
combinations of variables {X;}7 .

According to the symmetrization inequality (e.g., Proposition 6.3 of Ledoux and Talagrand (2013)), we have

n n
H a; X; = 2H a;gi| X

where {¢;}7_; are independent Rademacher random variables and we notice that £; X; and ¢;|X;| are identically
distributed. Moreover, if |X;| > 8, the definition of Z; implies that | X;| = Z; + 8. And if | X;| < S, we have
Z; = 0. Thus, we have |X;| < Z; + 8 at any time and it leads to

=1

(.3)

)
p

n
< 2H Z aisiXi
p :
=1

(S.4)

p

o =l



By triangle inequality,

QHZn:aiEz‘( ) SQHZn:aiEz'Zz
i=1 P i=1

+ 2” Z a;eif3
p i=1

‘,,' (S.5)

Next, we will bound the second term of the RHS of (S.5). In particular, we will utilize Khinchin-Kahane
inequality, whose formal statement is included in Lemma 25 for the sake of completeness. From Lemma 25

, .

we have

IN

(2 - 1)1/2H Za@ﬂ

S,
=1

n
H > aiei
i=1

IN

Since {g;}_, are independent Rademacher random variables, some simple calculations implies

(E(iaiai)2>l/2 (E(ia?a?+2 Z aisjaiaj))lp
i=1 i=1

1<i<j<n

n 1/2
(ZG?E&‘? +2 Z ai&jEEiEfj)
=1

1<i<j<n

n

= (X)) =lal (8.7)

=1

Combining inequalities (S.4)-(S.7),

Zi p+2ﬂ\/ﬁ|\0|\2~ (S.8)

n
< 2H Zaisi
P i=1

Let {Y;}I_; are independent symmetric random variables satisfying P(|Y;| > t) = exp(—t®) for all ¢ > 0.
Then we have

P(Z; > t) <P(|Xi| > t + ) = P (exp(| Xi|*) = exp((t + 5)*))
<(EIXG|*) - exp(=(t + 5)*) < 2exp(—(t + 5)?)
<2exp(—t® — %) = P([Yi| = 1),

which implies

: (S.9)

n n n

H E a;gi Zi|| < H E a;g;Y;|| = H E a;Y;
— p — P — p
i=1 =1 i=1

since ¢;Y; and Y; have the same distribution due to symmetry. Combining (S.8) and (S.9) together, we reach

H S aX|| <28 plall: +2H 3wy, (S.10)
i=1 p i=1 p
For 0 < a < 1, it follows Lemma 23 that
H Zaz | < ci@)lall + 2 allw), (S.11)

where Cy(«) is some absolute constant only dependilfg on .



For a > 1, we will combine Lemma 22 and the method of the integration by parts to pass from tail bound
result to moment bound result. Recall that for every non-negative random variable X, integration by parts
yields the identity

EX :/ P(X > t)dt.
0

Applying this to X =|>"" | a;Y;|? and changing the variable ¢ = 7, then we have
n 00 n
B aYiP = / ]P(|Zam| 2t>ptp’1dt
i=1 0 i=1
oo t2 o 1
< / 2 exp ( — c¢min ( , ))ptp_ dt, (5.12)
0 a3’ [lalls-

where the inequality is from Lemma 22 for all p > 2 and 1/a + 1/a* = 1. In this following, we bound the
integral in three steps:

Hat\T‘* , (S.12) reduces to
o0 t2
]E|ZazY|p<2p/ exp<fc 2)>t”*1dt.
Pt lall3
Letting ¢ = ct?/||al|3, we have
oo t2 P o0 ,
2p/ exp ( - c—2)>t”’1dt = p||u;!2 / e tyr/2= gy
0 a3 b 0
- cp/2 27— cp/2 2 ’

where the second equation is from the density of Gamma random variable. Thus,
V2
(E‘ZaZY‘p) )1/2 \fll ||2 \/*\/>||a||2 (S.13)

2. If

|2 > (S.12) reduces to

||a| HaH“ ’

(0%

n o0 t
E|ZaiYi|p§2p/0 eXP(*Cllia
i=1

>)t”’1dt.
al|%.

Letting t' = ¢

., we have

> . wplalt. [
2p/ exp(—c t ))t”’ldt _ Zlala- / et ¢pla1gy

0 lalls- ack/>

2 pllalfa- . P b D
- = ar Ly « Z 805 e (Pyp/a
a cp/e (a)_a cp/a (a)
Thus,
p l/a . 1 e
(E\Zam ) )1/0 lalla- < o7 (S.14)

3. Overall, we have the following by combining (S.13) and (S.14),

(13 i) < o (\Fgcﬁ/) (vAlalls+ 9l
i=1 0



After denoting Cs(«) = max (\/g, W), we reach

Hzaz i

Since 0 < 8 < 1, the conclusion can be reached by combining (S.10),(S.11) and (S.15). |

< Ca(a) (villalls +p*/°

Q) (S.15)

S.III Proof of Lemma 9

Firstly, let us consider the non-symmetric perturbation error analysis using model (S.1). According to Lemma
2, the exact form of £ =T — E(T) is given by

1 n K
EN~L3 * *
Zﬁ E Yiu; © UV; O W; — E NeB1r © Bay, © B
i=1 k=1

We decompose it by a concentration term (£;) and a noise term (€;) as follows,

n

K K
1
E=— Z(uz O V; O Wi, Z Bk © Bak © Bap) i © v; 0 w; — ZWZﬁTk ° Bar © B3y,

n-
i=1 k=1 k=1
&1
1 n
+ — E €;U; OV; OW; .
n <
=1
)
Bounding &;: For k-th componet of £, we denote
1 n
&k = n E <Uz o v; o w;, By, © B3y, © B5) Ui © v; 0 wi — B, © By, © By
i=1

By using Lemma 1 and s < d < C's, it suffices to have for some absolute constant C1q,

[s310g(p/s [slog(p/s
||51k:Hs+d S 01167L,p,s7 where 5n,p,s = (logn)3< i; / ) + g;/ / )),

with probability at least 1—10/n3, where || - ||s.-q is the sparse tensor spectral norm defined in (2.3). Equipped
with the triangle inequality, the sparse tensor spectral norm for £ can be bounded by

K
IElsra < C116nps Y i (S.16)
k=1

with probability at least 1 — 10K /n3.

Bounding &;: Note that the random noise {¢;}7; is independent of sketching vector {u;, v;, w;}. For fixed
{€;}7_, applying Lemma 18, we have for some absolute constant C1

1 n
H* E €;U; OV; OW;
n =1 s+d

with probability at least 1 — 1/p. According to Lemma 21, we have

S C(12 ||6H00011(Sn7p7s7

1
P(€lls1a > Craologndy,y,s ) < - + (S.17)
21 p



Bounding &: Putting (S.16) and (S.17) together, we obtain

K
[€lls+a < (011 > i+ Crzolog n) On.p.s;
k=1

with probability at least 1 — 5/n. Under Condition 4, we have

K

[€lls+a < 2Ch Z NeOn.p,s 108N,
k=1

with probability at least 1 — 5/n.

The perturbation error analysis for the symmetric tensor estimation model and the interaction effect model is
similar since the empirical-first-order moment converges much faster than the empirical-third-order moment.
So we omit the detailed proof here. |

S.IV Proof of Lemma 11

Lemma 11 quantifies one step update for thresholded gradient update. The proof consists of two parts.

First, we evaluate an oracle estimator {B,(:H)}le with known support information, which is defined as

Z(t+1 t K t)
o= @gh(gm(ﬁi) AL : )F<t>>- (5.18)

Here,

. h(ﬁl(f)) is the k-th component of h(B®) defined in (3.2).

e VBL(B) = (ViL(B1), -, VKL(BK)).
o F) = U,}leF,gt), where F,gt) = supp(B;;) U supp( ,(:)).

e For a vector € R? and a subset A C {1,...,p}, we denote x4 € RP by keeping the coordinates of x
with indices in A unchanged, while changing all other components to zero.

We will show that B,(fﬂ) converges as a geometric rate for optimization error and an optimal rate for
statistical error. See Lemma 13 for details.

Second, we aim to prove that B,(:H) and ,@l(fﬂ) are almost equivalent with high probability. See Lemma 14

for details. For simplicity, we drop the superscript of ﬂ,(:), F® in the following proof, and denote B,(Ct+1)7

ﬁ,(ctﬂ) and F(+D) by ,5’1,‘:, B,j and F'T, respectively.
Lemma 13 . Suppose Conditions 1-5 hold. Assume (S.5) is satisfied and |F| < Ks. As long as the step size
p < 32R™20/3 /(3K[220 + 270K]?), we obtain the upper bound for {3; 1,

K _8 K
> |vmdi - vsi), <(1- 52 ) Y- | - /s

2
2
k=1 k=1 (S5.19)

*7% 02K 2slogp

min ’

n

, 8
+2C3u" R 3
with probability at least 1 — (21K2 + 11K + 4Ks)/n.

The proof of Lemma 13 is postponed to the Section S.VI. Next lemma guarantees that with high probability,
{ﬁ,‘:}kK:l is equivalent to the oracle update {ﬁ,:'}szl 2x§zith high probability.



Lemma 14 . Recall that the truncation level h(B) is defined as

Valognp |« 2 2

h(Br) = Vilognp > (Z (] Br)® — i) (nk(wiT/@k)Q) - (S.20)
=1 k=1

If |F| £ Ks, we have 3 = ~]j for any k € [K] with probability at least 1 — (n?p)~! and F* C F.

The proof of Lemma 14 is postponed to the Section S.VI. By using Lemma 14 and induction, we have

FOD .. O« FO = UK supp(8}) U supp(BL).

It implies for every ¢, we have |[F(Y)| < Ks. Combining with Lemmas 13 and 14 together, we obtain with
probability at least 1 — (21K2 + 11K + 4K3s)/n,

* 2 -2 7§ X * 2
— /i <(1-s2uK2R"5) A
k=1 k=1 (S.21)
* 2K 251
wocyer ) TR ey,

This ends the proof. ]

S.V  Proof of Lemma 12

We consider a more general setting that the tensor is not necessary to be symmetric such that

K K
T = mBroBroBrT* =Y niboBioB;

k=1 k=1

Based on the CP low-rank structure of true tensor parameter .7 *, we can explicitly write down the distance
between 7 and 7 * under tensor Frobenius norm as follows

K
i: 3 (anﬁkhﬁkmb’kzs anﬁzhﬁzizﬂz%)z.
k=1

11,12,13

Hﬂ—y*

For notation simplicity, denote By = ¥/7x Bk, B,’: = {/n;B;. Then

2 Ko Ko (2
= > (D BuiBriaBis — Y B, BB, )
k=1

i1,12,13 k=1

Hy—y*

K K
> (Yo Bris = Bii)BianBiy + D Brin (Buia — Bian) B,
k=1 k=1

Ko _ 2
+ Z Buiy Bris (Bris — BZ¢3)> = RHS.
=1

Since (a + b+ ¢)? < 3(a? + b2 + ¢?), we have

N

K
RHS §3 Z |: Z /Bkll 5}{311 Bk’bzﬂk’be, Z k}’Ll /Bklz 6212)3213)2
k=1

11,12,13 =

K
+ (Z Briy Bris (Bris — Bzis)ﬂ .
k=1 23



Equipped with Cauchy-Schwarz inequality, RHS can be further bounded by

K
RHS S 3 Z [Z(Bkzl 6}@11 Z/Bk}lz kis
k=1

K
Z(Blﬂz /Bklg Z Bkllﬂklg
=1 k=1
K — — —
+ Z(ﬂkia — Bris)” Z Bia 5131‘1}
k=1 k=1

At the same time, using n < (14 ¢)nj; for k € [K],

p p p K
Hy y* [Z Z ﬁk:zl Bkzl Z Z ZBkzzﬁkzg)
i1=1k=1 io=1143=1k=1
p K B B P p K
+ Z Z(ﬁkiz - 621’2)2(2 Z Zﬁkllﬁklg)
io=1k=1 11=1i3=1k=1
p K B B D p K o
30D B — B0 D0 Y BRLAR)]
i3=1k=1 1o=111=1k=1
K K K K
= 3( D208 = BilB) (om0t + Yo (A + Yo ()
k=1 k=1 k=1 k=1

Nk

g 1+c(§|ﬁk—ﬂkn)( (/)")-

?,
Il

1

For the non-symmetric tensor estimation model, we have

2 = * Ok * * 2
P Z ( Z Nk Bkis B2kis Pakis — Z M B1kiy Boris /ngig,) .
k=1

11,12,13

Hﬂ—y*

Following the same strategy above, we obtain

2 K _ _ K — —
|7 = 7| <8+ (X1Bu = Bil3 + D 182 — Bl
k=1 k=1

23 B Bil3) (EKZ(W:)‘*).

k=1 k=1

This ends the proof. |

S.VI Proof of Lemma 13

First of all, let us state a lemma to illustrate the effect of weight ¢.
Lemma 15 . Consider {y;}?; come from either non-symmetric tensor estimation model (S.1) or symmetric
tensor estimation model (3.1). Suppose Conditions 3-5 hold. Then ¢ = % S y? is upper and lower bounded

by
K

K
(16 — 6% —9r) (Y i) < Zyz < (16 +60° +90) (D n)?,
k=1 k=1

with probability at least 1 — (K? + K + 3)/n, where 2121 is the incoherence parameter.



According to Lemma 15, % Sy y? approximates (Z,If:l 77;;)2 up to some constants with high probability.
Moreover, we know that from (S.5), maxy, [ — | < €0 for some small £9. Based on those two facts described
above, we replace n, by n; and ¢ by (Eszl n;)? for the sake of completeness. Note that this change could
only result in some constant scale changes for final results. Similar simplification was used in matrix recovery
scenario (Tu et al., 2015). Therefore, we define the weighted estimator and weighted true parameter as
B = Wﬁm BZ = Wﬁ; Correspondingly, define the gradient function V;£(8) on F as

K
ViL(Br)F 6\/> Z ( > (@) Br)® - yi) (], Br) i,

k=1
and its noiseless version as
K K

Z ( Y (@ Be)’ =Y (2].Bi) )( 1 BE) T (S.22)

k'=1 k'=1

?r*

ViL(Br)r

According to the definition of thresholding function in Section 3.2, E,j can be written as

B =Bk — %Vkﬁ(ﬁk)p + %h(ﬁ_k)’)’ka

where v, € RP satisfies supp(vx) C F, ||Vk]loo < 1 and h(By) is defined as

() = Y LEC) Z(i )

e (wLﬁk)Q (5.23)
n =1 k=1

Moreover, we denote zj, = B), — ,@Z With a little abuse of notations, we also drop the subscript F' in this

section for notation simplicities.

We expand and decompose the sum of square error by three parts as follows:

2
- s,

=3[ ”ﬁm(ﬁk) ) |
k=1

¢
_ ;sz —uﬁvkc(ﬁk)\\}g H“eﬁh(gkm”z (5.24)
A: gradient update effect B: threshoding effect
+ i <Zk — \Fv KL (Br), ;nkh(ék)7k>,
k=1

C: cross term

In the following proof, we will bound three parts seqblgntially.



S.VI.1 Bounding gradient update effect

In order to separate the optimization error and statistical error, we use the noiseless gradient VkE(Bk) as a
bridge such that A can be decomposed as

A:énzu%—wé< SJkac(gk Dy Vi cme
SéIIZkI5—2ui<3;’ka£( =) +2 QZ v@)|
Ay pe
HNZZ e/ﬁ(vk.c (Br) — Vkﬁ(gk))”j (S.25)
As

where A; and As quantify the optimization error, A3 quantifies the statistical error, and A, is a cross term
which can be negligible comparing with the rate of the statistical error. The lower bound for A; and upper
bound for A, together coincide with the verification of regularity conditions in the matrix recovery case
(Candes et al., 2015).

Step One: Lower bound for A;. Plugging in ¢ = (Zi{zl n;)?, we have

4 ¥\ 2 *)2 4
*75 < (3/m5) (3/m5) < K_QR%W:;E- (S.26)
¢ (Zk 175

According to the definition of noiseless gradient V;?%(ﬁk) and zj, A; can be expanded and decomposed



sequentially by nine terms,
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k=

~
Il
—

+
S|l

~
Il
—

+ +
I|o S|lo
INgE )=
/N VS VS VS VS /N VS N
]~
w
®
?2‘
-
=
Mw
s—|
o)
2
N—
i
-~
[«))

@
Il
—

+
Slo

-

Il

_

X

Il

_

=~

Il

-

where Aj; is the main term according to the order of B;;, while A5 to Aig are remainder terms. The proof
of lower bound for Ay, to Ayg follows two steps:

1. Calculate and lower bound the expectation of each term through Lemma S.1: high-order Gaussian
moment;

2. Argue that the empirical version is concentrated around their expectation with high probability through
Lemma 8: high-order concentration inequality.

Bounding A;;. Note that A;; involves the product of dependent Gaussian vectors. This brings difficulties
on both the calculation of expectations and the use of concentration inequality. According to the high-order
Gaussian moment results in Lemma S.1, the expectation of A;; can be calculated explicitly as

E(A11) = 36 (Br B (zhz1) = I

M=

+72 (B! B (2:Bi) (24 Br) <= I

M= 11
M

ol
Il
_
I
Il
ol

(S.28)

+108 (B Bi) (= Bi) (2 Br) <= I3
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Note that I; to I involve the summation of K2 term. To use incoherence Condition 3, we isolate K terms
with k = k’. Then, I; to I could be lower bounded as

K K 2
1= 36m,0° [ D el - FQ(Z lzll2) ]
kK K
I > 7277;41{13[2 2 Bi)? - (Z (EA P ) }

k=1
K K 9
1> 108 3= 807 - 1( 3 zale) |
k=1 k=1
K
Iy > 5477,*,%3 szH

where T is the incoherence parameter. Putting the above four bounds together, they jointly provide
K 2
E(A11) > 365 Z 263 — (36mi T2 + 180m50°T) (D l12ll2) (8.29)
k=1

On the other hand, repeatedly using Lemma 8, we obtain that with probability at least 1 — 1/n,

\— (@ 2) @7 B @l 2)@] B~ Bla] 2 @] B @] 220 @] )

1
SC(O%) (/M) 12|22

Taking the summation over k, k' € [K], it could further imply that for some absolute constant C,

A - | < 152 (Z lzslz) (5:30)

with probability at least 1 — K2 /n. Combining (S.29) and (S.30), we obtain with probability at least 1— K?/n,

2 ,_4
KﬁQRignmag All
S.31)
8 (1 (
>[36K 2R3 — (216R ir41sciosn) )]Zuzk\lrz,

where R = 0%, /0t Here, we use the fact T' < 1 and (X1, [|zxll2)? < K(Xr—, [|z&3)-

Bounding A5 to Aj9: For remainder terms, we follow the same proof strategy. According to Lemma S.1,
the expectation of Aj5 can be calculated as

E(Ap) = 3622 2 B2 (2.8 <« I
v

K
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Let us analyze I; first. Under (S.5), ||zx|2 < €0 /nj, it suffices to show that

K K B B K K B B
DD EB =B = =YD =B85l 2185

k=1k'=1 k=1k'=1
L4 K 2
o (D Izll2)
k=1

This immediately implies a lower bound for E(A;2) after we bound similarly for I, I3 and Iy,

v

L4 K 2
E(Ays) > —2700mdxc0 ( 3 sz||2) . (S.32)

k=1
By Lemma 8, we obtain for some absolute constant C,

*—

—2
R™ 377ma
4 K

(A12) —1807’]max50(2||zk“ ) (10%)3} (S.33)

k=1

4
345y
>K 2R 377max|:

Z—K*R*%eo(27o+18c (log n)” )(lezkll ).

with probability at least 1 — K2/n. The detail derivation is the same as in (S.31), so we omit here.

Similarly, the lower bounds of A3 to A19 can be derived as follows

A > —K3e (270+180 log" )(an 112 )

)(E_jlzku%)

1,4 1 { X
K™ 2nma Ag, A1g > —K258(270+180 & 1) )(Z” k||§)
k=1

*—

1
K_277ma

TS

=

1 4
T2 mas A13, A1s, Arr > KZEO (270 + 180
(S.34)

Kﬁé’ﬂmaéAlQ > —K%gé (270—1— 18C logn )(Z [EA )

Putting (S.31), (S.33) and (S.34) together, we have with probability at least 1 — 9K?/n,

8 3 3 3
A, > {36K‘2R’§ _ K2 (2160R3P+180(1°j?) )
n

) (2 1)

1 2
— 820K~ 'R"3 (270 4180

For the above bound,

e When the sample size satisfies n > (18CK/2R%/3(logn)?)?, we have

3 (1 3 2 1 3 8
max{18ch(°\g/Z’) 8eoK~'R73 180(051’) }<K‘2R’3.
n n

e When g < K~ 1R72/2160, we have

L2 8
8o K™ R—%m < K “R 3.



e When the incoherence parameter satisfies I' < K —1/2 /216, we have
3 38 8
K~ 22160R™ 3T < K 2R 3.

Note that those above conditions can be fulfilled by Conditions 3, 5 and (S.5). Thus, we are able to simplify
A1 by

K
8
Ay > 32K 2R3 (Z ||zk||§), (S.35)
k=1
with probability at least 1 — 9K?2/n.

Step Two: Upper bound for A;. We observe the fact that

K 2
A= |5 ViV
k=1

»

3 * ~
where S is a unit sphere. It is equivalent to show for any w € SKs~1 A, = |{( szl (:’“ Vi L(Br), w)| is

upper bounded. According to the definition of noiseless gradient (S.22), A} is explicitly written as

Ay = o z”: ( EK:(CU;FBIC’)S - i(w?@/)g) (EK: (/)" (mIBk)z(wIwD.

n
i=1 k'=1 k'=1 k=1 ¢

(S.36)

Viig 705
5 VEL(Be)w)

= sup
weSKs—1

)

Following by (S.26) and (S.27), similar decomposition can be made for A} as follows, where the only difference
is that we replace one z; z;, by z, w.

Ay < KR [ﬁi(ig(muk,m B S @l w)(a] A7) < Ay
=1 k=1 k=1
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B3 (3 el el Bl e )
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Let’s bound A); first. By using the same technique when calculating E(A;7) in (S.28), we derive an upper
bound for E(A%;),

4 K

E(Ap) < 36mib( D lanlla + (K — 1 Zrnzku)
k=1
4 K 4 K
+ 180 (Y Dzlle + (K - 1) Zrnzku ) + 5t (K J12ill2)-
k=1 k=1

Equipped with Lemma 1 and the definition of tensor spectral norm (2.3), it suffices to bound A%, by

Wk

K
Rin 3Ky < _2R2[216+54K+216Kr+180K5n,p,s}(ZIIZkllz)

with probability at least 1 — 10K2/n3, where 4, , s is defined in (2).

The upper bounds for A%, to Ajg follow similar forms. Combining them together, we can derive an upper
bound for A} as follows

K

K2R? [216 + 270K + 180}(5”,,178} (Z Iz ||2)
k=1

A

IA

K2R? 220 + 270K | (i Izll2)
k=1

IN

with probability at least 1 — 90K ?2/n?, where the second inequality utilizes Condition 5. Therefore, the upper
bound of A, is given as follows

Ay < K1R*[220 + 270K] (Z (EAIE ) (S.37)
with probability at least 1 — 90K?2/n3.

Step Three: Upper bound for A;. By the definition of noisy gradient and noiseless gradient, Aj is
explicitly written as

3 2

) gt

i=1

2

K
1= M
4, 8 K 6 n B 2
< R3n H3Z( smafoei(a:iTﬁk)zxij) ,
n
=1

=1

where the second inequality comes from (S.26). For fixed {¢;}_,, applying Lemma 8, we have
n B n B 3 B
i@l Bay —E( Y a@] Bi)wy )| < Cllogn)2 llella1Bil3,
i=1 i=1

with probability at least 1 — 1/n. Together with Lemma 21, we obtain for any j € [Ks],

, (logn)?/2

‘* /Bk) Lij Tu

< 6CCool|Brll3
31



with probability at least 1 — 4/n, where o is the noise level. According to (S.5),

Ny

o 2 2% 2 *2 2
S ]; H/Bk - ﬁk”2 S Knm%xeoa

2
which further implies |32 < (1 + K 250) 2max. Equipped with union bound over j € [Ks],

3/2

_ 1 I
(@] B)2oi; g60000(1+K250)2(13/n;§1ax)27( 0‘?}) 7
n
=1

1
with probability at least 1 — 4Ks/n. Letting C' = 6Co(Ce)~2/3(1 + K2¢)?,

4 g 1 3
Ay < O3 Rl 222008 ) (.38)

n

with probability at least 1 — 4Ks/n.

Step Four: Upper bound for A4. This cross term can be written as

de=2 3 B (ST e )

k=1 i=1

3\)—‘

To bound this term, we take the same step in Step Three which fixes the noise term {e; }7 ; first. Similarly,
we obtain with probability at least 1 — 4K /n,

[SJ[°]

(logn)
\/ﬁ

This term is negligible in terms of the order when comparing with (S.38).

4 ,_ 2
Ay <2Co K™ 'R3n 3. (S.39)

Summary. Putting the bounds (S.35), (S.37), (S.38) and (S.39) together, we achieve an upper bound for
gradient update effect as follows,

A<(1—64,uK 2R3 4 22K RY220 + 270K] )ankHQ

(5.40)
3 85241 3
+ 4MCK nmmS R3 %,
with probability at least 1 — (18 K2 + 4K + 4Ks)/n. |

S.VI.2 Bounding thresholding effect

The thresholding effect term in (S.24) can also be decomposed into optimization error and statistical error.
Recall that B can be explicitly written as

2

)
2

-3 WAL | (S5 a1y a1

=1 k3?1




where supp (k) C Fi and ||Vk||eo < 1. By using (a + b)? < 2(a? + b?), we have

OJM&

K *

Bgm“[(jﬁg”[ii(ymmk/ffj x] B )(i B1)*)

i=1 k'=1 k'= =

Bj:optimization error

wm

S ay I @l

i=1 k=1

Sl

+

Bs:statistical error

Bounding B;. This optimization error term shares similar structure with (S.36) but with higher order.
Therefore, we follow the same idea as we did in bounding (S.36). Following by (S.26) and some basic
expansions and inequalities,

K K K
By <K~ 2R377mm (Z ﬂk/ - Z T/Bk’ 3)(2 w;r/@k )
k=1 k=1 k=1
8 1 n K
<K R, [gZ(ZSW 24)0 + 9K (2] 21) (@] B7)?
i=1 =1

+ 9K (2] 2 )i x! Bi) ]

The main term is (2] zx)?(z; B;)* according to the order of 3;. We bound the main term first. Note that
there exists some positive large constant C' such that

1 — _ _ _
E(* Z(w ) (x] Bi) (mfﬁk/)“) < Cllze 3118513118 1I3-

n-
=1

Together with Lemma 8 and (S.5), we have

>

k=

n

(23 @] 20! B ] Be)?)

1 =1

Mw

’

=
x

(logn) 2 -3 Ly = 2
<c(1 7)1( 3 (1+ K32 .
<1+ R bitr + Kheu)' 3

with probability at least 1 — 3K?2/n. Overall, the upper bound of B; takes the form

4,8 1 5 8 1 X
B <r 2w [iso (e CEED KA+ K3 Y ]
k=1 (S.41)

logn)® 1 i
§R418C(1+( \g/ﬁ) )(1+K250)4Z”'Zk”§7
k=1

with probability at least 1 — 3K?/n.

Bounding B;. We rewrite By by



For fixed {¢;}7 , accordingly to Lemma 8, we have
>l Bt —E( Y @l 8| < Cllogn)? e 20133
i=1 i=1

Note that E((z, Bx)*) = 3||8k||3. It will reduce to

1o = 3 — logn)? -
Iy et < (2 e B e,) g
i=1 1=1

From Lemma 21, with probability at least 1 — 3/n,

L3 el< e, Ll <
— €; o°, — —.
n =TTy 2=

i=1

Combining the above two inequalities, we obtain
1< _ _
=3 @l B! < 6Coo®l1Bells (5.42)
i=1

with probability at least 1 — 7/n. Plugging in the definition of ¢ and (S.5), Bs is upper bounded by

_4
3

1
By < 6Ch0*(1+ K2eg)* R3K™3, (S.43)

min

with probability at least 1 — 7K /n.

Summary. Putting the bounds (S.41) and (S.43) together, we have similar upper bound for thresholded
effect,

K 4 s 251
B < Cop®R* Y ||2kll3 + Capr* s, RgK*Q%ngv (S.44)
k=1
with probability at least 1 — (3K?2 + 7K)/n. [ |

S.V1.3 Ensemble

From the definition of ~, it’s not hard to see actually the cross term C' is equal to zero. Combining the
upper bound of gradient update effect (S.40) and thresholding effect (S.44) together, we obtain

3 <2
N *
vV nk/gk )

(1—64MK 2R~ 3+3u2K 'R*[220 + 270K] )(ZH%H)

* 2K 251
+ 2C’3qu3 77mm3 g S0BP
n
As long as the step size u satisfies
2R~ 20/3
0<p<
3K 220 + 270K)%’




we reach the conclusion

K 2
> — /B,
k=1

5\ 2 (S.45)
<(1-82uK2R"3) /0B '
2
k=
- 2K slogp
20.u2R™3 3514444444444,
+ BM nIIllI’l n )
with probability at least 1 — 4Ks/n. |

S.VII Proof of Lemma 14

Let us consider k-th component first. Without loss of generality, suppose F' C {1,2,...,Ks}. For j =
Ks+1,...,p,

d
OBr; LB Z<Z’7’“ _«%) k(@] Br)wij, (S.46)

i=1
and it’s not hard to see the independence between {w;'—ﬁk,yi} and z;;. Applying standard Hoeffding’s
inequality, we have with probability at least 1 —

n2p2a

aﬂky

n K
/Bk)‘ < \/@ DO (@] Br)® — i) (@] Br)? = h(Br).

i=1 k=1

Equipped with union bound, with probability at least 1 — n%p,

L8] < h(Be).

max
Ks+1<j<p | OBk;

Therefore, according to the definition of thresholding function ¢(x), we obtain the following equivalence,

7 1
PLR(BL) <5k - gVﬁkﬁ(ﬁk)) = ey (ﬂk - ngkL(ﬁk)F>, (S.47)
holds for k € [K], with probability at least 1 — ——. (S.47) also provides that supp(3; ) C F for every k € [K],
which further implies F'T C F. Now we end the proof [ |

S.VIII Proof of Lemma 15

First, we consider symmetric case. According to the definition of {y;}? ; from symmetric tensor estimation
model (3.1), we separate the random noise ¢; by the following expansion,

1< 1 K
ED I Sl DBACHC IS
i=1 1=

=1 k=1
S0 30 SUICOL SURED D) S AR S (5.49)
=1 k=1 1=1 k=1 =1
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I I I3

35



Bounding I;. We expand i-th component of I; as follows

(z B)?)
(S.49)

MWHM

mi(@! By +2 > nir (@] By (=) By, )°

ki<k)j

b
Il
_

As shown in Corollary S.1, the expectations of above two parts takes forms of

E(z] B;,)°(x{ Br,)° = 6(8y, B,)” +9(Bx, Bi ISk, 121185, 113
E(z; B;)° = 15) 63

Recall that ||B;||2 = 1 for any k € [K] and Condition 3 implies for any k; # k;, |ﬂ,§rﬂ,’;| < T, where T' is the
incoherence parameter. Thus, E(z; ﬁ;i)g(mj,ﬁzj)g is upper bounded by

‘E(m?ﬁ;i)fS(miT,B,’;j):s‘ < 613 + T, for any k; # k;. (S.50)

By using the concentration result in Lemma 8, we have with probability at least 1 —1/n

L, T o 1 ¢ T*G‘ (logn)?
2 , _E(= . <
]n;< A"~ B ol A < 0 a
B " (S.51)

\f (@l BL) ) B, — B S (@] 1) @) 87| < 0 1820

ki Z; kj n k; Z; k; >~ U1 \/’Tl .

=1
Putting (S.49),(S.50) and (S.51) together, this essentially provides an upper bound for I;, namely

n 2 k:177k T; P = 1 NG 2 M) :

with probability at least 1 — K2 /n.

Bounding I,. Since the random noise {¢; }?; is of mean zero and independent of {x;}, we have

K
E(ei y il 67)°) =0
k=1

By using the independence and Corollary 8, we have

IP’(% zn:el(asj )3 > Cy (logn) fa)
z‘=1n ,
<B(13 a8 > VB2 o lel < Coovi) + B (jell > Cov/io)
=1
SR Y
n n n
This further implies that

1 b * T a*\3 X * (logn)%
- Zznk(f’% Bi)’€i < (Z 771@)02707 (S.53)



with probability at least 1 — 4K /n.

Bounding I3. As shown in Lemma 21, the random noise ¢; with sub-exponential tail satisfies
1 n
- Z 2 < O30, (S.54)
i=1

with probability at least 1 — 3/n.
Overall, putting (S.52), (S.53) and (S.54) together, we have with probability at least 1 — (K? + 4K + 3)/n,

3 2
2 Cso

(Creymp)?

1 n 2 3

= 2i=1Yi 1 2 1
o= g5 ooy gp 4o, U081, 20 (logn)
(Chma ) Vi () Ve

Under Conditions 4 & 5, the above bound reduces to

+

n K
1 2 3 *\2
- E - < (16 461" 4+9I' E
n P Yi = ( )(k:177k) ’

with probability at least 1 — (K2 +4K +3)/n. The proof of lower bound is similar, and hence is omitted here.

Similar results will also hold for non-symmetric tensor estimation model. Throughout the proof, the only
difference is that

]E(UiTﬁikk)2(v;rﬁ;k)Q(w;rﬁ:}kk)Q =1

E Matrix Form Gradient and Stochastic Gradient descent

S.I Matrix Formulation of Gradient

In this section, we provide detail derivations for (3.5).

Lemma S.1. Let n = (11,...,mx) € REXL X = (zq,...,2,) € RP*" and B = (B4, ...,8xk) € RP*K. The
gradient of symmetric tensor estimation empirical risk function (3.3) can be written in a matrix form as
follows

6
VBL(B,n) = ﬁ[((BTX)T)?’n —yl'[(BTX)")?on") ox]".
Proof. First let’s have a look at the gradient for k-th component,

K
6
VL(Br) = ﬁ(znk(m?ﬁk)g —yi) (] Br)x; € RPXL for k=1,..., K.
k=1

Correspondingly, each part can be written as a matrix form,

(B'X)")’n—yecR™!
Kxn
(((BTX)T)Q ® ,',IT)T ® X e Rprn-
This implies that [(BTX)7)%; — o]T[(BTX)T)? @ )T ® X|T € R™PK.  Note that
VBL(B,n) = (VLi(B1)",...,VLK(Bk)") € RYPK_ The conclusion can be easily derived. [ ]
37



S.II Stochastic Gradient descent

Stochastic thresholded gradient descent is a stochastic approximation of the gradient descent optimization
method. Note that the empirical risk function (3.3) that can be written as a sum of differentiable functions.
Followed by (3.5), the gradient of (3.3) evaluated at i-th sketching {y;, x;} can be written as

VeLi(B,n) =[((B =) ’n—yll(B'z) ) ©on")" 0]’ € RVPE,
Thus, the overall gradient Vg £;(B,n) defined in (3.5) can be expressed as a summand of Vg£L;(B,n),
1 n
i B7 = - 7 Bv .
VeLi(B,n) n;VBC (B,m)

The thresholded step remains the same as Step 3 in Algorithm1. Then the symmetric update of stochastic
thresholded gradient descent within one iteration is summarized by

VeC(B(H_l)) = @L%h(]g(t)) (VeC(B(t)) — MS;;D vBﬁl(B(t))) .

F Technical Lemmas

Lemma 16 . Suppose € R? is a standard Gaussian random vector. For any non-random vector a, b, c € R?,
we have the following tensor expectation calculation,

]E((aTm)(bTm)(ch)m oxo w)

= (u,oboc+aocob+boaoc+bocoa+coboa+coa0b)

P
+3 Z (a o€, o em(ch) +enobo em(aTc) +enoe,o0 c(aTb)),

m=1
where e,,, is a canonical vector in RP.
Proof. Recall that for a standard Gaussian random variable x, its odd moments are zero and even moments

are E(2%) = 15,E(2*) = 4. Expanding the LHS of (S.1) and comparing LHS and RHS, we will reach the
conclusion. Details are omitted here. [ |

Lemma 17 . Suppose u € RP' v € RP2 w € RP3 are independent standard Gaussian random vectors. For
any non-random vector a € RP* b € RP2 ¢ € RP3, we have the following tensor expectation calculation

]E((aTu)(bT'v)(cTw)uovow) =aoboec. (S.2)

Proof. Due to the independence among w, v, w, the conclusion is easy to obtain by using the moment of
standard Gaussian random variable. |

Note that in the left side of (S.1), it involves an expectation of rank-one tensor. When multiplying any
non-random rank-one tensor with same dimensionality, i.e. a; o by o ¢, on both sides, it will facilitate us to
calculate the expectation of product of Gaussian vectors, see next Lemma for details.

Lemma S.1. Suppose € R? is a standard Gaussianj éandom vector. For any non-random vector a, b, c,d €



RP, we have the following expectation calculation

E(z"a)® = 15]|all5,

E(z"a)’(z"b) = 15| all3(a"b),
E(z"a)!(z'b)* = 12Ha|| (a"b)* + 3all2][b]l3,
E(z"a)*(z"b)’ = 6(a"b)’ +9(a’b)||al3]b]l3,
E(z'a) )

(
(
(
Y(@"b)*(z"e) =6(a"b)*(a"c) +6(a"b)(b c)(a"a)
+3(a"c)(b"b)(a"a),

E(z"a)*(z"b)(z"c)*(z"d) =2(a"¢)*(b"d) +4(a"c)(b'c)(a'd)
+6(a'c)(a'b)(c"d) +3(c"x) (b d)(a"a).

Proof. Note that E((z"a)?(z"b)3) =E((z"a)*(x ox ox,bobob)). Then we can apply the general result
in Lemma 16. Comparing both sides, we will obtain the conclusion. Others part follows the similar strategy. B

Next lemma provides a probabilistic concentration bound for non-symmetric rank-one tensor under tensor
spectral norm.

Lemma 18 . Suppose X = (z,--,z) )", Y = (y{,---,y )", Z = (2], -+ ,2])T are three n x p random

matrices. The 19-norm of each entry is bounded, s.t. || Xi;|ly, = Kz, [|Yijllw. = Ky, | Zijllp, = K.. We
assume the row of X,Y, Z are independent. There exists an absolute constant C' such that,

17L
P(H* |:z i 0z —E(x; 0y; z} > CK, KyK.6, s>< L
LS fveme s Bleewo ]|, 2 O Kot 5

1 n
P(H*E {z iox; —E(z;ox; i:|
"2 Tioxw;ox (z;omx; 0ox;)

> CK g ) <97

Here, ||| is the sparse tensor spectral norm defined in (2.3) and &, s = /slog(ep/s)/n++/s3 log(ep/s)3 /n2.

Proof. Bounding spectral norm always relies on the construction of the e-net. Since we will bound a sparse
tensor spectral norm, our strategy is to discrete the sparse set and construct the e-net on each one. Let us
define a sparse set By = {& € RP,||z|2 = 1,|z|lo < s}. And let By s be the s-dimensional set defined by
Bo,s = {x € R®,||z|]2 = 1}. Note that By is corresponding to s-sparse unit vector set which can be expressed
as a union of subsets of dimension s by expanding some zeros, namely By = U By ;. There should be at most
(%) < (2)* such set By,s.

S

Recalling the definition of sparse tensor spectral norm in (2.3), we have

S

A= Hi;[mioyioziE(xioyiozi)]

n

22 (@) o) ) — B ) o) o)

= sup
X1,X2,X3E€Bo

Instead of constructing the e-net on By, we will construct an e-net for each of subsets By 5. Define NBO,S as
the 1/2-set of By s. From Lemma 3.18 in Ledoux (2005), the cardinality of Nj s is bounded by 5°. By Lemma
19, we obtain

n

sup
X1,X2,X3€B8o,s

30 [l ) 21 xa) = B0 w2 )|

1 n
<2 sup ‘72 [<:L'iaX1><yi7X2><zi7X3> —E(<$i7X1><yz‘7X2><zi’X3>)}"
x1,:X2,X3€NB, TV 39



By rotation invariance of sub-Gaussian random variable, (x;, x1), (¥:, X2), (zi, x3) are still sub-Gaussian
random variables with >-norm bounded by K, K, K, respectively. Applying Lemma 8 and union bound
over N, _, the right hand side of (S.3) can be bounded by

IP’(RHS > SKIKyKZC<\/IOg o \/(log 5_1)3)) < (5%)%,

n n?

for any 0 < 9§ < 1.

Lastly, taking the union bound over all possible subsets By s yields that

[P(A . 8KwaKzC(\/logs_l N \/(10g§2—1)3>)

< (D)5 = (2P,

- S

Letting p~! = (@)55, we obtain with probability at least 1 —1/p

A< KKKy Sbg?gp/s) +4/ s loifp/s)),

with some adjustments on constant C. The proof for symmetric case is similar to non-symmetric case so we

omit here. ]

Lemma 19 (Tensor Covering Number(Lemma 4 in Nguyen et al. (2015) )). Let N be an e-net for a set B
associated with a norm || - ||. Then, the spectral norm of a d-mode tensor A is bounded by

sup ||.A X1 ... Xgq-1 iL’d,1H2
x1,...,£4—1€B

1 \d-1
< (1 ) sup A Xy @y Xgo1 Ta—1]|2-
—¢€ x1-xqg_1EN

This immediately implies that the spectral norm of a d-mode tensor A is bounded by

1 _
[All2 < (=——)""  sup  Axy @1 X1 a2,
1—e¢ x1..xq_1EN

where N is the e-net for the unit sphere S*~! in R™.

Lemma 20 (Sub-Gaussianess of the Product of Random Variables). Suppose X; is a bounded random
variable with |X;| < K; almost surely for some K7 and X5 is a sub-Gaussian random variable with Orlicz
norm || Xs||y,K2. Then X1 X5 is still a sub-Gaussian random variable with Orlicz norm || X1 Xs||y, = K1 Ko.

Proof: Following the definition of sub-Gaussian random variable, we have

P(|X1Xz| > t) = P(|%s] > X |) <P(| Xz > e |) < exp (1 /K2EK3),

holds for all ¢ > 0. This ends the proof. [ |

Lemma 21 (Tail Probability for the Sum of Sub-exponential Random Variables (Lemma A.7 in Cai et al.
(2016))). Suppose €1, ..., €, are independent centered sub-exponential random variables with

7= D ||6z||w1



Then with probability at least 1 — 3/n, we have

/l
‘7261 < Cyo ogn

2 4
\* ’\;ZEZ
=1

« < Coologn,

for some constant Cp.

Lemma 22 (Tail Probability for the Sum of Weibull Distributions (Lemma 3.6 in Adamczak et al. (2011))).
Let a € [1,2] and Y3, ...,Y, be independent symmetric random variables satisfying P(|Y;| > t) = exp(—t®).
Then for every vector a = (ay,...,a,) € R™ and every t > 0,

P('iaimzt)ﬁ?exp(mm(n 2|| )
=1

Proof. Tt is a combination of Corollaries 2.9 and 2.10 in Talagrand (1994).

Lemma 23 (Moments for the Sum of Weibull Distributions (Corollary 1.2 in Bogucki (2015))). Let
X1,Xs,..., X, be asequence of independent symmetric random variables satisfying P(|Y;| > t) = exp(—t%),
where 0 < o < 1. Then, for p > 2 and some constant C(a)) which depends only on «,

Zaz (@) (vpllallz +p/*a] ).

p

Lemma 24 (Stein’s Lemma (Stein et al., 2004)). Let & € R? be a random vector with joint density function
p(x). Suppose the score function Vzlogp(x) exists. Consider any continuously differentiable function
G(z) : R% — R. Then, we have

E[G(m) Vg logp(a:)} =-E [VmG(x)}

Lemma 25 (Khinchin—Kahane Inequality (Theorem 1.3.1 in De la Pena and Giné (2012))). Let {a;}; a
finite non-random sequence, {¢;}"_; be a sequence of independent Rademacher variables and 1 < p < ¢ < c0.

Then
il < (11— 0
H;&az - (p—l ;51041 »

Lemma 26 . Suppose each non-zero element of {wk}szl is drawn from standard Gaussian distribution and
lekllo < s for k € [K]. Then we have for any 0 < ¢ <1,

]P’( max  |(xg,, Tr,y)| SC’\/E\/logK—i—logl/é) >1-4,

1<k <ky<K

where C' is some constant.

Proof. Let us denote Sk, C [1,2,...,p] as an index set such that for any i,j € Sk, k,, we have zg,; # 0
and zp,; # 0. From the definition of Sk, k,, we know that [Sk,k,| < s and @] @), = D Tk jThaj =
> J€Sk 1y Th1iThaj- We apply standard Hoeffding’s concentration inequality,

ct?
P(|<$k17mk2>| > t) = P(| Z xk1j$k2j| > t) < eexp(_ ?>
JESkyky

Letting ct?/s = log(1/6), we reach the conclusion. 4l
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