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Abstract

Clustering problems are fundamental to un-
supervised learning. There is an increased
emphasis on fairness in machine learning and
AI; one representative notion of fairness is
that no single demographic group should be
over-represented among the cluster-centers.
This, and much more general clustering prob-
lems, can be formulated with “knapsack”
and “partition” constraints. We develop new
randomized algorithms targeting such prob-
lems, and study two in particular: multi-
knapsack median and multi-knapsack cen-
ter. Our rounding algorithms give new ap-
proximation and pseudo-approximation algo-
rithms for these problems. One key techni-
cal tool we develop and use, which may be
of independent interest, is a new tail bound
analogous to Feige (2006) for sums of random
variables with unbounded variances. Such
bounds are very useful in inferring properties
of large networks using few samples.

1 Introduction

Clustering is a classical technique in unsupervised
learning, and our goal is to systematically study clus-
tering with knapsack constraints, particularly in light
of fairness. To explain the random processes we study
in this paper, let us consider a data-clustering prob-
lem, with a set F of potential cluster-centers, a data-
set C, a symmetric distance-metric d on F ∪ C, and
a non-negative m × |F| budget matrix M that cor-
responds to m normalized cost functions on F . Our
goal is to choose a set S ⊆ F of cluster-centers so
that

∑
i∈SMk,i ≤ 1 for all k and such that the dis-
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tances d(j,S), for j ∈ C, are “small”. (The normal-
ization with all ones in the right-hand side is without
loss of generality.) The particular metric used to boil
down the values d(j,S) into an objective function is
problem-specific. The constraints implied by the rows
of the budget matrix M are referred to as knapsack
constraints; the case m > 1 is often referred to as
multi-knapsack. We typically view m as “small”, e.g.,
as a constant.

We develop two key probabilistic techniques for our
algorithms, both of which are quite general and may
be of independent interest: (i) a new “Samuels-Feige”
type of concentration inequality, which applies to un-
bounded random variables; and (ii) a new depen-
dent randomized-rounding approach, which is called
Knapsack-Partition Rounding (KPR) algorithm.

As a representative example, which is one of the main
motivations behind this work, consider the following
scenario. The sets F and C represent a population,
with F possibly equaling C (or not); we want to par-
tition C into a small number of clusters, with each
cluster having some element of F as its cluster cen-
ter or representative. The clusters need to have small
radii, as in classical clustering. In addition, there is a
collection of m given demographic groups A1, . . . , Am,
which are viewed as subsets of F . We do not wish to
disproportionately select our centers S from any de-
mographic group. Thus, for each k = 1, . . . ,m, we
have a constraint |S ∩Ak| ≤ tk where tk is some target
which is not much larger than the “fair” proportion of
Ak compared to the general population. These can be
represented as knapsack constraints; due to the nor-
malization we use, the weight functions are given by
Mk,i = 1/tk if i ∈ Ak and Mk,i = 0 otherwise.

In clustering problems as ours, a common solution
strategy is to first solve a related linear program (LP)
depending on the chosen objective function, leading
to a fractional configuration y ∈ [0, 1]F over F . Here,
the LP suggests the fractional extent yi for i ∈ F to be
chosen as a center. Based on this solution y, we then
partition F into groups so as to select exactly one cen-
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ter in each group. Finally, we use some randomized-
rounding algorithm to convert the fractional solution
y into an integral solution Y ∈ {0, 1}F (representing
the chosen solution S), while ensuring that the knap-
sack constraints are satisfied and each group gets ex-
actly one selected center. The vector Y should also
have other probabilistic properties similar to the vec-
tor y, for example satisfying E[Y ] = y coordinatewise.
This rounding process often goes by the name “depen-
dent rounding,” since the entries of Y will not nec-
essarily be independent; see, e.g., [Byrka et al., 2015,
Byrka et al., 2010, Charikar and Li, 2012].

This paper focuses on the randomized-rounding part
of this solution strategy. We develop a general round-
ing method for a fractional vector y in the presence of
knapsack constraints plus a single partition constraint.
Suppose we have a partition G1, . . . , Gr of a ground set
{1, . . . , n}; we refer to the sets Gi as blocks of the parti-
tion. Our original fractional vector y satisfies My ≤ ~1
and

∑
j∈Gi yj = 1 for each block Gi; we wish to find an

integral vector Y which also satisfies these constraints.
For the clustering problems, the block Gj is the set of
potential cluster-centers “close to” item j ∈ C.

These clustering problems pose a challenge for depen-
dent rounding because they are fundamentally non-
linear : the distance from any point j to its closest
center depends on the joint behavior of the selected
centers. If none of the centers in a group are selected,
then any nearby elements j ∈ C may get large val-
ues d(j,S). Consequently, our rounding process must
ensure strong near-independence properties.

Partition systems have an obvious rounding method
which we refer to as independent selection: namely,
exactly one item is chosen from each block Gi wherein
j is chosen with probability yj . This completely ig-
nores the knapsack constraints. Our rounding strat-
egy seeks to mimic the probabilistic guarantees of in-
dependent selection, while also preserving the knap-
sack constraints. Unfortunately, it is impossible to ex-
actly satisfy these goals simultaneously. Nevertheless,
we achieve significantly stronger guarantees in both of
these dimensions compared to previous rounding algo-
rithms. We summarize these next, and then discuss
our new clustering results.

1.1 Additive pseudo-approximation

Knapsack constraints can be intractable to sat-
isfy exactly, so one common strategy is pseudo-
approximation, that is, finding a solution which only
approximately satisfies the knapsack constraints. This
should be distinguished from a true approximation
algorithm, which finds a feasible solution whose ob-
jective function is within some constant factor of

the optimal one. Many previous algorithms (e.g.,
[Byrka et al., 2015]) have focused on what we refer
to as ε-multiplicative pseudo-solutions: namely that∑
i∈SMk,i ≤ 1 + ε for each k. One way in which

our rounding algorithm deals with the tradeoffs be-
tween independence and knapsack constraints is that,
instead of getting a solution vector Y which is fully in-
tegral, that is, Y ∈ {0, 1}n, it only achieves a vector Ỹ
which is “mostly” integral, that is, Ỹ ∈ [0, 1]n has only
a limited number q of fractional entries. Crucially, the
value q is constant (for a desired approximation ratio).

This naturally leads to an alternative form of knap-
sack pseudo-approximation that we refer to as an
additive pseudo-solution or as an additive pseudo-
approximation. We define this formally as follows:

Definition 1.1 (additive pseudo-approximation)
For a knapsack constraint (vector of weights w with
capacity 1), a set S is a q-additive pseudo-solution
if it has the form S = S0 ∪ S1, where

∑
i∈S0 wi ≤ 1

and |S1| ≤ q. (Equivalently, S satisfies the budget
constraint after removing its q highest-weight items.)

For a multi-knapsack constraint M = M1, . . . ,Mm,
we say that S is a q-additive pseudo-solution for M
if it is a q-additive solution for each of the m knap-
sack constraints M1, . . . ,Mm separately. That is, for

each k = 1, . . . ,m, we have S = S(k)0 ∪ S(k)1 wherein∑
i∈S(k)

0
Mk,i ≤ 1 and |S(k)1 | ≤ q.

Such additive pseudo-solutions are naturally con-
nected to the method of alteration in the proba-
bilistic method, where we delete/alter some items
in a random structure to establish a desired prop-
erty [Alon and Spencer, 2016]. We naturally view
S1 as a discarded set whose elements will be pro-
cessed in an application-specific manner. Addi-
tive pseudo-approximations have appeared implic-
itly in prior algorithms, e.g., [Li and Svensson, 2016,
Krishnaswamy et al., 2011]. We can summarize some
advantages of their advantages here, from both prac-
tical and technical points of view.

First, additive pseudo-approximation can be a useful
tool to obtain multiplicative pseudo-approximations or
even true approximations. As one example, if we have
a q-additive pseudo-solution with q constant, we can
modify it by handling these q additional items in some
problem-specific way. Since q is constant, this may in-
cur only a small overhead in the cost or computational
complexity. This strategy was used in the k-median
approximation algorithm of [Li and Svensson, 2016],
and we use it here for our (true) approximation al-
gorithm for knapsack center. These problems are de-
scribed in Section 1.3.

As another example, there is a common strategy for
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getting multiplicative pseudo-approximation to knap-
sack problems by “guessing” – exhaustively enumer-
ating – the set of “big” items (items with Mi > ε/q)
which appear in an optimal solution. In the resid-
ual problem, each item has small weight. Thus, a
q-additive pseudo-solution for the residual problem
yields an ε-multiplicative solution to the original prob-
lem. This can be more efficient than generating the
multiplicative pseudo-solution directly. The reverse di-
rection does not hold, in general; there does not seem
to be any way to go from multiplicative to additive
pseudo-solutions.

To see a practical advantage of additive pseudo-
approximation, consider our motivating example con-
cerning fair representation for a number of demo-
graphic groups. In this setting, a q-additive pseudo-
solution S will lead to a relatively modest violation
of the fairness constraint, namely, it will have only
|S ∩ Ak| ≤ tk + q for each population Ak and associ-
ated target value tk. By contrast, an ε-multiplicative
pseudo-solution S will give a substantially larger vio-
lation, namely |S ∩Ak| ≤ tk(1 + ε).

1.2 Dependent rounding and independence

In the most straightforward form of dependent round-
ing, we have a fractional solution x ∈ [0, 1]n that
we wish to round to an integral vector X ∈ {0, 1}n
such that E[X] = x and the cardinality constraint∑
iXi =

∑
i xi holds with probability one. For exam-

ple, [Charikar and Li, 2012] applied dependent round-
ing as part of their 3.25-approximation algorithm for
the k-median problem. The cardinality constraint
can easily be replaced by a single knapsack constraint
[Ageev and Sviridenko, 2004, Srinivasan, 2001].
Over the last two decades, increasingly-
sophisticated dependent-rounding techniques
have been used for optimization problems
over various types of polytopes; see, e.g.,
[Ageev and Sviridenko, 2004, Srinivasan, 2001,
Gandhi et al., 2006, Călinescu et al., 2011,
Chekuri et al., 2011, Bansal, 2019].

Our new rounding algorithm generalizes this setting
in two distinct ways: it allows multiple knapsack con-
straints, and it allows a partition matroid constraint.
Given some fractional vector y ∈ [0, 1]n which satisfies
these constraints, our overarching question is: how well
can we approximate independence while preserving the
knapsack and partition constraints?

The standard dependent-rounding algorithm sat-
isfies a limited but important form of negative
correlation, namely the negative cylinder prop-
erty [Chekuri et al., 2010, Byrka et al., 2015,
Srinivasan, 2001, Gandhi et al., 2006]: for any

set S ⊆ {1, . . . , n} the rounded variables Xi satisfy
the conditions

E
[∏
i∈S

Xi

]
≤
∏
i∈S

xi, (1)

E
[∏
i∈S

(1−Xi)
]
≤
∏
i∈S

(1− xi). (2)

For our clustering results, we will need more general
forms of negative correlation. To provide intuition, let
us compare how our algorithm works for the standard
dependent-rounding scenario, with a single knapsack
constraint and no partition constraint. (We empha-
size that our algorithm can handle much more general
scenarios.) Ideally, we would like for arbitrary dis-
joint sets S, T ⊆ {1, . . . , n} to satisfy a similar “near-
independence” property:

E
[∏
i∈S

Xi

∏
i∈T

(1−Xi)
]
≈
∏
i∈S

xi
∏
i∈T

(1− xi). (3)

For example, [Byrka et al., 2015] showed this type of
property for running dependent rounding with a ran-
dom permutation of the input vector. Note that
Eq. (3) cannot be preserved exactly in an integral solu-
tion; for example, if x1 = x2 = 1/2, then any integral
solution must either satisfy E[X1(1 − X2)] ≥ 1/2 or
E[(1 −X1)X2] ≥ 1/2. This is part of the reason why
general negative correlation is much more challenging
than the negative cylinder property.

To overcome this fundamental barrier, our rounding
algorithm terminates with a vector which has a small
number t of fractional entries. The precise sense in
which we mimic independent rounding is somewhat
technical, but, as one example, we get

E[
∏
i∈S

Xi

∏
i∈T

(1−Xi)] ≤ O(1/t)+
∏
i∈S

xi
∏
i∈T

(1−xi).

(4)

We emphasize that Eq. (4) is only a simplified form
of our rounding results. We will need, and de-
velop, much more general bounds; in particular,
we will handle cases where S ∪ T has a large size
but only a few elements are “significant.” Also,
note that the usual dependent-rounding algorithms
([Srinivasan, 2001] and its relatives) do not satisfy
negative-correlation properties such as negative cylin-
der for m > 1.

Let us briefly compare these near-independence
properties with other dependent rounding algo-
rithms. The first main genre of such al-
gorithms is based on variants of the Lovász
Local Lemma (e.g., [Harris and Srinivasan, 2019,
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Leighton et al., 2001, Srinivasan, 2006]). These algo-
rithms have very good independence properties, but
also lead to knapsack violations on the order of the
“standard deviation.”

A second genre of algorithm is based, like ours, on
Brownian motion in the constraint polytope. These
algorithms are often targeted to discrepancy minimiza-
tion, see e.g., [Beck and Fiala, 1981, Karp et al., 1987,
Bansal and Nagarajan, 2016, Bansal, 2019], where the
central goal is to show concentration bounds on lin-
ear functions of the variables. This can be regarded
as a special case of negative correlation, which is
closely related to pairwise correlation (covariance).
Our algorithm gets tighter bounds and finer negative-
correlation properties, including correlations among
many variables, by taking advantage of the special
properties of the knapsack-partition constraints.

1.3 Clustering results

In describing our clustering results, it is convenient to
use the language of classical facility location. We refer
to C as a set of clients, F as a set of potential facilities
or centers, and we say that i ∈ F is open if i is placed
into the solution set S. We thus interpret the cluster-
ing problem as opening a small number of facilities.
For a set S ⊆ F of open facilities, the distance d(j,S)
can be interpreted as the connection cost of client j.

We study two clustering problems in particular: the
knapsack-median and knapsack-center problems. In
the knapsack median problem, we seek to minimize
the total connection cost

∑
j d(j,S) subject tom knap-

sack constraints. The knapsack-center problem is the
same except that the objective function is to minimize
maxj∈C d(j,S) instead of the sum. We will briefly de-
scribe our algorithms and results for these problems
here.

Knapsack median was first studied by
[Krishnaswamy et al., 2011], which obtained an addi-
tive pseudo-approximation with an approximation fac-
tor of 16. The current best true approximation factor
is 7.08 for m = 1, due to [Krishnaswamy et al., 2018].
The special case when all facilities in F have unit
weight and m = 1, known as the classical k-median
problem, can be approximated to within a factor of
2.675 + ε [Byrka et al., 2015].

Our algorithm for this problem is inspired by an ap-
proximation algorithm of [Li and Svensson, 2016] for
k-median. The idea is to solve a relaxation called a
“bi-point solution”, which is a linear relaxation that
is a convex combination of two solutions. They then
use dependent rounding, wherein we open either a fa-
cility from the first (feasible) solution, or the set of all
facilities nearby in the second solution. This gives a

q-additive pseudo-solution for some constant q. The
k-median algorithm of [Li and Svensson, 2016] has an
additional postprocessing step to correct it to a true
approximation.

Our algorithm uses KPR for the dependent rounding
step, which allows it to work with knapsack constraints
instead of just cardinality constraints. The post-
processing step does not seem to work for knapsack
median, so the algorithm yields an additive pseudo-
approximation instead of a true solution. We can
correct the q-additive pseduo-solution to a multiplica-
tive pseudo-solution by guessing the big facilities. Our
KPR rounding algorithm gives the following results for
additive and multiplicative pseudo-approximations:

Theorem 1.2 There is a polynomial-time algorithm
for knapsack median with m = 1 which generates, for
any γ ∈ (0, 1), an O( 1

γ )-additive pseudo-solution S
with cost (S) ≤ (1 +

√
3 + γ)OPT ≤ 2.733×OPT.

There is an algorithm running in time nO(ε−1γ−1) for
knapsack median with m = 1 which generates, for any
γ, ε > 0, an ε-multiplicative pseudo-solution S with
cost (S) ≤ (1 +

√
3 + γ)OPT.

We also consider multi-knapsack median, where it is
NP-hard to obtain a true approximation. Here, we
adapt an algorithm of [Charikar and Li, 2012], which
is based on rounding an LP solution. Based on the LP
solution, this algorithm bundles the facilities together
into pairs and ensures that at least one facility from
each pair is opened. It then uses dependent round-
ing to ensure that, in addition to this hard constraint,
each facility is opened with the proper probability. We
apply KPR for the dependent rounding step to get
a pseudo-approximation algorithm, which can also be
leveraged into a multiplicative pseudo-approximation.
We summarize the results here as follows:

Theorem 1.3 For any parameter γ ∈ (0, 1), there is
a polynomial-time algorithm for multi-knapsack me-
dian with m ≥ 1 constraints to get an O( m√γ )-additive

pseudo-solution S with cost (S) ≤ (3.25 + γ)OPT.

For any parameters γ, ε ∈ (0, 1), there is an algorithm

in n
Õ( m

2

ε
√
γ ) time for multi-knapsack median to get

an ε-multiplicative pseudo-solution S with cost (S) ≤
(3.25 + γ)OPT.

By contrast, if we directly used independent selec-
tion in the Charikar-Li algorithm, it would require

nÕ(m/ε2) runtime to obtain an ε-multiplicative ap-
proximation. This illustrates how additive pseudo-
approximation can be useful for efficient multiplicative
pseudo-approximations; in particular, this gives a bet-
ter dependence on the parameter ε (though a worse
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dependence upon m, which we view as a small con-
stant).

The knapsack center problem with m = 1 was
first studied by [Hochbaum and Shmoys, 1986], un-
der the name “weighted k-center”. They gave a 3-
approximation algorithm and proved that this is best
possible unless P = NP; see also [Khuller et al., 2000].
For this case, our approximation algorithms find a fea-
sible solution such that (1) all clients have distance at
most 3 × OPT to an open facility, and (2) all clients
have expected connection cost at most (1 + 2/e) ×
OPT ≈ 1.74 × OPT. Note that [Harris et al., 2018]
showed that the constant factor 1 + 2/e cannot be im-
proved unless P = NP, even in the k-supplier setting.

Our algorithm is based on a preprocessing step, which
identifies and guesses facilities which serve a large
fraction of the clients. After grouping the remaining
clients, we then use our dependent rounding algorithm
to select which facilities to open. This generates a q-
additive pseudo-solution for q = O(1) with the desired
connection costs. We then modify this to get a true so-
lution. Since each modified facility serves only a small
number of clients, this has minimal effect on the con-
nections costs. We summarize this result as follows:

Theorem 1.4 For any γ ∈ (0, 1), there is an algo-

rithm running in nÕ(1/γ) time for the knapsack center
problem with m = 1 which returns a feasible solution
S such that every client j ∈ C has

E[d(j,S)] ≤ (1 + 2/e+ γ)×OPT,

and

d(j,S) ≤ 3×OPT with probability one.

More recently, [Chen et al., 2016] considered the case
m > 1. They showed that it is intractable to obtain
a true constant-factor approximation, and gave a mul-
tiplicative pseudo-approximation algorithm with ap-
proximation ratio 3. We obtain the following additive
pseudo-approximations for this setting:

Theorem 1.5 (Simplified) Let ε, γ ∈ (0, 1) and
consider a knapsack-center problem with m con-
straints. We describe three algorithms to generate
different types of pseudo-solutions S such that every
client j ∈ C has d(j,S) ≤ 3 × OPT with probability
one and E[d(j,S)] ≤ (1 + 2/e+ γ)×OPT.

1. There is a polynomial-time algorithm to get an
Õ(m/

√
γ)-additive pseudo-solution.

2. There is an algorithm with run-time nÕ(m2/γ) to
get an Õ(

√
m)-additive pseudo-solution.

3. There is an algorithm with run-time

nÕ(m3/2/ε+m2/γ) for an ε-multiplicative pseudo-
solution.

The algorithms of [Hochbaum and Shmoys, 1986] or
[Chen et al., 2016] may return a solution where nearly
all the clients get service at distance 3×OPT. Our al-
gorithm thus gives finer guarantees: every client gets
service within 3 × OPT with probability 1, but the
average cost of service is much better. This can be
helpful in flexible facility location, such as a streaming-
service provider periodically reshuffling its service lo-
cations. It can also be interpreted as a type of fairness
in clustering, where the fairness is in terms of individ-
ual users instead of demographic groups.

1.4 Notation

For any integer t ≥ 1, we write [t] = {1, . . . , t}. For a
set X ⊆ [n] and an n-dimensional vector y, we write
y(X) =

∑
i∈X yi. For a distance function d(x, y) and

a set Y , we write d(x, Y ) = miny∈Y d(x, y). We use

the Õ() notation, so that Õ(x) = O(x · polylog(x)) =
O(x(log x)c) for some constant c > 0.

2 Knapsack-partition systems and
rounding

Our dependent rounding algorithm, which we call
Knapsack-Partition Rounding (KPR), is used for a
class of problems we refer to as knapsack-partition con-
straints. Here, we are given a partition G over ground-
set [n] as well as a real-valued m × n matrix M . We
refer to the sets G ∈ G as blocks. Finally, we are given
a fractional vector y ∈ [0, 1]n, for which y(G) = 1 for
each G ∈ G.

Let us introduce some further notation for knapsack-
partition constraint systems. For each j ∈ [n], we let
G(j) denote the unique block G ∈ G with j ∈ G. For
W ⊆ [n], we define G(W ) ⊆ G to be the set of blocks
involved in W , i.e. G(W ) = {G(w) | w ∈W}. For any
set G0 ⊆ G and W ⊆ [n], we define the set W ∧ G0 as

W ∧G0 := W ∩
⋃
G∈G0

G = {w | w ∈W and G(w) ∈ G0}.

For G ∈ G, we define the following functions to count
the number of fractional entries:

TG(z) := max(0, |{i ∈ G | zi ∈ (0, 1)}| − 1).

We also define T (z) :=
∑
G∈G TG(z).

In an ideal scenario, we would like to perform a ran-
domized rounding to generate a vector Y ∈ {0, 1}n sat-
isfying the following desiderata (which are, to a certain
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extent, mutually incompatible and unattainable – in-
deed, our algorithm instead guarantees certain related
conditions (E1)–(E6)):

(D1) E[Yj ] = yj for every j ∈ [n].

(D2) The random variables Yj are negatively corre-
lated.

(D3) Y (G) = 1 for G ∈ G.

(D4) MY = My.

To further understand these constraints, consider in-
dependent selection: independently for each block G,
select exactly one item j, so that each item j is se-
lected with probability yj . This is a valid probability
distribution as y(G) = 1 and the entries of y are in the
range [0, 1].

We write Y = IndSelect(G, y) to indicate that the
(fully integral) vector Y is obtained by applying in-
dependent selection with respect to y,G. It satisfies
desiderata (D1), (D2), (D3) perfectly. However, it
only weakly satisfies (D4): specifically, the value of
MkY will be a sum of negatively-correlated random
variables with mean Mky, which can deviate signifi-
cantly from MkY .

2.1 The KPR algorithm

Now that we have defined general knapsack-partition
systems, as well as the simplest rounding algorithm for
them (independent selection), we are ready to define
our main dependent rounding algorithm. The algo-
rithm KPR(G,M, y, t) takes as input a set of blocks
G, a set of linear constraints M , a fractional vector y,
and integer parameter t, and returns a mostly rounded
vector Ỹ = KPR(G,M, y, t).

The algorithm first applies a preprocessing step con-
sisting of straightforward dependent rounding within
each block G; we omit this here for space. It then re-
peatedly applies a more-complicated rounding process
which modifies multiple blocks simultaneously, which
we summarize as follows:

Algorithm 1 KPR(G,M, y, t)

1: while T (y) > t do
2: Form a set J ⊆ G, wherein each G ∈ G goes into

J independently with probability p = 3m/T (y).
3: if

∑
G∈J TG(y) ≥ m+ 1 then

4: Choose δ ∈ Rn such that
* Mδ = 0, y + δ ∈ [0, 1]n, and y − δ ∈ [0, 1]n

* There is at least one index i with yi ∈ (0, 1)
such that yi+δi ∈ {0, 1} or yi−δi ∈ {0, 1}.

* δj = 0 if G(j) /∈ J
* δ(G) = 0 for all G ∈ G.

5: With probability 1/2, update y ← y+ δ; else,
update y ← y − δ

6: return y

We refer to the loop at lines (1)–(3) of KPR as
the IntraBlockReduce phase, and we write y′ =
IntraBlockReduce(y) for the vector obtained after
these steps. We write y′ = KPR-iteration(y) to de-
note a single iteration of the loop at lines (4)–(8); thus,
lines (4)–(8) are equivalent to the following:

while T (y) > t do update y ← KPR-iteration(y)

The KPR algorithm requires throughout that t > 12m;
this assumption will not be stated explicitly again.
Note that, because of this condition, the probability
p in line (5) is at most 3m/t ≤ 1/4. (We remark that
it is likely impossible to obtain fewer than m fractional
entries, while still respecting the knapsack and parti-
tion constraints.)

2.2 KPR algorithm: formal results

The KPR algorithm generates a nearly-integral vector
Ỹ satisfying a weaker form of negative correlation. We
formulate this in terms of a potential function. For any
set W ⊆ [n] and vector y ∈ [0, 1]n, we define

Q(W, y) :=
∏
G∈G

(1− y(W ∩G)).

As we have discussed, the desiderata (D1)–(D4)
cannot be exactly satisfied. The vector Ỹ =
KPR(G,M, y, t) will instead satisfy the weaker con-
straints:

(E1) For all W ⊆ [n], E[Q(W, Ỹ )] is “not much more
than” Q(W, y);

(E2) Every j ∈ [n] has E[Ỹj ] = yj ;

(E3) Ỹ (G) = 1 for G ∈ G;

(E4) MỸ = My;
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(E5) At most 2t entries of Ỹ are fractional;

(E6) For each block G ∈ G, at most m+ 1 entries of Ỹ
are fractional.

Here (E1) is intentionally vague because the relation-
ship between E[Q(W, Ỹ )] and Q(W, y) can be quite
complex. Before we explain our result, let us explain
the role played by the potential function Q. Note
that for Y = IndSelect(G, y) we have Y (W ) = 0
iff Q(W,Y ) = 1 and hence

Pr(Y (W ) = 0) = E[Q(W,Y )] = Q(W, y).

Thus, E[Q(W, Ỹ )] is a smoothed measure of whether
the KPR output Ỹ satisfies Ỹ (W ) = 0.

Why might one be interested in upper-bounding terms
of the form Pr(Y (W ) = 0)? We have briefly touched
upon this earlier, but let us spell out in greater de-
tail how such bounds arise naturally in clustering al-
gorithms, such as our algorithms for knapsack median
and knapsack center. These algorithms first cluster
the facilities in some (greedy) manner (these are the
blocks of G ∈ G in our notation), and open a facili-
ties suitably at random from each cluster. Any given
client j will first check if some “nearby” facility gets
opened; if not, then it must use a “backup” facility
which, however, is farther away. The bad event of no
opened “nearby” facility is precisely modeled by events
of the form Y (W ) = 0. In some cases, the clustering
algorithm may open multiple facilities; this can also
be represented in terms of knapsack-partition systems,
wherein the blocks G may correspond to all subsets of
facilities to be opened in G.

Our main result here covers a setting needed for a num-
ber of algorithmic applications: there is a small set of
blocks D ⊆ G, such that y(G ∩W ) is close to one for
G ∈ D. We show the following:

Theorem 2.1 Let D ⊆ G with |D| = d. Let Ỹ =
KPR(G,M, y, t) with t ≥ 5000m(d+ 1). Then

E[Q(W, Ỹ )] ≤ Q(W, y)+Q(W∧D, y)(eO((d+1)2m2/t)−1).

The result in Theorem 2.1 is complex and hard to use
directly. We use it to derive a number of simplified
results, such as the following two estimates:

Theorem 2.2 The output Ỹ of KPR satisfies
E[Q(W, Ỹ )] ≤ Q(W, y) +O(m2/t).

Theorem 2.3 Let d = |G(W )|. For t > 10000md,
the output Ỹ of KPR satisfies E[Q(W, Ỹ )] ≤
Q(W, y)eO(m2d2/t).

For simplicity, we do not attempt to optimize the con-
stant factors here or elsewhere in the analysis.

3 A concentration inequality for
additive knapsack pseudo-solutions

The second main technical tool is an intriguing con-
nection between independent rounding and pseudo-
additive solutions. For maximum generality, we state
it in terms of a broader class of random variables
satisfying a proper known as negative association
[Joag-Dev and Proschan, 1983]. We provide the for-
mal definition of this later; it includes independent
random variables as a special case.

Theorem 3.1 Let X1, . . . , Xn be negatively-
associated, non-negative random variables. Then
with probability at least 1 − δ, there is a set W ⊆ [n]
(which may depend on the values of X1, . . . , Xn) with

|W | ≤ O
(√

n log 1
δ

)
such that∑

i∈[n]−W

Xi ≤
∑
i∈[n]

E[Xi].

We remark that Theorem 3.1 is tight for many val-
ues of (n, δ). For example, consider a system with
n independent Bernoulli(p) variables for any constant
p ∈ (0, 1). In this case, note that the set W will need
to have cardinality (

∑
iXi)− np, which will typically

be on the order of O
(√

n log 1
δ

)
with probability δ.

Following [Joag-Dev and Proschan, 1983], the defini-
tion of negative association (NA) is given as follows:

Definition 3.2 (NA random variables) Random
variables X1, . . . , Xn are negatively associated (NA)
if for every subset A ⊆ [n], and any pair of non-
decreasing functions f1, f2, the random variables
f1(Xi : i ∈ A) and f2(Xj : j ∈ [n] − A) have
non-positive covariance. (Here, “f1(Xi : i ∈ A)”
means f1 applied to the tuple (Xi : i ∈ A), and
similarly for “f2(Xj : j ∈ [n]−A)”.)

If X1, . . . , Xn are independent random variables, then
they are NA. The class of NA random variables
includes other random processes; for example, the
load-vector of the urns in balls-and-urns processes
[Dubhashi and Ranjan, 1998].

Notably, the bound of Theorem 3.1 does not depend on
the variance or sizes of the variables X1, . . . , Xn, which
is quite different from conventional concentration
bounds such as Chernoff-Hoeffding. This may be of
independent interest beyond our rounding algorithm.
By way of comparison, [Feige, 2006, Garnett, 2020,
He et al., 2010, Samuels, 1966] give other concentra-
tion bounds for sums of nonnegative independent vari-
ables without regard to size or variance. Such results
are useful for tasks such as probabilistic estimation



Dependent randomized rounding for clustering and partition systems with knapsack constraints

of network parameters and to hypergraph matchings:
see, e.g., [Goldreich and Ron, 2008, Eden et al., 2017,
Alon et al., 2012]. We anticipate that our tail bound
will also have broader applications.

Let us briefly summarize the role of this concentra-
tion inequality in our overall rounding algorithm. As
we have discussed, our dependent rounding algorithm
stops with a vector Ỹ ∈ [0, 1]n which has a small num-
ber t of remaining fractional entries, and which satis-
fies the knapsack constraints exactly. At this point, we
may apply a problem-specific “end-game” to convert
Ỹ to a fully-integral solution Y .

One attractive option is to apply independent selection
to the vector Ỹ , ignoring the knapsack constraints.
This may violate the knapsack constraints, but by how
much? This is precisely the random process governed
by our concentration inequality. The integral entries
of Ỹ have no effect on this independent selection, so Ỹ
effectively has t variables and and thus Y is an additive
pseudo-approximation of order

√
t logm.

We remark that our result is algorithmically “local” in
that for some (efficiently computable) α, our approach
is simply to make each i go into the small-cardinality
“discarded set” S ′ iff Xi > α.

4 Variants of KPR

The knapsack-partition setting and KPR algorithm
are very general. We summarize here some simpler
ways to use them, which will occur in a number of
algorithmic scenarios. One natural rounding strategy
for a knapsack-partition problem is to execute KPR up
to some stage t > 12m, and then finish by independent
rounding. Since this process comes up so frequently,
let us define it formally as an algorithm FullKPR.

Algorithm 2 FullKPR(G,M, y, t)

1: Ỹ ← KPR(G,M, y, t)
2: Y ← IndSelect(G, Ỹ )
3: return Y

This resulting vector Y ∈ {0, 1}n is fully integral; it
will not exactly satisfy the knapsack constraints, but
it will be relatively close (depending on the value of t).
By combining our analysis of KPR, with our concen-
tration inequality to handle the finishing IndSelect
stage, we get the following:

Theorem 4.1 Let Y = FullKPR(G,M, y, t) with
t > 12m and y ∈ [0, 1]n. Then, with probability at least
1 − δ, the vector Y is a q-additive pseudo-solution to
M with q = O(

√
t log m

δ ). This probability bound holds

even after conditioning on the fixed vector Ỹ .

Note that independent selection does not change the
expectation of Q(W, y); thus, all of our analysis of Q
for KPR will carry over immediately to FullKPR.
Thus, FullKPR also has good independence proper-
ties:

Proposition 4.2 Let Y = FullKPR(G,M, y, t).
For any set W ⊆ [n] with |W | = k and t > 10000mk,

we have E[
∏
j∈W Yj ] ≤ eO(m2k2/t)

∏
j∈W yj.

As a second example, dependent rounding can be in-
terpreted as a special case of KPR. Given some vec-
tor x ∈ [0, 1]v, we form a knapsack-partition instance
with n = 2v by defining, for each item i ∈ [v], the val-
ues yi = xi, yi+v = 1 − xi, and defining the block
Gi = {i, v + i}. Also, given a system of m knap-
sack constraints M on [v], we lift to this [n] by setting
Mi+v = 0 for i ∈ [v].

We can then run KPR on this problem instance, and
return the fractional vector X̃ ∈ [0, 1]v by setting X̃i =
Ỹi for i ∈ [v]. We let X̃ = KPR-DepRound(x,M, t)
be the result of this process. Note that

∑v
i=1MiX̃i =∑2v

i=1MiỸi. In this setting, we get a particularly crisp
form for our near negative-correlation bounds:

Proposition 4.3 Let S, T be disjoint subsets of [n]
and let X̃ = KPR-DepRound(x,M, t). For t >
10000(|S|+ |T |)m, we have

E
[∏
i∈S

X̃i

∏
i∈T

(1−X̃i)
]
≤ eO(

m2(|S|+|T |)2
t )

∏
i∈S

xi
∏
i∈T

(1−xi).

5 Discussion

We thus obtain improved approximation algorithms
for clustering problems with “knapsack” and “parti-
tion” constraints, which model, for instance, key no-
tions of fairness in clustering. Two main probabilistic
techniques developed here are: (a) a new “Samuels-
Feige” type of concentration inequality, which applies
to unbounded random variables, and (b) a new depen-
dent randomized-rounding approach, our KPR algo-
rithm.
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