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Supplementary Material

A Proof of Section 3

A.1 Proof of Corollary 3.4

Proof. Firstly, we derive an error of [ip+ when the observed data follow the regression model (5). Namely, we
show the following equality with probability at least 1 — 0,

fios = fta + 0 (n7V/2R) £ 0 (VEL?R),

with the model. This equality is an analogous of the inequality (15) without the assumption of the regression
model (5).

We start with (14) and obtain

o = A 2N ) ) )

By the model (5), we have y = f + &€ where f := (f(z1),..., f(:L'n))T and &€ := (&, ... ,fn)T, then we obtain

(w—v"y)=w—v" )+ (v—0v"& = (v —v"),a)x+ Y &vi—v)).

i€[n]

About the second term ;. &i(vi — v]), we define v; := (v; — v]), then we have

Z &i(vi (07V2||"7||§) )

i€[n]

since & ~ 4(0,1?) independently and identically. Then, we apply the tail bound for Gaussian random variables
and obtain

3 &ivi — vf)| < Vav|ollalog2(1/8),

i€[n]

with probability at least 1 — ¢ for any § € (0,1). By definition of v, it has the same {,, norm of v*, meaning
19|lco < 2R. Since ||ull2 < v/nlju|| for any u € R™, we have ||o]|s < v4nR, and

Zﬁz v —v})| < VBnvRlog"/2(1/6).

Substituting the result into (8), and the Cauchy-Schwartz inequality with Lemma 2.3 as (15) yields

~ V8vRlog?(1/§ d(v* —wv «
um*zum*i0< s W) o oI =0l o) — i1l

v
= ftg- £ 0 (*/g”R log 21/ ‘”) +0 (VeL”R).

Vn
Substituting 6 = 0.01, then we obtain
fios = fta + 0 (n7V/2R) £ 0 (VEL?R).

When we substitute ¢ = O(log"/?n), the second term O (n~'/2R) is negligible asymptotically in comparison
with O (ﬁLQR), hence we can ignore the second term as n — oo. 0
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B Minimizing the Normalized Loss

In this section, we prove Theorem 3.1.

To show that min,, ik x(v) and ming k. ks A (V) are close, we want to say that K and Kgg are close in some
sense. Here, we measure their distance by the cut norm of their corresponding graphons K and Kgg in order to
exploit Lemma 2.2. In the case of k and kg, we measure their distance by the cut norm of the graphons A1 T
and £gl", where 1: [0,1] — R is a function with 1(z) = 1.

As we work on graphons, it is useful to define an analog of (2) for graphons:

i (f) = K f = RI3 + X f, Kf).

We show that the minima of {x . x and fx g k. are close if K and Kgg are close in the cut norm up to a
measure-preserving bijection and so do 17 and Agl1T.

Lemma B.1. If a set S C [n] satisfies
|H — 7(Kss)|o < eL and |A1T — 7(hs)1T||o < €L

for some measure-preserving bijection 7: [0,1] — [0, 1], then we have
~ . 22
,I,Ié]ans Uk ss ks A (D) = 1{1&%% lk e (v) £ O(EL R )

Proof of Theorem 3.1. By applying Lemma 2.2 on K and k1T, we obtain
|K —7(Kss) o < eL and |[(£ — 7 (ks)1 o < €L

for a measure-preserving bijection m: [0,1] — [0, 1] with probability at least 0.99. Then, the theorem follows by
Lemma B.1. O

B.1 Proof of Lemma B.1

We say that a function f: [0,1] — R is n-block constant if f(xz) = f(z’) holds whenever i, (x) = i,(z'). For an
n-block constant f, we can find v € R™ such that {x g (V) = x4 2 (f):

Lemma B.2. Let f: [0,1] = R be an n-block constant function and let v € R™ be a vector so that v; = f*(x)
for x € 10,1] with i,(x) = j (Note that v is uniquely determined). Then, we have

L e a (V) = Ly g A (f)-

Proof. Note that we have

fpa(®) = o Kol3 — 250k o) + LRI + 5 (v, Ko),
la () = |KFI3 = 208, Kf) + |13+ A(f, K f)-

We show that each pair of corresponding terms are equal.

For the first pair of terms, we have

2

ocsig= [ ([ st mswa) dx—z/ 3 [ wn o) o
:Z-ez[;]/fr / vjdy dx_ Z/ ZKZM)

J€ln] J€ln]

1
=32 (Z Kz‘jvj) = $||Kv||§-

i€[n] je(n]
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For the second pair of terms, we have

(B Hf) = / /g{my y)dy)da
- Z/ Inﬂ{(:c,y) dy dx— Z/ Yi Z/ vajdy

jE[n] JE[n]
= Z/ Yi Z szvj)dm =3 Z yL(Z K”v]> = E(kz,K’v).
JE[” (n]

For the third pair of terms, we have
112 PRy (2 2 1 2 Lo
13 = | A@Par =37 [ kafae=3 | yrar= S0 uE= kI3
n] v e i€[n]” e i€[n]

For the fourth pair of terms, we have

1 1
sy = [ [ st st - Z Z / K (w,9)f () f (y)dzdy

I’l’n
1 1
= ﬁn Z Z Kijvﬂjj = $<U,K’U>.
i€[n] j€[n]

Combining these equalities establishes the claim. O

The following lemma states that minimizing £k ) and £ s » are equivalent:

Lemma B.3. For any R € R4, we have

min Y4 v) = min Lo n .
vere i praa@) = o min pfaan(d)

Proof. First, we show (RHS) < (LHS). Let v* be a minimizer of the LHS and let f: [0,1] — R with f(z) = v} .
Note that || fllco = |[|v*|lcc- As f is n-block constant, by Lemma B.2, we have fy 4 x(f) = Ck k2 (V).

Next, we show (LHS) < (RHS). First, note that there exists a minimizer of the RHS because {x 4 » is convex.
Indeed, we can show that there is an n-block constant minimizer. To this end, let f*: [0,1] — R be an arbitrary
minimizer of the RHS. For an integer m € N, let f,,,: [0,1] — R be the (n-m)-block constant function, where the
value of the i-th block is the average of the values of f* in the corresponding interval. As the sequence {fpn},,
(strongly) converges to f* in the L? norm, £y 4 x(fr) converges to lo s x(f*).

Next for each m € N, we construct an n-block constant function f,: [0,1] — R from f,,. As €y 4 » is convex and
is invariant under swapping fy,(x) and fp,(2") for any x, 2’ € [0, 1] with i, (x) = i, (2"), we can replace f,(x)
and fy,(z') with their average without increasing the value of £y 4 ». By taking the limit of this process, we can
construct an n-block constant function f; such that o s x(f1,) < Lo s 2(fm)-

Then, there is a subsequence of {f,,},, in which f/ converges to an n-block constant function, f’, and we
replace { fp},, with this subsequence. Then, we have £y s x(f") < limyn—oo € g 2 (fr) < iMoo € g 2 (frn) =
Ly 5 2 (f*). Hence, there is a n-block constant minimizer f’. Now as f’ is n-block constant, Lemma B.2 gives a
vector v € R™ such that £k g 2 (V) = Ly s A (f). Also, ||]lco = || f*|lco- O

Proof of Lemma B.1. We have

%Ié]IRI{ eKSS’kS,A(i}/) = 66R5¥ﬁ1%1|/‘100§R£KSS7kS7)\(5) = fe [I.g}li]Il_)R: Zg{ssﬁs)\(f) (By Lemma B.3)
Ifllc<R
= min [Kssfll; — 2(ks, Kssf) + |hsll5 + M, Kss f)
f:[0,1]—=R:

lflle <R
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= [Iglhn Im(Kss)flI3 — 2(m(hs), 7(Kss) f) + lm(£s)]5 + A{f, 7 (Kss) f)
[fllc<R

T ﬁ%&n«:“ (n(Kss) = K+ g{)sz N 2<”(ES) — kAt h, (1(Kss) — K + gf)f>
| fle<R

4 llm(hs) — A + B2 + )\<f, (m(Kss) — K + J{)f>

= min [+ 2 (r(ss) — H) 1,90 + | (w(Hss) - )1,

lfllc <R

— 2(k, 5<f>—2< (m(Kss) ﬂf)f> 2(n(ks) — k, Kf)
—2(n(fis) — h, (v(Kss) - f>+||ﬁ||2+2 w(hs) — £ k) + [m(ks) — &
MK+ A(f, (r(Kss) = K) ). (9)
By Lemma 2.3 and using the fact that m(£g) — & = (n(hs) — £)1"1, we have
()= min KB = 208 KF) + [RIF+ MSKS)
lfllc<R

+ (2n(Hss) — K IHIDNFIZ + [|w(Kss) - |12

+2||7(Kss) = K| gll&llcll fllse + 20K laf| (7 (hs) — )L |5l LNl flloo
+2||7(Kss) — K| g||(w(£s) = £)LT]| 1L ]lool| Flloo

+2||(r () = 17|l ool + [[7(s) = Rl + Allm(Kss) = K[ I £1% ). (10)
From the assumption, we have

= min Kfl3— 208, Kf) + k]2 + Nf, K
f:[O)IHRMmSRII fllz =208, K f) + [|£]12 + A, K f)

+ (2€L232 T 2I2R% + 2eL2R + 2 L2R + 262 L2 R + 2¢L2 + 2L2 + )\eLR2>

2 1 A
min = |[Kv|3 - =tk Ko) + = |k[3 + 5 (v, Ho) & O(ELQRQ) (By Lemma B.3)

vER™:|[v]| o <R N3 |

= min  lrpa(v)+ O(eL2R2> = min Cx () £ O<6L2R2>
vER™:||v]|c <R veER®

as desired. 0

C Proof of Theorem 3.2

The following lemma is a modification of Lemma B.1 for relating the solution of g k. » and that of fx x »
using a given measure-preserving bijection.

Lemma C.1. If a set S C [n] satisfies
|K — m(Kss)llo < L and |17 — w(ks)1T||g < €L
for a measure-preserving bijection mw: [0,1] — [0,1], then for any v € R® with |||l < R, there exists v € R™
such that
EKSSJ‘,S,)\(INJ) = EK’]C’)\(’U) + O(6L2R2) and ’/T(z)/) = 0.

Proof. Let ¢: [0,1] — R be the function corresponding to v, that is, o(x) = ¥;, (). Then, we have

1 N 2 A
lrss ks A (V) = g\\KssvH% - ;2<ks’Kssv> *HkS||2 <U Kssv)
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= | Kss9|3 — 2(ks, Kss9) + ||hs]|5 + A(®, Kss0) (By Lemma B.2)
= [n(Kss)m ()5 — 2(m(ks), 7(Kss)m () + [7(fs)|3 + Mr(©), 7(Kss)m(9))
= (m(Kss) = K + K)w(0)|5 = 2(n(ks) = k + k, (1(Kss) = K + K)7(v))

+|[m(hs) — £+ &[5+ M(0), (7(Kss) — K + K)n(9))
= | K7 @)3 + 2{(7(Kss) — K)7(9), K7 (©)) + [|(m(Kss) — K)m(5)|[3

— 2(k, K (0)) = 2(k, (n(Kss) — K)m(9)) — 2m(hs) — £, K7w(9)) — 2(m(hs) — A, (7(Kss) — K)m(9))

+ 113 + 2(m(ks) =k, k) + [Im(ks) — &3

+ Mr(9), Km(9)) + Mx(9), (7(Kss) — K)m(9)). (11)

By Lemma 2.3 and using the assumption that 7(kg) — £ = (7(ks) — £)1T1, we have

(11) = |7 Q)3 — 2(h, K7 (©)) + [I£]|3 + M (), K (5))
+ (2H7T(~7{SS) = KalKolr@®Z + I7(Kss) — K|Elr@)15
+2|m(Kss) = Klalhllo Il + 21K lall(w(ks) = )1 o1l lm(®) s
+2|7(Kss) — Kol (n(hs) — £)1 T olLlecllm@)lleo + 20 (m(As) = A1 a1l o
+ |7 (%) — AlI3 + A7 (Kss) —9{||2||7T(5)||§)~ (12)
Recall that 7 satisfies i, (7w(x)) = in(7(y)) whenever i,(x) = i,(y). Then, 7(¢) is n-block constant, and hence

we can define a vector v € R™ corresponding to m(v), that is, v; = 7(9)(x) for any x € [0, 1] with ¢, (z). Then,
we have

12) = || K7 (0)]13 — 2(k, Km(9)) + ||£]]3 + M7 (5), K7 (9))
+ (26L2R2 + 2L2R? 4+ 2[R + 2¢L?R + 22 L2 R + 2¢L? + 212 + )\eLRz)

1 9 2 1 9, A 2 2

S IEw |3 = =50, Kv) + —[k]13 + =5 (v, Kv) + O(eL R ) (By Lemma B.3)
= EK,k,,\('v) + O(EL2R2>

as desired. O

The following lemma states that, if v + A and v have similar normalized losses, then ®(A) must be small in
#-norm.

Lemma C.2. For any vectors v, and A € R", we have

1B(A) 5 = O<n\/ lcpa(w +A) - fx,k,m))

A
Proof. Recall that
1 A
Ui kA (V) = 3||K v|3 — 2<k7Kv>+5||k||§+ﬁ<v,Kv>-
Then, we have
EK,k,A('U + A) — €K7k,>\(v)
1 5 1 9 2 2
= SlIE @+ Az - S Evlz — — (k, K(v + A)) + 5 (k, Kv)

+ )\2<(v+ A),K(v+A)) — %(v,Ku)

( (Kv, KA) + | KA|]2 ) 2<k:,KA)+%(2<A,K(U+A)>+<A,KA>)

1
73
ig( 2(Kv, KA) + | KA|)2 ) 2<k:,KA)+%(2<v,KA>+3(A,KA>). (13)
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Let A\; < Ln be the largest eigenvalue of K. Let UXV T be the SVD of ®, where U € RP*P_ 3 = diag(oy, .. .,0,)

for o1 > -+ > 0, and V: # — RP. As Kij = (¢u,, b, )5, we have K = US2UT and hence o1 = A}/* By
Cauchy-Schwarz, we have

(18) > ~ 21200 | 2(A) e — 5 1) e B e+ 5 (31 B(A) I — 2 )lle | 2(A)]1 )

2 3 INLEL A , Ve e
> ~ s AR P(A)llze — — 55— | 2(A) 7 + E(SH@(A)H% —2A2 Rp, ||¢>(A)||%>
3\ 2(LP/2R + L¥/2 + ALI2R)
= sl - - |2 (A)] L.
Then for
3A 2(L?R+ L*/? + \L'/?R)
a = ﬁ and b= - ’
we have
||(I)(A)||g€ < b \/b G(ZK,k,)\('U + ) gK,k,)\(’U)) < \/EKJ‘,’)\('U + A) éK,k:J\('U)
2a a
< n\/ﬂK,k,A(v +A) —lrpa(v) _ 0 n\/ﬁK,,M(v +A) = lx pr(v)
3\ 3
as desired. -

The lemma also holds for i kg x and xgg pg 2

Proof of Theorem 3.2. On applying Lemma 2.2 to K, k1", and y17, we have
[K —m(Kss)llo < eL, ||k —m(ks)|o < €L,
and

ly —m(ys)llo < €L,

which holds for a some measure-preserving bijection 7: [0,1] — [0, 1] with a probability of at least 0.99. In what
follows, we assume that this has happened.

Let v* € R® be the minimizer of (k. kg,» that is returned by Algorithm 1, and let v € R™ be the vector given
by Lemma C.1 on ©*. Then, we have

ZKyk’)\(/U) = ‘eKss,ks,)\(g*) + O<€L2R2>
=lg (V") + O(eLZRz).

This means that [|®(v — v*)|l% = O(v/eLRn) by Lemma C.2. Let m be the measure-preserving bijection given
by Lemma C.1. Then, we have

fize = 0 = (,y5) = (7(9), 7(ys)) = (0, 7(ys))

= (o) + (o 7(s) — ) = 22 4 o m(ys) )

vy  (v—v'y)

=t tlys) —y)
= e + POt o 2y ), (1)

By Cauchy-Schwarz and Lemma 2.3, we have

[@(v* — v)llaellxllx
n

(14) = pige + (
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+ lolloell(7(w5) = )17 Io1loo)
= g+ £ O (VEL’R) . (15)

Similarly, we have

o2, = k(z*,x*) — <17,;65> =k(z*,z") - @fs)
=k(z*, x*) — (r(9), m(ks))
= k(z*,z*) — (v, 7(ks))
=k(z*,x*) — (o,k) — (0, m(Rg) — k)
= k(x*,x*) — <U;Lk> — (v, m(hs) — k)
T I L A VS
. O’i* <@(’U — U;); ¢m*>?€ . <0’ ﬂ_(ﬁs) . /i> (]_6)

By Cauchy-Schwarz and Lemma 2.3, we have

(16) = o3

o2 4 (II‘P(U—U*)II%H%*llw
n

+ lolloell(n(s) = 1T 111 )
=02. £ O (VeL’R).

D Proofs of Section 5

D.1 Proof of Theorem 5.1
Proof. We evaluate the difference between the cross-validated loss values as

van CV(0s)

- Z — fso. (i) 2 — (yi — fs.6, (wi))z
z€Q

- Z — Fon (@) = (F* (@) — Fson(@)’
zGQ
—26,(f* (@) — Fso (%)) + 26 (f*(23) — Fs.0, (i)

= Z — [0 (@) —wi(8)” = (f* (@) — f20, (@) — wals))”
zEQ
—26i(f* (@) — [0, (@) + wi(s) — 5 (@) — fo, (i) — wa(s))

=- Z — [0, (@) = wi(s)(f (@) — [0, () + wi(s)”

’LEQ

— (@) = [0, ()" + wa(s) ([ (@) — [20, (1)) — wals)’
—26;(f* (@) = [0, (®:) — [* () + g, (i) — 2€i(wi(s) — wa(s)).

Here for £ = 1,2, by the Bernstein’s inequality, we have
< te)

|

! Z (f*(xi) — fd0, (%))2 — EL(6,)

75c0
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1 t2
>1—2exp ( £

2 =:1—pg(t
QBE/Q“I‘QBQU/(?)(])) pf( E7Q)a

for any t;, > 0. Also, the Chebyshev’s inequality yields

2 1 2 v
Pr V—;ZQ <t Zl—azil_pv(tvq)’
1€Q

for all ¢ > 0. Then, with probability 1 — p;(¢1,q) — p2(te, ¢) — pu(t3,q), we obtain

CV(61) — CV(62)
< EL(01) +t — EL(HQ) + 1o
+ é D —wi () (@) = [, (@) +wi(s)” + wa(s) ([ (m) = [84, (@) — wals)”
i€Q
— 26 (f*(@i) — [9p,(Ti) — [ (@) + [ 4, (xi)) — 2€i(wi(s) — wals))
< —E 4ty + by 4 3w(s)” + 2w(s) B + (4B + w(s)) + ts(4B + 2w(s)),

by applying the Cauchy-Schwarz inequality and w(s) = wi(s) V wa(s).

Then, we can state that
CV(6,) < CV(6a),
when the following holds;
ty + by + t3(4B + 2w) < E — 3w(s)® — 2w(s)B — V2 (4B + w) =: Z(s).
We set 1 = ty = t3(4B + 2w) = /3 and substitute them, then we have

1 —pi(t1,q) — p2(te, q) — pu(ts, q)

2 2
=1—4exp (1 - t _ ) B 3v (4B~+ 2@(3))
2 B2/q + B2t/ (3q) =)
2 2
>1—4dexp <_1 (3(1; _ Bagq» 1 (4B:+ 20w(s))
2\ B B E(s)
¢ ( Lz 953\ _32(4B+2(s)
=1-—-4 —= | —= _ g _ i .
Then, we obtain the result. -

E Approximation Accuracy with Various Kernels with Other Data Sets

Figures 5-9 show the approximation errors with various kernel functions as shown in Section 6.1, with different
datasets.



Kohei Hayashi, Masaaki Imaizumi, Yuichi Yoshida

laplacian linear poly rbf sigmoid

0.03

0.02

iRl

aAnoalgo

8
: }
T~ ~ Y S~o k=]
§ o010 { 1__“ N - ~--- ~--- 3
£ -
£ I l { { ] 3
£ 2
2 o005 I i is
g {
<
0.075 g
.l 3
177 e
0.050 5
oo ____ { Pe H]
0025 " pTTTS- b Feaaooo Eoo_ L. 3
- £ i F e me o
T T T - ¥ - * .
0.000 <

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
S

Figure 5: Approximation errors on abalone data set. The setting is the same as Section 6.1.
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Figure 6: Approximation errors on cpusmall data set.
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laplacian linear poly rbf sigmoid
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Figure 7: Approximation errors on housing data set.
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Figure 8: Approximation errors on mg data set.
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laplacian linear poly rbf sigmoid
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Figure 9: Approximation errors on space_ga data set.



