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Abstract

Contextual bandits serve as a fundamental

model for many sequential decision mak-

ing tasks. The most popular theoretically

justified approaches are based on the opti-

mism principle. While these algorithms can

be practical, they are known to be subop-

timal asymptotically. On the other hand,

existing asymptotically optimal algorithms

for this problem do not exploit the linear

structure in an optimal way and suffer from

lower-order terms that dominate the regret

in all practically interesting regimes. We

start to bridge the gap by designing an

algorithm that is asymptotically optimal

and has good finite-time empirical perfor-

mance. At the same time, we make con-

nections to the recent literature on when

exploration-free methods are effective. In-

deed, if the distribution of contexts is well

behaved, then our algorithm acts mostly

greedily and enjoys sub-logarithmic regret.

Furthermore, our approach is adaptive in

the sense that it automatically detects the

nice case. Numerical results demonstrate

significant regret reductions by our method

relative to several baselines.

1 INTRODUCTION

Stochastic contextual linear bandits, the problem

we consider, is interesting due to its rich structure

and also because of its potential applications, e.g.,
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in online recommendation systems (Agarwal et al.,

2009; Li et al., 2010). In this paper we propose a new

algorithm for this problem that is asymptotically op-

timal, computationally efficient and empirically well-

behaved in finite-time regimes. As a consequence of

asymptotic optimality, the algorithm adapts to easy

instances where it achieves sub-logarithmic regret.

Popular approaches for regret minimisation in contex-

tual bandits include ε-greedy (Langford and Zhang,

2007), explicit optimism-based algorithms (Dani

et al., 2008; Rusmevichientong and Tsitsiklis, 2010;

Chu et al., 2011; Abbasi-Yadkori et al., 2011), and

implicit ones, such as Thompson sampling (Agrawal

and Goyal, 2013). Although these algorithms enjoy

near-optimal worst-case guarantees and can be quite

practical, they are known to be arbitrarily suboptimal

in the asymptotic regime, even in the non-contextual

linear bandit (Lattimore and Szepesvári, 2017).

We propose an optimisation-based algorithm that

estimates and tracks the optimal allocation for each

context/action pair. This technique is most well

known for its effectiveness in pure exploration (Chan

and Lai, 2006; Garivier and Kaufmann, 2016; De-

genne et al., 2019, and others). The approach has

been used in regret minimisation in linear bandits

with fixed action sets (Lattimore and Szepesvári,

2017) and structured bandits (Combes et al., 2017).

The last two articles provide algorithms for the non-

contextual case and hence cannot be applied directly

to our setting. More importantly, however, the al-

gorithms are not practical. The first algorithm uses

a complicated three-phase construction that barely

updates its estimates. The second algorithm is not

designed to handle large action spaces and has a

‘lower-order’ term in the regret that depends linearly

on the number of actions and dominates the regret

in all practical regimes. This lower-order term is not

merely a product of the analysis, but also reflected



in the experiments (see Section 5.4 for details).

The most closely related work is by Ok et al. (2018)

who study a reinforcement learning setting. A

stochastic contextual bandit can be viewed as a

Markov decision process where the state represents

the context and the transition is independent of the

action. The structured nature of the mentioned pa-

per means our setting is covered by their algorithm.

Again, however, the algorithm is too general to ex-

ploit the specific structure of the contextual bandit

problem. Their algorithm is asymptotically optimal,

but suffers from lower-order terms that are linear in

the number of actions and dominate the regret in all

practically interesting regimes. In contrast, our al-

gorithm is asymptotically optimal, but also practical

in finite-horizon regimes, as will be demonstrated by

our experiments.

The contextual linear bandit also serves as an inter-

esting example where the asymptotics of the problem

are not indicative of what should be expected in

finite-time (see the second scenario in Section 5.2).

This is in contrast to many other bandit models where

the asymptotic regret is also roughly optimal in finite

time (Lattimore and Szepesvári, 2019). There is an

important lesson here. Designing algorithms that

optimize for the asymptotic regret may make huge

sacrifices in finite-time.

Another interesting phenomenon is related to the

idea of ‘natural exploration’ that occurs in contex-

tual bandits (Bastani et al., 2017; Kannan et al.,

2018). A number of authors have started to investi-

gate the striking performance of greedy algorithms

in contextual bandits. In most bandit settings the

greedy policy does not explore sufficiently and suffers

linear regret. In some contextual bandit problems,

however, the changing features ensure the algorithm

cannot help but explore. Our algorithm and analy-

sis highlights this effect (see Section 3.1 for details).

If the context distribution is sufficiently rich, then

the algorithm is eventually almost completely greedy

and enjoys sub-logarithmic regret. As opposed to

the cited previous works, our algorithm achieves this

under the cited favourable conditions while at the

same time it satisfies the standard optimality guar-

antees when the favourable conditions do not hold.

As another contribution, we prove that algorithms

based on optimism, similarly to the new algorithm,

also enjoy sub-logarithmic regret in the rich-context

distribution setting (Theorem 3.9), and hence dif-

ferences appear in lower order terms only between

these algorithms.

The rest of the paper is organized as follows. We

first introduce the problem setting (Section 2), which

we follow by presenting our asymptotic lower bound

(Section 3). Section 4 introduces our new algorithm,

which is claimed to match the lower bound. A proof

sketch of this claim is presented in the same section.

Section 5 presents experiments to illuminate the be-

haviour of the new algorithm in comparison to its

strongest competitors. Section 6 discusses remaining

notable open questions.

Notation Let [n] = {1, 2, . . . , n}. For a vector x

and positive semidefinite matrix A we let ‖x‖A =√
x>Ax. The cardinality of a set A is denoted by

|A|.

2 PROBLEM SETTING

We consider the stochastic K-armed contextual lin-

ear bandit with a horizon of n rounds and M possible

contexts. The assumption that the contexts are dis-

crete cannot be dropped but as we shall at least M

will not play an important role in the regret bounds.

This assumption would hold for example in a rec-

ommender system if users are clustered into finitely

many groups. For each context m ∈ [M ] there is a

known feature/action set Am ⊂ Rd with |Am| = K.

The interaction protocol is as follows. First the envi-

ronment samples a sequence of independent contexts

(ct)
n
t=1 from an unknown distribution p over [M ]

and each context is assumed to appear with positive

probability. At the start of round t the context ct
is revealed to the learner, who may use their obser-

vations to choose an action Xt ∈ At = Act . The

reward is

Yt = 〈Xt, θ〉+ ηt ,

where (ηt)
n
t=1 is a sequence of independent standard

Gaussian random variables and θ ∈ Rd is an unknown

parameter. The Gaussian assumption can be relaxed

to conditional sub-Gaussian assumption for the regret

upper bound, but is necessary for the regret lower

bound. Throughout, we consider a frequentist setting

in the sense that θ is fixed. For simplicity, we assume

each Am spans Rd and ‖x‖2 ≤ 1 for all x ∈ ∪mAm.

The performance metric is the cumulative expected
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regret, which measures the difference between the

expected cumulative reward collected by the omni-

scient policy that knows θ and the learner’s expected

cumulative reward. The optimal arm associated with

context m is x∗m = argmaxx∈Am〈x, θ〉. Then the ex-

pected cumulative regret of a policy π when facing

the bandit determined by θ is

Rπθ (n) = E

[
n∑
t=1

〈x∗ct , θ〉 −
n∑
t=1

Yt

]
.

Note that this cumulative regret also depends on

the context distribution p and action sets. They

are omitted from the notation to reduce clutter and

because there will never be ambiguity.

3 ASYMPTOTIC LOWER BOUND

We investigate the fundamental limit of linear con-

textual bandit by deriving its instance-dependent

asymptotic lower bound. First, we define the class

of policies that are taken into consideration.

Definition 3.1 (Consistent Policy). A policy π is

called consistent if the regret is subpolynomial for

any bandit in that class and all context distributions:

Rπθ (n) = o(nε), for all ε > 0 and all θ ∈ Rd. (3.1)

The next lemma is the key ingredient in prov-

ing the asymptotic lower bound. Given a con-

text m and x ∈ Am let ∆m
x = 〈x∗m − x, θ〉 be

the suboptimality gap. Furthermore, let ∆min =

minm∈[M ] minx∈Am,∆m
x >0 ∆m

x .

Lemma 3.2. Assume that p(m) > 0 for all m ∈ [M ]

and that x∗m is uniquely defined for each context m

and let π be consistent. Then for sufficiently large n

the expected covariance matrix

Ḡn = E

[
n∑
t=1

XtX
>
t

]
, (3.2)

is invertible. Furthermore, for any context m and

any arm x ∈ Am,

lim sup
n→∞

log(n)
∥∥x− x∗m∥∥2

Ḡ−1
n
≤ (∆m

x )2

2
. (3.3)

The proof is deferred to Appendix A.1 in the sup-

plementary material. Intuitively, the lemma shows

that any consistent policy must collect sufficient sta-

tistical evidence at confidence level 1 − 1/n that

suboptimal arms really are suboptimal. This corre-

sponds to ensuring that the width of an appropriate

confidence interval
√

2 log(n)‖x−x∗m‖Ḡ−1
n

is approx-

imately smaller than the sub-optimality gap ∆m
x .

Theorem 3.3 (Asymptotic Lower Bound). Under

the same conditions as Lemma 3.2,

lim inf
n→∞

Rπθ (n)

log(n)
≥ C(θ,A1, . . . ,AM ) , (3.4)

where C(θ,A1, . . . ,AM ) is defined as the optimal

value of the following optimisation problem:

inf
αx,m∈[0,∞]

M∑
m=1

∑
x∈Am

αx,m∆m
x (3.5)

subject to the constraint that for any context m and

suboptimal arm x ∈ Am,

x>

(
M∑
m=1

∑
x∈Am

αx,mxx
>

)−1

x ≤ (∆m
x )2

2
. (3.6)

Given the result in Lemma 3.2, the proof of Theo-

rem 3.3 follows exactly the same idea of the proof

of Corollary 2 in Lattimore and Szepesvári (2017)

and thus is omitted here. Later on we will prove a

matching upper bound in Theorem 4.3 and argue

that our asymtotical lower bound is sharp.

Remark 3.4. In the above we adopt the convention

that ∞ × 0 = 0 so that αx,m∆m
x = 0 whenever

∆m
x = 0. The inverse of a matrix with infinite entries

is defined by passing to the limit in the obvious way,

and is not technically an inverse.

Remark 3.5. Let us denote {α∗x,m}x∈Am,m∈[M ] as

an optimal solution to the above optimisation prob-

lem. It serves as the optimal allocation rule for each

arm such that the cumulative regret is minimized

subject to the width of the confidence interval of each

sub-optimal arm is small. Specifically, α∗x,m log(n)

can be interpreted as the approximate optimal num-

ber of times arm x should be played having observed

context m.

Remark 3.6. Our lower bound may also be derived

from a more general bound of Ok et al. (2018), since a

stochastic contextual bandit can be viewed as a kind

of Markov decision process. We use an alternative

proof technique and the two lower bound statements

have different forms. The proof is included for com-

pleteness.
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Example 3.7. When M = 1 and A1 = {e1, . . . , ed}
is the standard basis vectors, the problem reduces

to classical multi-armed bandit and C(θ,A1) =∑
x∈A1,∆x>0 2/∆x, which matches the well-known

asymptotic lower bound by Lai and Robbins (1985).

The constant C(θ,A1, . . . ,AM ) depends on both

the unknown parameter θ and the action sets

A1, . . . ,AM , but not the context distribution p. In

this sense there is a certain discontinuity in the hard-

ness measure C as a function of the context dis-

tribution. More precisely, problems where p(m) is

arbitrarily close to zero may have different regret

asymptotically than the problem obtained by remov-

ing context m entirely. Clearly as p(m) tends to zero

the mth context is observed with vanishingly small

probability in finite time and hence the asymptoti-

cally optimal regret may not be representative of the

finite-time hardness.

3.1 Sub-logarithmic regret

Our matching upper and lower bounds reveal the

interesting phenomenon that if the action sets satisfy

certain conditions, then sub-logarithmic regret is

possible. Consider the scenario that the set of optimal

arms {x∗1, . . . , x∗M} spans Rd 1. Let Λ ∈ R be a large

constant to be defined subsequently and for each

context m and arm x ∈ Am, let αx,m be 0 if x 6= x∗m,

and be Λ if else. Then,

M∑
m=1

∑
x∈Am

αx,mxx
> = Λ

M∑
m=1

x∗mx
∗>
m . (3.7)

Since the set of optimal arms spans Rd it holds that

for any context m and arm x ∈ Am,

x>

(
M∑
m=1

x∗mx
∗>
m

)−1

x <∞ . (3.8)

Combining Eq. (3.7) and Eq. (3.8),

x>
( M∑
m=1

∑
x∈Am

αx,mxx
>)−1

x = Λ−1x>
( M∑
m=1

x∗mx
∗>
m

)−1
x .

Hence, the constraint in Eq. (3.6) is satisfied for suf-

ficiently large Λ. Since with this choice of (αx,m)

1This condition is both sufficient and necessary. More
precisely, sub-logarithmic regret is possible if and only if
the optimal arms span the space that is spanned by all
the available actions.

we have
∑M
m=1

∑
x∈Am αx,m∆m

x = 0, it follows that

C(θ,A1, . . . ,AM ) = 0. Therefore our upper bound

will show that when the set of optimal actions

{x∗1, . . . , x∗M} spans Rd our new algorithm satisfies

lim inf
n→∞

Rπθ (n)

log(n)
= 0 .

Remark 3.8. The choice of αx,m above shows that

when {x∗1, . . . , x∗M} span Rd, then an asymptotically

optimal algorithm only needs to play suboptimal

arms sub-logarithmically often, which means the al-

gorithm is eventually very close to the greedy algo-

rithm. Bastani et al. (2017); Kannan et al. (2018)

also investigate the striking performance of greedy

algorithms in contextual bandits. However, Bastani

et al. (2017) assume the covariate diversity on the

context distribution while Kannan et al. (2018) as-

sume the context is artificially perturbed with noise

– these assumptions make these works brittle. In

addition, Bastani et al. (2017) only provide a rate-

optimal algorithm while our algorithm is optimal in

constants (see Theorem 4.3 for details).

As claimed in the introduction, we also prove that

algorithms based on optimism can enjoy bounded

regret when the set of optimal actions spans the space

of all actions. The proof of the following theorem is

given in Appendix B.7.

Theorem 3.9. Consider the policy π that plays

optimistically by

Xt = argmax
x∈Act

〈θ̂t−1, x〉+ ‖x‖G−1
t
β

1/2
t .

Suppose that θ is such that {x∗1, . . . , x∗M} spans Rd.
Then, for suitable (βt)

n
t=1 with βt = O(d log(t)), it

holds that lim supn→∞Rπθ (n) <∞.

Note, the choice of (βt) for which the above theorem

holds also guarantees the standard Õ(d
√
n) minimax

bound for this algorithm, showing that LinUCB can

adapt online to this nice case.

4 OPTIMAL ALLOCATION

MATCHING

The instance-dependent asymptotic lower bound pro-

vides an optimal allocation rule. However, the opti-

mal allocation {α∗x,m}x,m depends on the unknown

sub-optimality gap. In this section, we present a
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novel matching algorithm that simultaneously esti-

mates the unknown parameter θ using least squares

and updates the allocation rule.

4.1 Algorithm

Let Nx(t) =
∑t
s=1 I(Xs = x) be the number of

pulls of arm x after round t and Gt =
∑t
s=1XsX

>
s .

The least squares estimator is θ̂t = G−1
t

∑t
x=1XsYs.

For each context m the estimated sub-optimality

gap of arm x ∈ Am is ∆̂m
x (t) = maxy∈Am〈y −

x, θ̂t〉 and the estimated optimal arm is x̂∗m(t) =

argmaxx∈Am〈x, θ̂t〉. The minimum nonzero esti-

mated gap is

∆̂min(t) = min
m∈[M ]

min
x∈Am,∆̂m

x (t)>0
∆̂m
x (t) .

Next, we define a similar optimisation problem as in

(3.5) but with a different normalisation.

Definition 4.1. Let fn,δ be the constant given by

fn,δ = 2(1 + 1/ log(n)) log(1/δ) + cd log(d log(n)) ,

(4.1)

where c is an absolute constant. We write fn =

fn,1/n. For any ∆̃ ∈ [0,∞)|∪mA
m| define T (∆̃) as a

solution of the following optimisation problem:

min
(Tmx )x,m∈[0,∞]

M∑
m=1

∑
x∈Am

Tmx ∆̃m
x , (4.2)

subject to

‖x‖2
H−1
T

≤ ∆2
x

fn
,∀x ∈ Am,m ∈ [M ].

and that HT =
∑M
m=1

∑
x∈Am T

m
x xx

> is invertible.

If ∆̃ is an estimate of ∆, we call the solution T (∆̃)

an approximated allocation rule in contrast to the

optimal allocation rule defined in Remark 3.5. Our

algorithm alternates between exploration and ex-

ploitation, depending on whether or not all the arms

have satisfied the approximated allocation rule. We

are now ready to describe the algorithm, which starts

with a brief initialisation phase.

Initialisation In the first d rounds the algorithm

chooses any action Xt in the action set such that Xt

is not in the span of {X1, . . . , Xt−1}. This is always

possible by the assumption that Am spans Rd for all

contexts m. At the end of the initialisation phase Gt
is guaranteed to be invertible.

Main phase In each round after the initialisation

phase the algorithm checks if the following criterion

holds for any x ∈ Act :

‖x‖2
G−1
t−1

≤ max
{ (∆̂min(t− 1))2

fn
,

(∆̂ct
x (t− 1))2

fn

}
.

(4.3)

The algorithm exploits if Eq. (4.3) holds and explores

otherwise, as explained below.

Exploitation. The algorithm exploits by taking

the greedy action:

Xt = argmax
x∈Act

x>θ̂t−1. (4.4)

Exploration. The algorithm explores when

Eq. (4.3) does not hold. This means that some

actions have not been explored sufficiently. There

are two cases to consider. First, when there exists

an arm x′ ∈ Act such that

Nx′(t− 1) < min(T ctx′ (∆̂(t− 1)), fn/∆̂
2
min(t− 1)),

the algorithm then computes two actions

b1 = argmin
x∈Act

Nx(t− 1)

min(T ctx (∆̂(t− 1)), fn/∆̂2
min(t− 1))

b2 = argmin
x∈Act

Nx(t− 1). (4.5)

Let s(t) be the number of exploration rounds defined

in Algorithm 1. If Nb2(t− 1) ≤ εts(t) the algorithm

plays arm Xt = b2 – a form of forced exploration.

Otherwise the algorithm plays arm Xt = b1. Finally,

rounds where an x′ ∈ Act with the required property

does not exist are called wasted. In these rounds the

algorithm acts optimistically as LinUCB (Abbasi-

Yadkori et al., 2011):

Xt = argmax
x∈Act

x>θ̂t−1 +
√
fn,1/(s(t))2‖x‖G−1

t−1
, (4.6)

where fn,1/(s(t))2 is defined in Eq. (4.1). The com-

plete algorithm is presented in Algorithm 1.

Remark 4.2. The naive forced exploration can be

improved by calculating a barycentric spanner (Awer-

buch and Kleinberg, 2008) for each action set and

then playing the least played action in the spanner.

In normal practical setups this makes very little dif-

ference, where the forced exploration plays a limited

role. For finite-time worst-case analysis, however,

it may be crucial, since otherwise the regret may

depend linearly on the number of actions, while us-

ing the spanner guarantees the forced exploration is

sample efficient.
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4.2 Asymptotic Upper Bound

Our main theorem states that Algorithm 1 is asymp-

totically optimal under mild assumptions.

Theorem 4.3. Suppose that Tmx (∆) is uniquely de-

fined and Tmx (·) is continuous at ∆ for all contexts m

and actions x ∈ Am. Then the policy πoam proposed

in Algorithm 1 with εt = 1/ log(log(t)) satisfies

lim sup
n→∞

Rπoam

θ (n)

log(n)
≤ C(θ,A1, . . . ,AM ). (4.7)

Together with the asymptotic lower bound in Theo-

rem 3.3, we can argue that optimal-allocation match-

ing algorithm is asymptotical optimal and the lower

bound in Eq. (3.4) is sharp.

Remark 4.4. The assumption that Tmx (·) is con-

tinuous at ∆ is used to ensure the stability of our

algorithm. We prove that the uniqueness assumption

actually implies continuity (Lemma C.5 in the supple-

mentary material) and thus the continuity assump-

tion could be omitted. There are, however, certain

corner cases where uniqueness does not hold. For ex-

ample when θ = (1, 0)>,A = {(1, 0), (0, 1), (0,−1)}.

4.3 Proof Sketch

The complete proof is deferred to Appendix A.2 in

the supplementary material. At a high level the anal-

ysis of the optimisation-based approach consists of

three parts. (1) Showing that the algorithm’s esti-

mate of the true parameter is close to the truth in

finite time. (2) Showing that the algorithm subse-

quently samples arms approximately according to the

unknown optimal allocation and (3) Showing that

the greedy action when arms have been sampled suffi-

ciently according to the optimal allocation is optimal

with high probability. Existing optimisation-based

algorithms suffer from dominant ‘lower-order’ terms

because they use simple empirical means for Part

(1), while here we use the data-efficient least-squares

estimator.

We let Explore = F-Explore ∪ UW-Explore ∪
W-Explore be the set of exploration rounds, de-

composed into disjoint sets of forced exploration

(Xt = b1), unwasted exploration (Xt = b2) and

wasted exploration (LinUCB), and let Exploit be the

set of exploitation rounds.

Algorithm 1 Optimal Allocation Matching

Input: exploration parameter εt, exploration

counter s(d) = 0.

for t = 1 to d do
Observe an action set Act , pull arm Xt such that

Xt is not in the span of {X1, . . . , Xt−1}.
end

for t = d+ 1 to n do
Observe an action set Act and solve the optimi-

sation problem (4.2) based on the estimated gap

∆̂(t− 1).

if ‖x‖2
G−1
t−1

≤ max{ ∆̂2
min(t−1)
fn

,
(∆̂ct

x (t−1))2

fn
},∀x ∈

Act , then

Pull arm Xt = argmaxx∈Act x
>θ̂t−1.

else
s(t) = s(t− 1) + 1

if Nx(t−1) ≥ min(Tx(∆̂(t−1)), fn/(∆̂min(t−
1)))2,∀x ∈ Act , then

Pull arm according to LinUCB in (4.6).

else
Calculate b1, b2 as in Eq. (4.5).

if Nb2(t− 1) ≤ εts(t− 1) then
Pull arm Xt = b2.

else
Pull arm Xt = b1.

end

end

end

Update θ̂t, ∆̂
ct
x (t), ∆̂min(t).

end

Regret while exploiting The criterion in

Eq. (4.3) guarantees that the greedy action is optimal

with high probability in exploitation rounds. To see

this, note that if t is an exploitation round, then the

sub-optimality gap of greedy action Xt satisfies the

following with high probability:

∆ct
Xt
.

√
log(log(n))

1 ∨NXt(t− 1)
< ∆min .

Since the instantaneous regret either vanishes or is

larger than ∆min, we have

E
[ ∑
t∈Exploit

∆ct
t

]
= o(log(n)).

Regret while exploring Based on the design of

our algorithm, the regret while exploring is decom-
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posed into three terms,

E
[ ∑
t∈Explore

∆ct
Xt

]
= E

[ ∑
t∈F-Explore

∆ct
Xt

]
+ E

[ ∑
t∈W-Explore

∆ct
Xt

]
+ E

[ ∑
t∈UW-Explore

∆ct
Xt

]
.

Shortly we argue that the regret incurred in

W-Explore∪UW-Explore is at most logarithmic and

hence the regret in rounds associated with forced

exploration is sub-logarithmic:

E
[ ∑
t∈F-Explore

∆ct
Xt

]
= O(εn|Explore|) = o(log(n)) .

The regret in W-Explore is also sub-logarithmic.

To see this, we first argue that |W-Explore| =

O(|UW-Explore|) since each context has posi-

tive probability. Combining with the fact that

|UW-Explore| is logarithmic in n and the regret of

LinUCB is square root in time horizon,

E
[ ∑
t∈W-Explore

∆ct
t

]
= o(log(n)) .

The regret in UW-Explore is logarithmic in n with the

asymptotically optimal constant using the definition

of the optimal allocation:

lim sup
n→∞

E
[∑

t∈UW-Explore ∆ct
t

]
log(n)

= C(θ,A1, . . . ,AM ) .

Of course many details have been hidden here, which

are covered in detail in the supplementary material.

5 EXPERIMENTS

In this section, we first compare our proposed algo-

rithm and LinUCB (Abbasi-Yadkori et al., 2011)

on some specific problem instances to showcase

their strengths and weaknesses. We examine OSSB

(Combes et al., 2017) on instances with large action

sets to illustrate its weakness due to not using the lin-

ear structure everywhere. Since Combes et al. (2017)

demonstrated that OSSB dominates the algorithm of

Lattimore and Szepesvári (2017), we omit this algo-

rithm from our experiments. In the end, we include

the comparison with LinTS (Agrawal and Goyal,

2013). Some additional experiments are deferred to

Appendix D in the supplementary material.

To save computation, we follow the lazy-update ap-

proach, similar to that proposed in Section 5.1 of

(Abbasi-Yadkori et al., 2011): The idea is to resolve

the optimisation problem (4.2) whenever det(Gt) in-

creases by a constant factor (1+ζ) and in all scenarios

we choose (the arbitrary value) ζ = 0.1. All codes

were written in Python. To solve the convex opti-

misation problem (4.2), we use the CVXPY library

(Diamond and Boyd, 2016).

5.1 Fixed Action Set

Finite-armed linear bandits with fixed action set are

a special case of linear contextual bandits. Let d = 2

and let the true parameter be θ = (1, 0)>. The ac-

tion set A = {x1, x2, x3} is fixed and x1 = (1, 0)>,

x2 = (0, 1)>, x3 = (1 − u, 5u)>. We consider

u = {0.1, 0.2}. By construction, x1 is the optimal

arm. From Figure 1, we observe that LinUCB suffers

significantly more regret than our algorithm. The

reason is that if u is very small, then x1 and x3 point

in almost the same direction and so choosing only

these arms does not provide sufficient information to

quickly learn which of x1 or x3 is optimal. On the

other hand, x2 and x1 point in very different direc-

tions and so choosing x2 allows a learning agent to

quickly identify that x1 is in fact optimal. LinUCB

stops pulling x2 once it is optimistic and thus fails

to find the right balance between information and

reward. Our algorithm, however, takes this into con-

sideration by tracking the optimal allocation ratios.

Figure 1: Fixed action set. The results are averaged

over 100 realisations. Here and also later, the shaded

areas show the standard errors.

5.2 Changing Action Set

We consider a simple but representative case when

there are only two action sets A1 and A2 available.

Scenario One. In each round, A1 is drawn with

probability 0.3 while A2 is drawn with probability

0.7. Set A1 contains x1
1 = (1, 0, 0)>, x1

2 = (0, 1, 0)>,

and x1
3 = (0.9, 0.5, 0)>, while set A2 contains x2

1 =

(0, 1, 0)>, x2
2 = (0, 0, 1)>, and x2

3 = (0, 0.5, 0.9)>.

The true parameter θ is (1, 0, 1)>. From the left
7



Figure 2: Changing action sets. The left panel is for

scenario one and the right panel is for scenario two.

The results are averaged over 100 realisations.

panel of Figure 2, we observe that LinUCB, while

starts better, eventually again suffers more regret

than our algorithm.

Scenario Two. In each round, A1 is drawn with

probability 0.99, while A2 is drawn with probability

0.01. Set A1 contains three actions: x1
1 = (1, 0)>,

x1
2 = (0, 1)>, x1

3 = (0.9, 0.5)>, while set A2 contains

three actions: x2
1 = (0, 1)>, x2

2 = (−1, 0)>, x2
3 =

(−1, 0). Apparently, x1
1 and x2

1 are the optimal arms

for each action set and they span R2. Based on

the allocation rule in Section 3.1, the algorithm is

advised to pull actions x1
1 and x2

1 very often based

on asymptotics. However, since the probability that

A2 is drawn is extremely small, we are very likely to

fall back to wasted exploration and use LinUCB to

explore. Thus, in the short term, our algorithm will

suffer from the drawback that optimistic algorithms

also suffer from and what is described in Section 5.1.

Although, the asymptotics will eventually “kick in”,

it may take extremely long time to see the benefits

of this and the algorithm’s finite-time performance

will be poor. Indeed, this is seen on the right panel

of Figure 2, which shows that in this case LinUCB

and our algorithm are nearly indistinguishable.

5.3 Sublinear/Bounded Regret

Earlier we have argued that when the optimal arms

of all action sets span Rd, our algorithm achieves sub-

logarithmic regret. Here, we experimentally study

this interesting case. We consider M = 2. In each

round, A1 is drawn with probability 0.8 while A2 is

drawn with probability 0.2 and the true parameter θ

is (1, 0)>.Set A1 contains three actions: x1
1 = (1, 0)>,

x1
2 = (0, 1)>, x1

3 = (0.9, 0.5)>, while set A2 con-

tains three actions: x2
1 = (0, 1)>, x2

2 = (−1, 0)>,

x2
3 = (−1, 0). As discussed before, x1

1 and x2
1 are

the optimal arms for each action set and they span

R2. The results are shown in the left subpanel of

Figure 3: The left panel is for bounded regret and

right panel is for large action space. The results are

averaged over 100 realisations.

Figure 3. The regret of our algorithm appears to

have stopped growing after a short period of increase.

In line with Theorem 3.9, LinUCB is seen to achieve

bounded regret in this problem.

5.4 Large, Fixed Action Set

We let d = 2 and θ = (1, 0)>. We generate 100 uni-

formly distributed on the d-dimensional unit sphere

(fixed action set). The results are shown in the right

subfigure of Figure 3. When the action space is

large, OSSB suffers significantly large regret and be-

comes unstable due to not using the linear structure

everywhere. The regret of (the theoretically justi-

fied version of) LinTS is also very large due to the

unnecessary variance factor required by its theory.

6 DISCUSSION

We presented a new optimisation-based algorithm

for linear contextual bandits that is asymptotically

optimal and adapts to both the action sets and un-

known parameter. The new algorithm enjoys sub-

logarithmic regret when the collection of optimal

actions spans Rd, a property that we also prove for

optimism-based approaches. There are many open

questions. A natural starting point is to prove near-

minimax optimality of the new algorithm, possibly

with minor modifications. Our work also highlights

the dangers of focusing too intensely on asymptotics,

which for contextual bandits hide completely the de-

pendence on the context distribution. This motivates

the intriguing challenge to understand the finite-time

instance-dependent regret. Another open direction is

to consider the asymptotics when the context space

is continuous, which has not seen any attention.
8
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Csaba Szepesvári gratefully acknowledges funding

from the Canada CIFAR AI Chairs Program, Amii

and NSERC.

References

Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C.
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