
Supplement to “Adaptive Exploration in Linear Contextual Bandit”

In Section A, we provide main proofs for asymptotic lower bound and upper bound. In Section B, we prove

several main lemmas. In Section C, some supporting lemmas are presented for the sake of completeness.

A Proofs of Asymptotic Lower and Upper Bounds

First of all, we define the sub-optimal action set as Am− = Am \ {x : ∆m
x = 0} and denote A = ∪Mm=1Am and

A− = ∪Mm=1Am− .

A.1 Proof of Lemma 3.2

The proof idea follows if Ḡn is not sufficiently large in every direction, then some alternative parameters are

not sufficiently identifiable.

Step One. We fix a consistent policy π and fix a context m ∈ [M ] as well as a sub-optimal arm x ∈ Am− .

Consider another parameter θ̃ ∈ Rd such that it is close to θ but x∗m is not the optimal arm in bandit θ̃ for

action set Am. Specifically, we construct

θ̃ = θ +
H(x− x∗m)

‖x− x∗m‖2H
(∆m

x + ε),

where H ∈ Rd×d is some positive semi-definite matrix and ε > 0 is some absolute constant that will be

specified later. Since the sub-optimality gap ∆̃m
x∗m

satisfies

〈x− x∗m, θ̃〉 = 〈x− x∗m, θ〉+ ∆m
x + ε = ε > 0, (A.1)

it ensures that x∗m is ε-suboptimal in bandit θ̃.

We define Tx(n) =
∑n
t=1 I(Xt = x) and let P and P̃ be the measures on the sequence of outcomes

(X1, Y1, . . . , Xn, Yn) induced by the interaction between the policy and the bandit θ and θ̃ respectively.

By the definition of Ḡn in (3.2), we have

1

2
‖θ − θ̃‖2Ḡn =

1

2
(θ − θ̃)>Ḡn(θ − θ̃)

=
1

2
(θ − θ̃)>E

[∑
x∈A

Tx(n)xx>
]
(θ − θ̃)

=
1

2

∑
x∈A

E
[
Tx(n)

]
〈x, θ − θ̃〉2.

Applying the Bretagnolle-Huber inequality inequality in Lemma C.1 and divergence decomposition lemma in

Lemma C.2, it holds that for any event D,

1

2
‖θ − θ̃‖2Ḡn = KL(P, P̃) ≥ log

( 1

2(P(D) + P̃(Dc))

)
. (A.2)

Step Two. In the following, we start to derive a lower bound of Rπθ (n),

Rπθ (n) = E
[ n∑
t=1

〈x∗ct −Xt, θ〉
]

= E
[ M∑
m=1

∑
t:ct=m

〈x∗m −Xt, θ〉
]

≥ E
[ ∑
t:ct=m

〈x∗m −Xt, θ〉
]

= E
[ ∑
t:ct=m

∆m
Xt

]
≥ ∆minE

[ ∑
t:ct=m

I(Xt 6= x∗m)
]

= ∆minE
[ n∑
t=1

I(ct = m)−
n∑
t=1

I(ct = m)I(Xt = x∗m)
]
,
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where the first inequality comes from the fact that 〈x∗m −Xt, θ〉 ≥ 0 for all m ∈ [M ]. Define the event D as

follows,

D =
{ n∑
t=1

I(ct = m)I(Xt = x∗m) ≤ 1

2

n∑
t=1

I(ct = m)
}
. (A.3)

When event D holds, we will only pull at most half of total rounds for the optimal action of action set m.

Then it holds that

Rπθ (n) ≥ ∆minE
[( n∑

t=1

I(ct = m)−
n∑
t=1

I(ct = m)I(Xt = x∗m)
)
I(D)

]
≥ ∆minE

[1

2

n∑
t=1

I(ct = m)I(D)
]
.

Define another event B as follows,

B =
{1

2

n∑
t=1

I(ct = m) ≥ npm
2
− δ/2

}
, (A.4)

where δ > 0 will be chosen later and pm is the probability that the environment picks context m. From the

definition of ct, we have E[
∑n
t=1 I(ct = m)] = npm. By the standard Hoeffding’s inequality (Vershynin, 2010),

it holds that

P
(1

2

n∑
t=1

I(ct = m)− npm
2
≥ −δ

2

)
≥ 1− exp(−2δ2

n
),

which implies

P(Bc) ≤ exp(−2δ2/n).

By the definition of events D,B in (A.3),(A.4), we have

Rπθ (n) ≥ ∆minE
[1

2

n∑
t=1

I(ct = m)I(D)I(B)
]

≥ ∆minE
[
(
1

2
npm −

δ

2
)I(D)I(B)

]
= ∆min(

1

2
npm −

δ

2
)P(D ∩ B)

≥ ∆min(
1

2
npm −

δ

2
)(P(D)− P(Bc)).

Letting δ = npm/2, we have

Rπθ (n) ≥ ∆min
npm

4

(
P(D)− exp(−np

2
m

2
)
)
. (A.5)

On the other hand, we let Ẽ is taken with respect to probability measures P̃. Then Rπ
θ̃
(n) can be lower

bounded as follows,

Rπ
θ̃
(n) = Ẽ

[ M∑
m=1

n∑
t=1

I(ct = m)∆̃m
Xt

]
≥ Ẽ

[ n∑
t=1

I(ct = m)I(Xt = x∗m)
]
∆̃m
x∗m
,
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where we throw out all the sub-optimality gap terms except ∆̃m
x∗m

. Using the fact that ∆̃m
x∗m

is ε-suboptimal,

it holds that

Rπ
θ̃
(n) ≥ εẼ

[
(

n∑
t=1

I(ct = m)I(Xt = x∗m))I(Dc)
]

> εẼ
[1

2

n∑
t=1

I(ct = m)I(Dc)
]

≥ εẼ
[1

2

n∑
t=1

I(ct = m)I(Dc)I(B)
]

≥ ε(
npm

2
− δ

2
)P̃(Dc ∩ B)

≥ ε(
npm

2
− δ

2
)(P̃(Dc)− P̃(Bc))

≥ ε(
npm

2
− δ

2
)(P̃(Dc)− exp(−2δ2

n
))

= ε
npm

4
P̃(Dc)− εnpm

4
exp(−np

2
m

2
). (A.6)

Now we have derived the lower bounds (A.5)(A.6) for Rπθ (n), Rπ
θ̃
(n) respectively.

Step Three. Combining the lower bounds of Rπθ (n) and Rπ
θ̃
(n) together, it holds that

Rπθ (n) +Rπ
θ̃
(n) ≥ npm

4

(
P(D)∆min + P̃(Dc)ε

)
− npm

4
exp(−np

2
m

2
)(ε+ ∆min).

Letting ε ≤ ∆min, we have

Rπθ (n) +Rπ
θ̃
(n) ≥ εnpm

4

(
P(D) + P̃(Dc)

)
− npm

4
exp(−np

2
m

2
)2∆min.

This implies
Rπθ (n) +Rπ

θ̃
(n)

εnpm/4
+

1

ε
exp(−np

2
m

2
)2∆min ≥ P(D) + P̃(Dc). (A.7)

Plugging (A.7) into (A.2), we have

1

2
‖θ − θ̃‖2Ḡn ≥ log

( 1

2(P(D) + P̃(Dc))

)
≥ log

( 1
Rπθ (n)+Rπ

θ̃
(n)

εnpm/8
+ 1

ε exp(−np
2
m

2 )4∆min

)
= log

( n
Rπθ (n)+Rπ

θ̃
(n)

εpm/8
+ n

ε exp(−np
2
m

2 )4∆min

)

= log(n)− log
(Rπθ (n) +Rπ

θ̃
(n)

εpm/8
+

4n

ε
exp(−np

2
m

2
)∆min

)
.

Dividing by log(n) for both sides, we reach

‖θ − θ̃‖2
Ḡn

2 log(n)
≥ 1−

log
(
Rπθ (n)+Rπ

θ̃
(n)

εpm/8
+ 4n

ε exp(−np
2
m

2 )∆min

)
log(n)

.

From the definition of consistent policies (3.1), it holds that

lim sup
n→∞

log(Rπθ (n) +Rπ
θ̃
(n))

log(n)
≤ 0.
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In addition, by using the fact that limn→∞ n exp(−n) = 0, it follows that

lim inf
n→∞

‖θ − θ̃‖2
Ḡn

2 log(n)
≥ 1. (A.8)

Step Four. Let’s denote

ρn(H) =
‖x− x∗m‖2Ḡ−1

n
‖x− x∗m‖2HḠnH

‖x− x∗m‖4H
.

Then we can rewrite

1

2
‖θ − θ̃‖2Ḡn =

(∆m
x + ε)2

2‖x− x∗m‖2Ḡ−1
n

ρn(H).

Plugging this into (A.8) and letting ε to zero, we see that

lim inf
n→∞

ρn(H)

‖x− x∗m‖2Ḡ−1
n

log(n)
≥ 2

(∆m
x )2

. (A.9)

Now, we consider the following lemma, extracted from the proof of Theorem 25.1 of the book by Lattimore

and Szepesvári (2019). The detailed proof is deferred to Section B.6.

Lemma A.1. Let {Gn}n≥0 be a sequence of d × d positive definite matrices, s ∈ Rd. For H positive

semi-definite d × d matrix such that ‖s‖H > 0 and n ≥ 0, let ρn(H) =
‖s‖2

G
−1
n
‖s‖2HGnH
‖s‖4H

. Assume that

lim infn→∞
λmin(Gn)

log(n) > 0 and that for some c > 0,

lim inf
n→∞

ρn(H)

‖s‖2
G−1
n

log(n)
≥ c . (A.10)

Then, lim supn→∞ log(n)‖s‖2
G−1
n
≤ 1/c.

The proof of lim infn→∞
λmin(Gn)

log(n) > 0 could refer Appendix C in Lattimore and Szepesvári (2017). Clearly,

this lemma with Gn = Ḡn, c = 2/(∆m
x )2, H = limn→∞ Ḡ−1

n /‖Ḡ−1
n ‖ and s = x − x∗m gives the desired

statement.

�

A.2 Proof of Theorem 4.3: Asymptotic Upper Bound

We write ∆max = maxx,m ∆m
x and abbreviate R(n) = Rπθ (n). From the design of the initialisation, Gt is

guaranteed to be invertible since each Am is assumed to span Rd. The regret during the initialisation is at

most d∆max ≈ o(log(n)) and thus we ignore the regret during initialisation in the following.

First, we introduce a refined concentration inequality for the least square estimator constructed by adaptive

data. The proof could refer to the proof of Theorem 8 in Lattimore and Szepesvári (2017).

Lemma A.2. Suppose for t ≥ d, Gt is invertible. For any δ ∈ (0, 1), we have

P
(
∃t ≥ d,∃x ∈ A, such that

∣∣〈x, θ̂t〉 − 〈x, θ〉∣∣ ≥ ‖x‖G−1
t
f

1/2
n,δ

)
≤ δ,

and

fn,δ = 2
(

1 +
1

log(n)

)
log(1/δ) + cd log(d log(n)), (A.11)

where c > 0 is some universal constant. We write fn = fn,1/n for short.

4



Let us define the event Bt as follows

Bt =
{
∃t ≥ d, ∃x ∈ A, such that |x>θ̂t − x>θ| ≥ ‖x‖G−1

t
f1/2
n

}
. (A.12)

From Lemma A.2, we have P(Bt) ≤ 1/n by choosing δ = 1/n. We decompose the cumulative regret with

respect to event Bt as follows,

R(n) = E
[ n∑
t=1

∑
x∈Act−

∆ct
x I(Xt = x)

]

= E
[ n∑
t=1

∑
x∈Act−

∆ct
x I(Xt = x,Bt)

]
+ E

[ n∑
t=1

∑
x∈Act−

∆ct
x I(Xt = x,Bct )

]
. (A.13)

To bound the first term in (A.13), we observe that

lim sup
n→∞

E
[∑n

t=1

∑
x∈Act−

∆ct
x I(Xt = x,Bt)

]
log(n)

= lim sup
n→∞

E
[∑n

t=1 ∆ct
Xt

I(Bt)
]

log(n)
≤ lim sup

n→∞

∆max

∑n
t=1 P(Bt)

log(n)
= lim sup

n→∞

∆max

∑n
t=1

1
n

log(n)

= lim sup
n→∞

∆max

log(n)
= 0. (A.14)

To bound the second term in (A.13), we define the event Dt,ct as follows,

Dt,ct =

{
∀x ∈ Act , ‖x‖2

G−1
t
≤ max

{ (∆̂min(t))2

fn
,

(∆ct
x (t))2

fn

}}
. (A.15)

When Dt,ct occurs, the algorithm exploits at round t. Otherwise, the algorithm explores at round t. We

decompose the second term in (A.13) as the exploitation regret and exploration regret:

E
[ n∑
t=1

∑
x∈Act−

∆ct
x I(Xt = x,Bct )

]

= E
[ n∑
t=1

∑
x∈Act−

∆ct
x I(Xt = x,Bct ,Dt,ct)

]
+ E

[ n∑
t=1

∑
x∈Act−

∆ct
x I(Xt = x,Bct ,Dct,ct)

]
. (A.16)

We bound those two terms in Lemmas A.3-A.4 respectively.

Lemma A.3. The exploitation regret satisfies

lim sup
n→∞

E
[∑n

t=1

∑
x∈Act−

∆xI(Xt = x,Bct ,Dt,ct)
]

log(n)
= 0 (A.17)

Lemma A.4. The exploration regret satisfies

lim sup
n→∞

E
[∑n

t=1

∑
x∈Act−

∆xI(Xt = x,Bct ,Dct,ct)
]

log(n)
≤ C(θ,A1, . . . ,AM ), (A.18)

where C(θ,A1, . . . ,AM ) is defined in Theorem 3.3.

Combining Lemmas A.3-A.4 together, we reach our conclusion. �
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B Proofs of Several lemmas

B.1 Proof of Lemma A.3: Exploitation Regret

When Bct defined in (A.12) occurs, we have

max
x∈A

∣∣〈θ̂t − θ, x〉∣∣ ≤ ‖x‖G−1
t
f1/2
n . (B.1)

When Dt,m defined in (A.15) occurs, we have

‖x‖2
G−1
t
≤ max

{∆̂2
min(t)

fn
,

(∆̂m
x (t))2

fn

}
=

(∆̂m
x (t))2

fn
, (B.2)

holds for any action x ∈ Am and ∆̂m
x (t) > 0. If x∗m = x̂∗m(t), there is no regret occurred. Otherwise, putting

(B.1) and (B.2) together with the optimal action x∗m, it holds that

|〈θ̂t − θ, x∗m〉| ≤ ‖x∗m‖G−1
t
f1/2
n ≤ ∆̂m

x∗m
(t). (B.3)

We decompose the sub-optimality gap of x̂∗m(t) as follows,

〈x∗m, θ〉 − 〈x̂∗m(t), θ〉
= 〈x∗m, θ − θ̂t〉+ 〈x∗m, θ̂t〉 − 〈x̂∗m(t), θ − θ̂t〉 − 〈x̂∗m(t), θ̂t〉
= 〈x∗m, θ − θ̂t〉 − ∆̂m

x∗m
(t) + 〈x̂∗m(t), θ̂t − θ〉

≤ 〈x̂∗m(t), θ̂t − θ〉. (B.4)

For each x ∈ A, we define

τx = min
{
N : ∀t ≥ d,Dt,ct occurs, Nx(t) ≥ N, implies |〈θ̂t − θ, x〉| ≤

∆min

2

}
. (B.5)

When Nx̂∗m(t)(t) ≥ τx̂∗m(t), it holds that

|〈θ̂t − θ, x̂∗m(t)〉| ≤ ∆min

2
.

Together with (B.4), we have

〈x∗m, θ〉 − 〈x̂∗m(t), θ〉 ≤ ∆min

2
.

Combining this with the fact that the instantaneous regret either vanishes or is larger than ∆min, it indicates

x∗m = x̂∗m(t). Therefore, we can decompose the exploitation regret with respect to event {Nx̂∗m(t)(t) ≥ τx̂∗m(t)}
as follows,

E
[ n∑
t=1

∑
x∈Act−

∆ct
x I(Xt = x,Bct ,Dt,ct)

]

≤ E
[ M∑
m=1

n∑
t=1

∑
x∈Am−

∆m
x I
(
Xt = x,Bct ,Dt,m, Nx̂∗m(t)(t) ≥ τx̂∗m(t)

)]

+ E
[ M∑
m=1

n∑
t=1

∑
x∈Am−

∆m
x I
(
Xt = x,Bct ,Dt,m, Nx̂∗m(t)(t) < τx̂∗m(t)

)]
. (B.6)
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During exploiting the algorithm always executes the greedy action. When x∗m = x̂∗m(t) the first term in (B.6)

results in no regret. For the second term in (B.6), we have

E
[ M∑
m=1

n∑
t=1

∑
x∈Am−

∆m
x I
(
Xt = x,Bct ,Dt,m, Nx̂∗m(t) < τx̂∗m(t)

)]

≤ E
[ M∑
m=1

n∑
t=1

I
(
Bct ,Dt,m, Nx̂∗m(t)(t) < τx̂∗m(t)

)]
∆max

≤
M∑
m=1

∑
x∈A

E(τx)∆max ≤
∑
x∈A

E[τx]∆max. (B.7)

It remains to bound E[τx] for any x ∈ A. Let

Λ = min
{
λ ≥ 1 : ∀t ≥ d, |〈θ̂t − θ, x〉| ≤ ‖x‖G−1

t
f

1/2
n,1/λ

}
.

From the definition of τx in (B.5), we have

τx ≤ max
{
N : (fn,1/λ/N)1/2 ≥ ∆min

2

}
,

which implies τx ≤ 4fn,1/Λ/∆
2
min. From Lemma A.2, we know that P(Λ ≥ λ) ≤ 1/λ, which implies

E[log Λ] ≤ 1. Overall,

E[τx] ≤ 4E[fΛ]

∆2
min

≤ 8(1 + 1/ log(n)) + 4cd log(d log(n))

∆2
min

. (B.8)

Combining (B.6)-(B.8) together, we reach

lim sup
n→∞

E
[∑n

t=1

∑
x∈Act−

∆xI(xt = x,Bct ,Dt,ct)
]

log(n)

≤ lim sup
n→∞

|A|∆max

(
8(1 + 1/ log(n)) + 4cd log(d log(n))

)
∆2

min log(n)
= 0.

(B.9)

This ends the proof. �

B.2 Proof of Lemma A.4: Exploration Regret

If all the actions x ∈ A satisfy

Nx(t) ≥ min
{
fn/∆̂

2
min(t), Tx(∆̂(t))

}
, (B.10)

the following holds using Lemma C.4,

‖x‖2
G−1
t
≤ max

{∆̂2
min(t)

fn
,

(∆̂ct
x (t))2

fn

}
, for any x ∈ A.

In other words, this implies if there exists an action x such that (B.10) does not hold, e.g. Dct,ct occurs, there

must exist an action x′ ∈ A (x and x′ may not be the identical) satisfying

Nx′(t) ≤ min
{
ft/∆̂

2
min(t), Tx′(∆̂(t))

}
.

Based on the criterion in Algorithm 1, we should explore. However, if x′ does not belong to Act and all the

actions within Act have been explored sufficiently according to the approximation optimal allocation, this
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exploration is interpreted as “wasted”. To alleviate the regret of the wasted exploration, the algorithm acts

optimistically as LinUCB.

Let’s define a set that records the index of action sets that has not been fully explored until round t,

Mt =
{
m : ∃x ∈ Am, Nx(t) ≤ min{fn/∆̂2

min(t), Tx(∆̂(t))}
}
. (B.11)

When Dct,ct occurs, it means thatMt 6= ∅. If Dct,ct occurs but ct does not belong toMt, the algorithm suffers

a wasted exploration. We decompose the exploration regret according to the fact if ct belongs to Mt,

E
[ n∑
t=1

∑
x∈Act−

∆xI(Xt = x,Bct ,Dct,ct
]

= E
[ n∑
t=1

∑
x∈Act−

∆xI(Xt = x,Bct ,Dct,ct , ct ∈Mt)
]

︸ ︷︷ ︸
Rue:unwasted exploration

+E
[ n∑
t=1

∑
x∈Act−

∆xI(Xt = x,Bct ,Dct,ct , ct /∈Mt)
]

︸ ︷︷ ︸
Rwe:wasted exploration

. (B.12)

We will bound the unwasted exploration regret and wasted exploration regret in the following two lemmas

respectively.

Lemma B.1. The regret during the unwasted explorations satistifies

lim sup
n→∞

Rue

log(n)
≤ C(θ,A1, . . . ,AM ). (B.13)

The detailed proof is deferred to Section B.3.

Lemma B.2. The regret during the wasted explorations satisfies

lim sup
n→∞

Rwe

log(n)
= 0. (B.14)

The detailed proof is deferred to Section B.5.

Putting (B.12)-(B.14) together, we reach

lim sup
n→∞

E
[∑n

t=1

∑
x∈Act−

∆ct
x I(Xt = x,Bct ,Dct,ct)

]
log(n)

≤ C(θ,A1, . . . ,AM ),

which ends the proof.

�

B.3 Proof of Lemma B.1: Unwasted Exploration

First, we derive a lower bound for each Nx(t) during the unwasted exploration. Denote s(t) as the number

of rounds for unwasted explorations until round t. Indeed, forced exploration can guarantee a lower bound

for Nx(t): minx∈ANx(t) ≥ εts(t)/2. We prove this by the contradiction argument. Assume this is not

true. There may exist s(t)/2 rounds {t1, . . . , ts(t)/2} ⊂ {1, . . . , t} such that minx∈ANx(t) ≤ εts(t). After |A|
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such rounds, we have minxNx(t) is incremented by at least 1 which implies minxNx(t) ≥ s(t)/(2|A|). If

εt ≤ 1/|A|, it leads to the contradiction. This is satisfied when t is large since εt = 1/ log(log t).

Second, we set βn = 1/ log(log(n)) and define

ζ = min
{
s : ∀t ≥ s,∀x ∈ A, such that |〈x, θ̂t〉 − 〈x, θ〉| ≤ βn

}
. (B.15)

Then we decompose the regret during unwasted explorations with respect to event {s(t) ≥ ζ} as follows,

Rue = E
[ n∑
t=1

∑
x∈Act−

∆xI(Xt = x,Bct ,Dct,ct , ct ∈Mt)
]

= E
[ n∑
t=1

∑
x∈Act−

∆xI(Xt = x,Bct ,Dct,ct , s(t) ≥ ζ, ct ∈Mt)
]

︸ ︷︷ ︸
I1

+E
[ n∑
t=1

∑
x∈Act−

∆xI(Xt = x,Bct ,Dct,ct , s(t) < ζ, ct ∈Mt)
]

︸ ︷︷ ︸
I2

. (B.16)

To bound I2, we have

I2 = E
[ n∑
t=1

∆XtI(Bct ,Dct,ct , ct ∈Mt, s(t) < ζ)
]
≤ ∆maxE

[ n∑
t=1

I(s(t) < ζ, ct ∈Mt,Dct,ct)
]
≤ ∆maxE[ζ].

It remains to bound E[ζ]. Let’s define

Λ = min
{
λ : ∀t : Dct,ct ,∀x ∈ A, s(t) ≥ s, such that |〈x, θ̂t〉 − 〈x, θ〉| ≤

( 2

εts(t)
fn,1/λ

)1/2}
.

From the definition of ζ in (B.15), we have

ζ ≤ max
{
s :
(fn,1/λ

εts

)1/2

≥ βn
}
,

which implies

ζ ≤
2fn,1/Λ

εtβ2
n

. (B.17)

In addition, we define

Λ′ = min
{
λ : ∀t ≥ d,∀x ∈ A, such that |〈x, θ̂t〉 − 〈x, θ〉| ≤ ‖x‖G−1

t
f

1/2
n,1/λ

}
.

Using the lower bound of Nx(t), it holds that

‖x‖2
G−1
t
≤ 1

Nx(t)
≤ 2

εts(t)
.

By Lemma A.2, we have

P
(

Λ ≥ 1

δ

)
≤ P

(
Λ′ ≥ 1

δ

)
≤ δ,

which implies that E[log Λ] ≤ 1. From (B.17),

E[ζ] ≤ 2(1 + 1/ log(n)) + cd log(log(d log(n)))

εnβ2
n

. (B.18)
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From (B.18), we have

lim sup
n→∞

I2
log(n)

≤ lim sup
n→∞

∆maxE[ζ]

log(n)
= 0, (B.19)

since βn and εn are both sub-logarithmic. It remains to bound I1. When s(t) ≥ ζ, from the definition of ζ in

(B.15) we have

〈x, θ̂t〉 − 〈x, θ〉 ≤ βn,

holds for any x ∈ A. For each m ∈ [M ], we have

∆̂x∗m
(t) = 〈θ̂t, x̂∗m(t)〉 − 〈θ̂t, x∗m〉

= 〈θ̂t, x̂∗m(t)〉 − 〈θ, x̂∗m(t)〉 − 〈θ̂t, x∗m〉+ 〈θ, x∗m〉 − 〈θ, x∗m〉+ 〈θ, x̂∗m(t)〉
≤ 2βt −∆min.

When n is sufficiently large, it holds that βn ≤ ∆min/2. This implies ∆̂x∗m
(t) = 0 such that x∗m = x̂∗m(t) for

all t : s(t) > ζ. For notation simplicity, we denote Et = Bct ∩Dct,ct ∩ {s(t) ≥ ζ} ∩ {ct ∈Mt}. When Et occurs,

the algorithm is in the unwasted exploration stage and x∗m = x̂∗m(n).

When Dct,ct occurs and ct ∈Mt, there exists x′ ∈ Act such that Nx′(t) ≤ min(fn/∆̂
2
min(t), Tx′(∆̂(t))). From

the design of Algorithm 1, it holds that

• If x = b1, then Nx(t) ≤ min(fn/∆̂
2
min(t), Tx(∆̂(t))).

• If x = b2, then Nx(t) = minx∈Act Nx(t) ≤ min(fn/∆̂
2
min(t), Tx′(∆̂(t))).

Since the algorithm either pulls b1 or b2 in the unwasted exploration, it implies an upper bound for s(t):

s(t) ≤
∑
x∈Act

Nx(t) ≤ |A|max
x

min(fn/∆̂
2
min(t), Tx(∆̂(t))). (B.20)

Let Λ be the random variable given by

Λ = min

{
λ : max

x∈A
|〈x, θ̂t − θ〉| ≤ ‖x‖G−1

t
f

1/2
n,1/λ for all t ∈ [n]

}
,

where fn,1/λ is defined in Eq. (A.11). By the concentration inequality Lemma A.2, for any λ ≥ 1,

P (Λ ≥ λ) ≤ 1/λ . (B.21)

Hence the event F = {Λ ≥ n} satisfies P (F ) ≤ 1/n. Denote αmx (∆) = Tmx (∆)/fn where Tmx (∆) is the

solution of optimisation problem in Definition 4.1 with true ∆. Given υ > 0 let

υ(δ) = sup
{
‖α(∆)− α(∆̃)‖∞ : ‖∆̃−∆‖∞ ≤ δ

}
,

where α(∆) = {αmx (∆)}x∈Am,m∈[M ]. By continuity assumption of α at ∆ we have limδ→0 υ(δ) = 0. Moreover,

let’s define

τδ = min

{
t : max

x∈A
|〈x, θ̂s − θ〉| ≤ δ/2 for all x ∈ A and s ≥ t

}
.

Since Nx(t) ≥ εns(t)/2,

max
x∈A
|〈x, θ̂t − θ〉| ≤

√
2fn,Λ
εns(t)

.
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Therefore the number of exploration steps at time τδ is bounded by s(τδ) ≤ 8fn,1/Λε
−1
n δ−2.

Let (δn)∞n=1 be a sequence with limn→∞ δn = 0 and log(log(n))/δ2
n = o(log(n)). I11 decomposed as

I11 = E
[ n∑
t=1

∑
x∈Act−

∆xI(Xt = x, Et)
]

≤ E [s(τδn)] + E
[ n∑
t=τδn

∑
x∈Act−

∆xI(Xt = x, Et)
]
. (B.22)

The first term in (B.22) is bounded by

E [s(τδn)] ≤ 8

εnδ2
n

E[fn,1/Λ] = o(log(n)) ,

where we used the assumption on (δn) and the fact that E[fn,1/Λ] = O(log log(n)). By the continuity

assumption, the following statement holds

n∑
t=τδn+1

I(Xt = x, Et) ≤ εns(n) + fn min
(

1/∆̂2
min(n), αctx (∆̂(n))/2

)
≤ εns(n) + fn min

( 1

∆̂2
min(n)

, (αctx (∆) + υ(δn))/2
)
. (B.23)

The second term in (B.22) is bounded by

E
[ n∑
t=τδn

∑
x∈Act−

∆xI(Xt = x, Et)
]

≤ E
[ M∑
m=1

∑
x∈Am−

∆x

n∑
t=1

I(Xt = x, Et)
]

≤ E
[ M∑
m=1

∑
x∈Am−

∆xεns(n)I(En)
]

+ E
[ M∑
m=1

∑
x∈Am−

∆xfn(αmx (∆) + υ(δn))/2I(En)
]
.

To bound the second term, we take the limit as n tends to infinity and the fact that limn→∞ υ(δn) = 0 and

fn ∼ 2 log(n) shows that

lim sup
n→∞

1

log(n)
E
[ M∑
m=1

∑
x∈Am−

∆xfn(αmx (∆) + υ(δn))/2I(En)
]
≤ C(θ,A1, . . . ,AM ). (B.24)

We bound the first term in the following lemma. The detailed proofs are deferred to Section B.4.

Lemma B.3. The regret contributed by the forced exploration satisfies

lim sup
n→∞

E
[∑

x∈Act−
∆xεns(n)I(En)

]
log(n)

= 0.

This ends the proof. �
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B.4 Proof of Lemma B.3: Forced Exploration Regret

By the upper bound of unwasted exploration counter s(n) in (B.20), it holds that

M∑
m=1

∑
x∈Am−

∆m
x εns(n)I(En) ≤

M∑
m=1

∑
x∈Am−

∆m
x εn|A|max

x
min(fn/∆̂

2
min(n), Tx(∆̂(n)))I(En)

≤ εn|A|
M∑
m=1

∑
x∈Am−

∆m
x fn/∆̂min(n)I(En).

When event En occurs,

max
x 6=x̂∗m(n)

(∆m
x )2

(∆̂x(n))2
≤ max

x 6=x̂∗m(n)

(∆m
x )2

(∆m
x − 2βn)2

= max
x 6=x̂∗m(n)

(
1 +

4(∆m
x − βn)βn

(∆m
x − 2βn)2

)
≤ 1 +

16βn
∆min

,

For any x ∈ Am,

∆̂min(n) ≥ 1

1 + 16βn/∆min
∆min. (B.25)

Since εn = 1/(log log(n)), we have

lim sup
n→∞

∑
x∈A− ∆xεns(n)I(E)

log(n)
= 0. (B.26)

This ends the proof. �

B.5 Proof of Lemma B.2: Wasted Exploration

First, we define

Fs =
{
∃t ≥ d,∃x : 〈x, θ̂t〉 − 〈x, θ〉 ≥ ‖x‖G−1

t
f

1/2
n,1/s2

}
, (B.27)

where fn,1/s2 is defined in Lemma A.2. From Lemma A.2, we also have P(Fs) ≤ 1/s2. Let s′(t), s(t) be the

number of rounds for wasted explorations, unwasted explorations until round t accordingly, and x∗t is the

optimal arm at round t. We decompose the regret as follows

Rwe ≤ E
[ ∑
t∈wasted

I(Fs′(t))∆max

]
︸ ︷︷ ︸

I1

+E
[ ∑
t∈unwasted

I(Fcs′(t))〈x
∗
t −Xt, θ〉

]
︸ ︷︷ ︸

I2

. (B.28)

To bound I1, we have

I1 ≤
n∑
s=1

P(Fs)∆max ≤
n∑
s=1

1

s2
∆max = (2− 1

n
)∆max. (B.29)

To bound I2, let’s denote θ̃t as the optimistic estimator. Following the standard one step regret decomposition

(See the proof of Theorem 19.2 in Lattimore and Szepesvári (2019) for details), it holds that

〈x∗t −Xt, θ〉 = 〈x∗t , θ〉 − 〈Xt, θ〉
≤ 〈Xt, θ̃t〉 − 〈Xt, θ〉
= 〈Xt, θ̂t − θ〉+ 〈Xt, θ̃t − θ̂t〉.
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When Fcs′(t) occurs, we have

〈Xt, θ̂t − θ〉 ≤ ‖Xt‖G−1
t
fn,1/(s′(t)2), 〈Xt, θ̃t − θ̂t〉 ≤ ‖Xt‖G−1

t
fn,1/(s′(t)2).

Putting the above results together, we have

〈x∗t −Xt, θ〉 ≤ 2‖Xt‖G−1
t
f

1/2
n,1/(s′(t)2).

Applying Lemma C.3, we can bound I2 as follows

I2 ≤ E
[
2f

1/2
n,1/(s′(t)2)

∑
t∈wasted

‖Xt‖G−1
t

]
≤ E

[
2f

1/2
n,1/(s′(t)2)

√
2s′(n)d log

(s′(n) + d

d

)]
. (B.30)

Recall that pmin = minm pm be the minimum probability that each action set arrives. It is easy to see

P(ct ∈Mt|Dct,ct) = P(ct ∈Mt|Mt 6= ∅) =
∑
m∈Mt

pm ≥ pmin. We bound s′(n) by s(n) as follows

E[s′(n)] = E
[ n∑
t=1

I
(
Dct,ct , ct /∈Mt

)]
=

n∑
t=1

P(Dct,ct)P(ct /∈Mt|Dct,ct)

≤ 1

pmin

n∑
t=1

P(Dct,ct)P(ct ∈Mt|Dct,ct)

=
1

pmin
E
[ n∑
t=1

I
(
Dct,ct , ct ∈Mt

)]
=

1

pmin
E[s(n)]. (B.31)

Putting (B.29)-(B.31) together, The regret in the wasted exploration can be upper bounded by

Rwe ≤ (2− 1

n
)∆max +

2

pmin

√
2d log

(s(n)/pmin + d

d

)
fn,(pmin/s(n))2s(n)/pmin, (B.32)

where fn,(pmin/s(n))2 is defined in (A.2).

Next, we recall the upper bound (B.20) for the number of pulls in unwasted exploration,

s(n) ≤ |A|max
x

min
{
fn/∆̂min(n), Tx(∆̂(n))

}
≤ |A|fn/∆̂min(n).

From (B.25), we have

∆̂min(n) ≥ 1

1 + δn
∆min ≥

∆2
min

∆min + 16βn
,

where βn = 1/ log(log(n)). Overall, we see s(n) ≤ O(log(n)). Plugging this into (B.32), we reach

lim sup
n→∞

Rwe

log(n)
= 0.

This ends the proof. �
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B.6 Proof of Lemma A.1

First, we start by the following claim:

Claim B.4. Assume Hn is a sequence of d×d positive definite matrices such that Hn → H and H is positive

semidefinite. Then, HH−1
n H → H as n→∞.

Proof. Without loss of generality, we can assume that H is given in the block matrix form

H =

(
A 0

0 0

)
where A is a nonsingular m ×m matrix with m > 0. (If m = 0, H is the all zero matrix and the claim

trivially holds.) Consider the same block partitioning of Hn:

Hn =

(
An Bn
B>n Dn

)
,

where An is thus also an m×m matrix. Clearly, A = limn→∞An and An is nonsingular (or Hn would be

singular), while Bn → B and Dn → D where all entries in B and D are zero. Then, as is well known,

H−1
n =

(
A−1
n +A−1

n BnS
−1
n B>n A

−1
n −A−1

n BnS
−1
n

−S−1
n B>n A

−1
n S−1

n

)
.

where Sn = Dn −B>n A−1
n Bn is the Schur-complement of block Dn of matrix Hn. Note that

HH−1
n H =

(
A(A−1

n +A−1
n BnS

−1
n B>n A

−1
n )A 0

0 0

)
.

Since the matrix inverse is continuous if the limit is nonsingular, A−1
n → A−1. Clearly, it suffices to show

that A−1
n +A−1

n BnS
−1
n B>n A

−1
n → A−1. Hence, it remains to check that A−1

n BnS
−1
n B>n A

−1
n → 0. This follows

because Bn → B and Dn → D and Sn → D −B>A−1B = 0 where D = 0 and B = 0.

Proof of Lemma A.1. Let L = lim supn→∞ log(n)‖s‖2
G−1
n

. We need to prove that L ≤ 1/c. Without loss

of generality, assume that L > 0 (otherwise there is nothing to be proven) and that for some H positive

semidefinite matrix, ζ ∈ R and κ ∈ R ∪ {∞}, (i) log(n)‖s‖2
G−1
n
→ L; (ii) Hn = G−1

n /||G−1
n || → H; (iii)

λmin(Gn)/ log(n) → ζ > 0 and (iv) ρn(H)
log(n)‖s‖2

G
−1
n

→ κ ≥ c. We claim that ‖s‖H > 0, hence ρn(H) is

well-defined and in particular ρn(H)→ 1 as n→∞. If this was true, then the proof was ready since

L = lim
n→∞

log(n)‖s‖2
G−1
n

ρn(H)
=

1

limn→∞
ρn(H)

log(n)‖s‖2
G
−1
n

= 1/κ ≤ 1/c .

Hence, it remains to show the said claim. We start by showing that ‖s‖H > 0. For this note that

||G−1
n || = 1/λmin(Gn) and hence

‖s‖2
G
−1
n

||G−1
n ||

=
λmin(Gn)

log(n)
‖s‖2

G−1
n

log(n) .

Taking the limit of both sides, we get ‖s‖2H → ζL > 0. Now,

ρn(H) =
‖s‖2

G−1
n
‖s‖2HGnH
‖s‖4H

=
‖s‖2Hn‖s‖

2
HH−1

n H

‖s‖4H
n→∞→ ‖s‖2H‖s‖2H

‖s‖4H
= 1 ,

where we used Claim B.4.
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B.7 Proof of Theorem 3.9

Suppose that {x∗m : m ∈ [M ]} spans Rd. Recall that LinUCB chooses

Xt = argmax
x∈Act

〈x, θ̂t−1〉+ ||x||G−1
t−1
β

1/2
t ,

where βt = O(d log(t)) is chosen so that

P
(
||θ̂t − θ||Gt ≥ βt

)
≤ 1/t3 ,

which is known to be possible (Lattimore and Szepesvári, 2019, §20). Define Ft to be the event that

||θ̂t − θ||Gt ≥ βt. Then the instantaneous pseudo-regret of LinUCB is bounded by

∆t ≤ 1Ft + 〈x∗t −Xt, θ〉 ≤ 1Ft + 2β
1/2
t ||Xt||G−1

t
≤ 1Ft + 2

√
βt||G−1

t || ,

where the matrix norm is the operator name (in this case, maximum eigenvalue). Let τ = 1+max{t : Ft holds},
which satisfies E[τ ] = O(1). The cumulative regret after τ is bounded almost surely by

n∑
t=τ

〈x∗t −Xt, θ〉 = O
(√
n log(n)

)
,

where the Big-Oh hides constants that only depend on the dimension. Hence all optimal arms are played

linearly often after τ , which by the assumption that {x∗m : m ∈ [M ]} spans Rd implies that ||G−1
t || = O(1/t).

Hence the instantaneous regret for times t ≥ τ satisfies

∆t = O

(√
βt
t

)
.

Since ∆t ∈ {0} ∪ [∆min, 1], it follows that the regret vanishes once ∆t < ∆min. But by the previous argument

and the assumption on βt we have for t ≥ τ that

∆t ≤ 2

√
βt||G−1

t || = O

(√
log(t)

t

)
.

Hence for sufficiently large t (independent of n) the regret vanishes, which completes the proof.

C Supporting Lemmas

Lemma C.1 (Bretagnolle-Huber Inequality). Let P and P̃ be two probability measures on the same

measurable space (Ω,F). Then for any event D ∈ F ,

P(D) + P̃(Dc) ≥ 1

2
exp

(
−KL(P, P̃)

)
, (C.1)

where Dc is the complement event of D (Dc = Ω \ D) and KL(P, P̃) is the KL-divergence between P and

P̃, which is defined as +∞, if P is not absolutely continuous with respect to P̃, and is
∫

Ω
dP(ω) log dP

dP̃
(ω)

otherwise.

The proof can be found in the book of Tsybakov (2008). When KL(P, P̃) is small, we may expect the

probability measure P is close to the probability measure P̃. Note that P(D) + P(Dc) = 1. If P̃ is close to P,

we may expect P(D) + P̃(Dc) to be large.
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Lemma C.2 (Divergence Decomposition). Let P and P̃ be two probability measures on the sequence

(A1, Y1, . . . , An, Yn) for a fixed bandit policy π interacting with a linear contextual bandit with standard

Gaussian noise and parameters θ and θ̃ respectively. Then the KL divergence of P and P̃ can be computed

exactly and is given by

KL(P, P̃) =
1

2

∑
x∈A

E[Tx(n)] 〈x, θ − θ̃〉2 , (C.2)

where E is the expectation operator induced by P.

This lemma appeared as Lemma 15.1 in the book of Lattimore and Szepesvári (2019), where the reader can

also find the proof.

Lemma C.3. Let {Xt}∞t=1 be a sequence in Rd satisfying ‖Xt‖2 ≤ 1 and Gt =
∑t
s=1XtX

>
t . Suppose that

λmin(Gd) ≥ c for some strictly positive c. For all n > 0, it holds that

n∑
t=d+1

‖Xt‖G−1
t
≤
√

2nd log(
d+ n

d
).

Lemma C.4. Let ε > 0 and denote T (∆̂(n)) ∈ R|A| as the solution of the optimisation problem defined in

Definition 4.1. Then we define

Sε(∆̂(n)) = min
{
εfn, T (∆̂(n))

}
.

Then for all x ∈ A,

‖x‖2
H−1

Sε(∆̂(n))

≤ max
{ ε2

fn
,

∆̂2
x(n)

fn

}
.

This is Lemma 17 in the book of Lattimore and Szepesvári (2017), where the reader can also find the proof.

Lemma C.5. Suppose that Tmx (·) is uniquely defined at ∆. Then it is continuous at ∆.

Proof. Suppose it is not continuous. Then there exists a sequence (∆n)∞n=1 with limn→∞ ||∆n −∆|| = 0 and

for which limn→∞ Tmx (∆n) 6= Tmx (∆) for some m and x ∈ Am. Since ∆n → ∆ it follows that for sufficiently

large n the optimal actions with respect to ∆n are the same as ∆. Hence, for sufficiently large n, by the

definition of the optimisation problem,

Tmx∗m(∆n) =∞ = Tmx∗m(∆) .

Therefore there exists a context m and suboptimal action x 6= x∗m such that limn→∞ Tmx (∆n) 6= Tmx (∆). It is

easy to check that the value of the optimisation problem is continuous. Specifically, that

lim
n→∞

M∑
m=1

∑
x∈Am

Tmx (∆n) =

M∑
m=1

∑
x∈Am

Tmx (∆) .

Hence lim supn→∞ Tmx (∆n) <∞ for x 6= x∗m. Therefore a compactness argument shows there exists a cluster

point S of the allocation (T (∆n))∞n=1 with Sxm 6= T xm(∆) for some m and x 6= x∗m. And yet by the previous

display

M∑
m=1

∑
x∈Am

Smx =

M∑
m=1

∑
x∈Am

Tmx (∆) .

Since the constraints of the optimisation problem are continuous it follows that S also satisfies the constraints

in the optimisation problem and so S 6= T (∆) is another optimal allocation, contradicting uniqueness.

Therefore Tmx (·) is continuous at ∆.
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Figure 4: The left panel is for small size action set and the right panel is for randomly generated θ. The

results are averaged over 100 realisations.

D Additional Experiments

In this section, we consider two more experiment settings in Figure 4.

1. Small size action set. We conduct the experiments with the number of action set equal to 5. Comparing

with large size action set (Section 5.4), we found that OAM still outperforms OSSB but the improvement is

smaller, as one might expect.

2. Randomly generated θ. For each replication, θ is randomly generated from multivariate normal with

variance 10 and we normalise θ such that its `2 norm is 1. OAM still outperforms OSSB for randomly

generated θ. In addition, we compare with the heuristic LinTS (remove all the variance blowup factors and

use a Gaussian prior). We find that the heuristic LinTS enjoys the best performance by a modest margin.

Analysing heuristic LinTS, however, remains a fascinating open problem. As far as we are aware, it is not

known whether or not it even achieves sublinear regret in the worst case.
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