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Abstract

In this paper, we study random subsampling
of Gaussian process regression, one of the
simplest approximation baselines, from a the-
oretical perspective. Although subsampling
discards a large part of training data, we
show provable guarantees on the accuracy of
the predictive mean /variance and its general-
ization ability. For analysis, we consider em-
bedding kernel matrices into graphons, which
encapsulate the difference of the sample size
and enables us to evaluate the approximation
and generalization errors in a unified man-
ner. The experimental results show that the
subsampling approximation achieves a bet-
ter trade-off regarding accuracy and runtime
than the Nystrom and random Fourier ex-
pansion methods.

1 Introduction

Gaussian process regression (GPR) is a fundamental
tool for supervised learning. After learning parame-
ters, we can make predictions in a distributional form,
which is useful for measuring the uncertainty of the
predictions. Of course, to enjoy such flexibility, we
need to pay the price — computationally. For the
number of samples n, both training (parameter learn-
ing) and the computation of the predictive distribu-
tions require polynomial time in n. The dominant part
is the computation of the inverse of the n-by-n kernel
matrix, which requires O(n?) time.

To reduce the time complexity, a lot of sophisticated
approximation methods have been developed. Most
of them introduce some structure into the kernel ma-
trix to approximate it. For example, the Nystrom
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method (Williams and Seeger, 2001) approximates the
kernel matrix with a low-rank matrix. Given a shift-
invariant kernel function, the random Fourier expan-
sion (RFE) (Rahimi and Recht, 2008) approximately
constructs a feature function in a finite-dimensional
space. Several methods exploit specific properties of
kernel matrices (Pleiss et al., 2018; Wilson and Nick-
isch, 2015).

A more drastic approach is subsampling, i.e., training
GPR with a subset of the data. If we pick subsam-
ples completely randomly, the time complexity only
depends on the subsample size s, which is independent
of n. With its simplicity and the computational cheap-
ness, random subsampling has been seen as a base-
line rather than a competitive method in the GP com-
munity (Rasmussen, 2004; Snelson, 2007; Quifionero-
Candela and Rasmussen, 2005). One of the main rea-
sons is that it completely discards a large part of the
data, and it seems impossible to estimate the uncer-
tainties (Quinonero-Candela and Rasmussen, 2005).
Also, its theoretical justification is non-trivial, because
subsampling changes the size of the kernel matrix.
This is contrastive to the case of the structure-based
approximations, which retain the size of the kernel ma-
trix as n-by-n and can directly evaluate its approxima-
tion accuracy as the prediction accuracy, whereas they
require at least 2(n) computational cost in training.

In this paper, we study the subsampling approxima-
tion of GPR from a theoretical perspective. Our main
results show that subsampling can maintain global in-
formation with a sufficiently small number of subsam-
ples. In some special cases, O(s) subsamples guarantee
O(logfl/4 s) prediction error at any new data point.

For analysis, we exploit the machinery of graphons,
a continuous limit of bounded symmetric matrices,
which have effectively been used in graph theory
(see (Lovéasz, 2012)). Embedding the kernel matri-
ces into graphons abstracts their difference in terms
of the (sub)sample size, which enables to evaluate the
predictive mean/variance without using strong statis-
tical assumptions (Theorem 3.2). Because graphons
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can handle infinitely large matrices, i.e., the kernel
matrices with n — oo, the result is immediately ap-
plicable to evaluate the generalization error (Corol-
lary 3.4). Moreover, we show that, with a constant
number of subsamples, hyperparameter tuning based
on cross-validation (CV) succeeds with a high proba-
bility (Theorem 5.1). We performed experiments that
provided encouraging results of subsampling in terms
of the speed-accuracy trade-off.

2 Preliminaries

For an integer n € N, we denote the set {1,2,...,n} by
[n]. Fora,b € Rand c € Ry, wemean b—c < a < b+c
by a=b+c.

For vectors x,y € RP, (x,y) denotes their inner prod-
uct. For a vector & € R? and a set S C [n], x5 € RIS
denotes the vector obtained by restricting « to S. Sim-
ilarly, for a matrix A € R™*™ and sets S C [n] and
T C [m], Ast € RISIXITI denotes the matrix obtained
by restricting A to S x T. For a matrix A € R"*™,
we define || Allmax s maX;e(n) jem) [Aij|- A (1, 0%) de-
notes the Gaussian distribution with mean p and vari-

ance o2.

2.1 Gaussian Process Regression

Let (x1,y1), ..., (€n,yn) € RP xR be training samples.
The goal of the GPR is to obtain a predictive distri-
bution for f*(z*) when a new sample z* € R? arrives.
In this work, we consider the zero-mean GP prior for f
with the covariance kernel function k: R? x RP — R.
When the variance of the observation noise is speci-
fied as v > 0, the predictive distribution for f*(z*)
is given as the following Gaussian distribution:

JV(kT(K +020) Ny k(e ) — kT (K + y21)‘1k)

(1)
where K € R™ " is the kernel matrix with K;; =
k(zi,z;) (1,5 € [n]) and k = (k(z*,%i));c,) € R”
(see Section 2 of (Rasmussen, 2004) for more details).
Let # be the reproducing kernel Hilbert space (RKHS)
associated with k(-,-). For a vector & € RP, let
¢e = k(x,-) € # be the element corresponding to

x. Note that k(x;, z;) = (¢a;, Pz, ). We define a
linear operator ®: R™ — # as ®(w) =3¢, Pu, Wi-

2.2 Graphons and Matrices

A (measurable) bounded
f:00,1> = R is called a graphon'. We can re-
gard a graphon as a matrix in which the index is

symmetric  function

!Precisely speaking, such a function is called a kernel
and a (measurable) symmetric function f: [0,1]* — [0, 1]

speciﬁed by a real value in [0,1]. For two functions
f, [ 1] — ]R we define their inner product as

= fo x)dx.
product fog': [0, 1] — R as fg'(z,
For a graphon A: [0, 1]2

We also define their outer

y) = f(x)g(y)-

— R and a function

f:10,1] — R, we define the function A f: [0,1] - R
as (A f)(x) = (A(x,), f)-

For an integer n € N, let I = [0, %], and for every
1<k<n,let I} = (&L K] For z € [0,1], we define

in(x) as the unique integer k € [n] such that z € I}.

Definition 2.1. Given a vector v € R", we con-
struct the corresponding function v: [0,1] — R as
0(z) = Vi, (z)- In addition, given a set of indices
S C [n], when we write vg, we first extract the vector
vg € RISI and then consider its corresponding func-
tion. Similarly, given a matriz A € R™ "™, we con-
struct the corresponding graphon A : [0,1]2 — R as
A(r,y) = A (@)in(y)- In addition, given two sets of
indices S C [n] and T C [n], when we write Agr,
we first extract the matriz Agy € RISXITI and then
consider its corresponding graphon.

1> = R, its cut norm is defined

’//ﬂxydmdy
5,7C[0,1]

For a graphon A : [0,
as

[ Alla =

max

where S and 7T run over all the measurable sets.

The following lemma states that we can approximate a
matrix with its small submatrix with respect to the cut
norm of the difference of their corresponding graphons.

Lemma 2.2 ((Hayashi and Yoshida, 2016)). Let L >
0 and let A',... AT € [=L,L]"™" be matrices. Let
S C [n] be a set of s elements that are uniformly
selected at random. Then, with a probability of at
least 1 — exp(—$2(sT'/logy s)), there exists a measure-
preserving bijection 7: [0,1] — [0, 1] such that, for ev-
ery t € [T], we have

| = (Aks) o = O(Ly/T/logy s).

Moreover, we can assume i,(m(x)) = in(7(y)) when-
ever in () = in(y), that is, 7 is a block-wise bijection.

The following lemma states that the quadratic form of
a graphon with a small cut norm is small.

Lemma 2.3 ((Hayashi and Yoshida, 2016)). Lete >0
and A: [0,1]> = R be a graphon with | A|g < e.
Then, for any functions f,g: [0,1] — [—L, L], we have
(f, Ag)| < eL?.

is called a graphon in the literature.
confusion with the kernel function k(-,
graphon here.

However, to avoid
-), we adopt the term
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3 GPR with Graphons

The main purpose of GPR is to predict a function
value at a new data point. The standard statistical
result shows that, in a point-wise sense, the predictive
mean converges to the true function as the sample size
increases under some regularity conditions. In other
words, the true function can be rephrased as the limit
of the predictive mean of the GPR with infinitely many
samples. The prediction accuracy (i.e., the general-
ization error) is therefore measured by the distance
between the finite- and infinite-sample GPRs. How-
ever, analyzing the infinite-sample GPR is not trivial
because we cannot write down the solution using stan-
dard matrix operations such as matrix inverse because
the kernel matrix is infinitely large.

Graphons are a generic tool to handle both finite- and
infinite-size matrices. First, a kernel matrix with in-
finitely many samples is embedded into a graphon by
taking a map from the sample indices [n] to [0,1]. We
can then reformulate the predictive distribution as the
minimization problem of the quadratic objective func-
tion (i.e., the Gaussian log-likelihood of (1)) associ-
ated with the graphon. Also, a kernel matrix with a
finite sample size is embedded into a graphon using
the partition I7, ..., I defined in Section 2.2, which
can be seen as the low-resolution version of the infi-
nite one. Now, we can bound the difference between
the finite- and infinite-sample objective values by us-
ing the distance between the two graphons in terms of
the cut norm (using Lemma 2.3). The predictive ac-
curacy is also derived in the same manner. We remark
that the above approach can be used to analyze the
difference between GPRs with different (finite) sam-
ple sizes, from which we can derive the accuracy of
subsampling.

Using graphons and RKHSs to kernel methods have
similar spirits: The kernel trick based on RKHSs pro-
vides an explicit form of the regression function when
using the infinite-dimensional feature space whereas
graphons provide an explicit form of that when using
infinitely many samples.

3.1 Subsampled Predictive Distribution

First, we rephrase the predictive mean and variance.
For a parameter A > 0, we define a normalized loss
function.

1 Kv 2 A
l v :fH——kH + — (v, Kv 2
KreA(V) = = , Pl ) (2

By setting A = v?/n and with the solution

v* = argminfx 2 (v) = n(K +nA) "'k, (3)
vER™

Algorithm 1 Approximate solver for the normalized
loss
Require: n,s € N, A > 0, and query accesses to K €
R™*™ and k € R™.
1: Sample a set S C [n] of size s chosen uniformly at
random.
2: U* <= argming {x g kg2 (V).
3: return v* and S.

Algorithm 2 Approximation algorithm for predictive
mean and variance
Require: n,s € N, A > 0, and query accesses to K €
R™ " k € R" and y € R™.
1: Run Algorithm 1 to obtain v € R® and a subset
S C [n] of size s.
2 [igr < (V,ys)/s.
2.+ k(z*,z*) — (v, ks)/s.
4: return (fig«,02.).

@

the predictive mean and variance in (1) can be rewrit-
ten as

*

v, y) (v", k)

n

()

In what follows, we leave A as a parameter as we often
do not know the value of v.

fhgr = and o2, :=k(z*,z*) —

Our algorithm consists of two parts. The first part
of our algorithm (Algorithm 1) approximately mini-
mizes (2). For a small integer s € N, it samples a set
S C [n] of size s uniformly at random and then min-
imizes the function obtained by restricting (2) to S,
that is, £k ¢ kg, Here, we assume that the matrix K
and vector k are given through query accesses. That
is, if we specify the indices 4, j € [n], we can obtain K;;
in constant time, and similarly, if we specify an index
i € [n], we can obtain k; in constant time. The second
part of our algorithm (Algorithm 2) computes approx-
imations for ji,+ and o2. using the vector obtained in
the first part.

For the first part of our algorithm, we show the follow-
ing guarantee, which states that the minima of £x
and lx ¢ ks, are close. The proof for this is deferred
to Supplementary material.

Theogem 3.1. For any € > 0, Algorithm 1 with s =
2001/€) outputs v* € R® such that

ZKSS,ks,)\(ﬁ*) = gK,k,A(’U*) + O(6L2R2)

with a probability of at least 0.99, where v* =
argmin, g A (V), NL = max{||K||max, ||kl }, and
R = max{|[v*||oo, [0 ][ }-

For the second part of our algorithm, we show the
following guarantee, which states that the approxima-
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tions computed using Algorithm 2 are accurate. The
proof for this is presented in Appendix C.

Theorem 3.2. Let ||z||4 := inf{||la||ze : @ € H, V2, =
(Pa;» )z} be the norm of z € R™ in the feature space
spanned by {¢wi}i€[n]' For any ¢ > 0, Algorithm 2
with s = 290/<) and X = ©(1) outputs (flgs, T2 )
such that

e —fiz+] = O (VEL®R) and |o2.—G2.
with  probability of at least 0.99, where
L = max{||K|lmax [kl k(x" %), lylle}  and
R = max{{|v* [, [|0"][0 }-

Remark 3.3. Theorem 3.2 suggests that the predic-
tion error of subsampling is explained by L and R.
Although L and R can increase with n, they are re-
garded as constants in some cases. For L, we see that
I || maxs ||Elloo, and k(z*) are O(1) when the kernel
function is bounded. For the polynomial or linear ker-
nel, this can be achieved by normalizing the input
x € RP so that each element is within [—1/p,1/p].
The condition ||y|l4 = O(1) is typically admissible
in the noiseless case. We can upper bound R when
the matrix K is strictly diagonally dominant. Let
M = (K + nAI). Then by the Ahlberg-Nilson-Varah
bound (see, e.g., (Moraca, 2008)), we have || M 1| o <
1/min;(nA — X,2,M;;) = O(1/nA). Hence, we have
107 lloe < nllM= Tl [Flloo = O(L/A).

Let us elaborate on the condition |ly|ls = O(1). In-
tuitively, |ly|l, measures the complexity of the map-
ping from the training inputs z to the outputs y us-
ing the RKHS norm || - ||z (note that the RKHS con-
sists of functions with || f*||# < oo; for details, see the
book (Steinwart and Christmann, 2008, Chapter 4)).
For example, if the true function f* is a member of #
and y; = f*(x;) for every i (i.e., y is noiseless), then
we have ||y||l¢ = ||f*|l%, which is independent of the
number of samples n as the norm solely depends on
f*. Hence we obtain ||y|l, = O(1). If y contains noise
or the mapping from x to y is not a member of #,
then we cannot say ||y|l, = O(1) in general. ?

3.2 Generalization Error

We provide generalization analysis for the subsampling
method, namely, we investigate how our method esti-
mates an unknown data generating process. To this
end, let us assume that the samples are generated
through a function f*: R? — R that relates y; and

It is possible to analyze the case when f* ¢ #, and
achieve a new error bound by using the techniques of inter-
polation spaces (Section 5.6 in Steinwart and Christmann
(2008)) or embedding operators (Theorem 4.6 in Steinwart
and Scovel (2012)). However, it is not our main focus.

=0 (VeL’R),

x; as
yi = (@) + &, 1 € [n], (5)
where & ~ A4(0,1?) is the Gaussian noise.

We note that Theorem 3.2 holds for any sample size n,
even at the limit n — co. It is well known that univer-
sal kernel functions (e.g., the Gaussian kernel and the
polynomial kernel) can approximate any continuous
function (Micchelli et al., 2006; Steinwart and Christ-
mann, 2008), and several kernel-based estimators con-
verge to any truth functions f* at n — oo (Gyorfi
et al., 2006; Rasmussen, 2004). The result also holds
with the GP regression estimator (van der Vaart and
van Zanten, 2008) with some assumptions. Along with
these results, Theorem 3.2 can be used to bound the
generalization error.

Corollary 3.4. Consider the same setting as in The-
orem 3.2 and assume that the observations follow the
model (5). Suppose pg+ is a consistent estimator for
[*(x*), namely, |pe- — f*(x*)] = 0 as n — co. Then,
with probability at least 0.98, the following holds:

_ L'°’R )
o — (@) =0 /),
|t (") (log1/4s

where L' = max{|[K||max, [[klloc, k(" "), | f*]|7}
Furthermore, if k(x,x) and pg are bounded for all x,
then, with probability at least 0.98, the following holds:

L L?R
. — f*ll2 = O(logl/zls)’

where ||-|| 12 denotes the L?-norm for square integrable
functions.

Although Corollary 3.4 only guarantees a relatively
slow rate of O(log™/*s), besides the consistency as-
sumption on pi.+, it does not require any other as-
sumption such as the differentiability of f*.

4 Related Work

4.1 Approximation Analysis

Subsampling-based approximations are known as the
subset of the data (SD) methods, which has several
variants in terms of how the subsamples are cho-
sen (Quinonero-Candela and Rasmussen, 2005). The
simplest version chooses samples completely randomly,
which is equivalent to our algorithms except that the
simplest SD method fixes the noise variance 2, inde-
pendently of the subsample size s, whereas ours scales
v? to derive a theoretical guarantee on its accuracy.
Other SD methods select subsamples based on more
sophisticated criteria such as the differential entropy
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Table 1: Comparison of approximation methods for GPR.

Time Predictive Predictive
Method Complexity Mean Error  Variance Error Assumptions
Nystrom O(ns?) or O(ns® + s%) O(s™) N/A Incoherence
RFE O(ns?) O(s~1/2) N/A Restriction on kernels
Lanczos O(n+s) N/A N/A None
Subsampling O(s%) O(log™"*s)  O(log™/* ) Remark 3.3

score (Herbrich et al., 2003), which requires, however,
O(n) time as it scans all the samples.

The inducing points methods (Quifionero-Candela and
Rasmussen, 2005; Snelson and Ghahramani, 2006;
Titsias, 2009) are another class of approximation
methods, which picks up a small number of auxil-
iary variables as pseudo-samples—inducing points—
and approximate the predictive mean using the cross-
covariance between the inducing points and the rest of
the samples. The inducing points are usually chosen
based on the marginal likelihood (Snelson and Ghahra-
mani, 2006) or the variational principle (Titsias, 2009;
Hensman et al., 2013). Although they perform well
in practice (Matthews, 2017), their time complexity
depends on n due to computing the cross-covariance.
Also, to the best of our knowledge, their theoreti-
cal properties, especially the approximation accuracy,
have not been studied.

The Nystrom method and its variants such as the
leverage score method are also intensively stud-
ied (Alaoui and Mahoney, 2015; Bauer et al., 2016;
Gittens and Mahoney, 2016; Musco and Musco, 2017;
Williams and Seeger, 2001). They employ s < n points
as regressors and their time complexity is typically
O(ns?). Assuming that the selected regressors have
a nice property such as incoherence, their approxima-
tion error for the predictive mean is O(s~7), which
follows from the approximation guarantee for the ker-
nel matrix in the spectral norm (Musco and Musco,
2017). Here, v > 0 is a parameter depending on the
kernel function.

RFE approximates predictors by using s Fourier
bases (Avron et al., 2017; Sriperumbudur and Szabd,
2015; Yang et al., 2012), which requires O(ns?) time
and some restriction on kernel functions such as shift-
invariance. The approximation error for the predictive
mean is O(s~1/2), which follows from the error anal-
ysis for the kernel matrix (Yang et al., 2012). Also,
some other works (Yang et al., 2012; Sriperumbudur
and Szabd, 2015) analyzed its generalization capabil-
ity.

Pleiss et al. (2018) developed Lanczos approximation.
The time complexity is O(n+s), where s is the number

of inducing points. No theoretical guarantee is known.

Time complexity: Note that subsampling requires
only O(s?) time, which is O(1) when s = O(1). In
contrast, all the other methods depend on n, and hence
they cannot be run in O(1) time.

Error bound: As for the error bound, recalling the
relation s = 20(1/€*) in Theorem 3.2, subsampling has
a convergence rate of O(logfl/ 4 s), which is slower
than the polynomial rates achieved by the Nystrom
method and RFE. However, we stress here that, at the
cost of the slow convergence rate, we eliminated several
assumptions used in their analysis. More specifically,
the Nystrom method requires that the subsampled re-
gressors are incoherent and the RFE require that the
kernel function is shift-invariant. Also, we can provide
an error bound for the predictive variance, which has
not been addressed in the Nystrom, RFE, or Lanczos
methods.

Table 1 summarizes our theoretical results for the sub-
sampling method against those for other approxima-
tion methods.

4.2 Generalization Analysis

Some existing studies have developed generalization
theory of GPR. van der Vaart and van Zanten (2008,
2011) evaluated GPR by using the notion of posterior
contraction, and showed that the generalization error
measured by the L2-norm is

0 (n—2ﬁ/(2ﬁ+p)) : (6)

where [ is the number of differentiability of f*. For
different metrics such as the L°°-norm, the same rates
(up to logarithmic factors) were obtained (Giné et al.,
2011; Yoo et al., 2016).

Our generalization analysis (Corollary 3.4) provides
the rate of O(log~*n), which is much slower
than (6). Nevertheless, this rate only requires the con-
sistency of gz« and does not impose any assumption
on f*, while the existing rate (6) assumes the differ-
entiability of f*.



On Random Subsampling of Gaussian Process Regression

5 Hyperparameter Selection

GPR has several hyperparameters such as A in (2)
and hyperparameters used in kernel functions, e.g., the
bandwidth A > 0 in the Gaussian kernel k(z,z’) =
exp(—h~ |z — 2’||3) and the parameters h,a,b in the
polynomial kernel k(z,2') = (h~'(x,x’) + b)“. Cross
validation (CV) (Geisser, 1975; Stone, 1974) is a pop-
ular approach for selecting such hyperparameters, al-
though it is computationally expensive. In this section,
we show that we can circumvent this issue by using our
method (Algorithm 2).

Let 6 be the set of hyperparameters, e.g., 8§ = (A, h) for
the Gaussian kernel. We consider a predictor fs,g (x*),
which is the predictive mean obtained when we run
Algorithm 2 on x* € RP with hyperparameters 6
and the index set S C [n] of size s € N. Further-
more, let fJ(x) := pz- be the predictive mean us-
ing all the n samples. For any ¢, we assume that f~,
fs.0, and f§ are bounded and have finite second mo-

ments, i.e., B := max{”fi‘\”007 1/ lloos || fs.0]lo0 } and
By = max{||f*|13, || £33, || fs.0]|3} are finite. These as-
sumptions are standard and easy to verify for bounded
kernels (Section 4 of (Steinwart and Christmann, 2008)
presents detailed discussions).

We want to compute the expected loss of the (original)
predictive mean EL(6) := Ez[(f*(x) — fg(ac))z] for a
given 6 and then select the best 6. To this end, in the
CV, we first sample an index set Q C [n]\S of size
q < n — s uniformly at random. We then define the
CV loss as

CVo(fse) == %Z (yi — fS,H(wi))2~ (7)
i€Q

Now, we evaluate the selection performance of the CV
based on Algorithm 2. For simplicity, we assume that
we have two candidates for the choice of hyperparam-
eters, 0, and 5. Then, we have the following:

Theorem 5.1. Suppose that EL(6;) + Z < EL(62)
holds for some = > 0. Let us define w(s) as the upper
bound on |z« — fiz<| given in Theorem 3.2, and a
parameter Z(s) := E—3w(s)’ —2w(s) B—12(4B+w(s)).
Then for any s,q > 1,

CVa(fse) < CVo(fse),

holds, with probability at least

| dexp (_q (g(s) B 933)) 3B+ 2w(s)).

2\ B B =(5)

Note that Z is an increasing function in = and s.
Hence, Theorem 5.1 implies that the probability that

the approximated CV succeeds increases as ¢, s, and
= increase.

Note that we can easily extend the argument to the
case we have a finite number of candidates. Also note
that selecting the value of a hyperparameter by CV
from a finite set of candidates is commonly used in
GP (see Rasmussen (2004, Chapter 5)).

6 Experiments

6.1 Approximation Accuracy

First, we evaluated the performance of subsampling
with a constant number of samples that are covered by
our theory, that is, the predictive mean/variance (4),
the minimum of the normalized loss function (2), and
the CV error (7). Here, we used five real datasets®
whose sample sizes are in thousands such that we could
run the exact GPR for comparison. Each data set was
standardized so that y and each feature of & are ranged
in [—1,1].

The upper part of Figure 1 shows the contour of
the 10-fold CV error with the Gaussian kernel. In
datasets housing and mg, subsampling successfully se-
lected the hyperparameters that were sufficiently close
to the ones selected by the full-sample CV. In abalone
and cpusmall, the selected hyperparameters look far.
However, this was because the landscape of the full-
sample CV error was flat (the lower part of Figure 1)
and it was difficult to choose the optimal hyperparam-
eters even in the original CV. Indeed, this case corre-
sponds to the case that = in Theorem 5.1 is small, and
these empirical results agree with the claim of The-
orem 5.1: the hyperparameter selection may fail for
small =.

Figure 2 shows the errors of the predictive mean
|tz — fige |, predictive variance |02, —52.|, and the ob-
jective [l 2 (V") — kg ks 2 (DF)] with the Gaussian
kernel. We see that the errors, especially of the predic-
tive mean and variance, decrease faster than we expect
from the theoretical convergence rate of O(logfl/ 4 s)
shown in the dashed lines.

We also investigated how the choice of kernel functions
affects the approximation quality. Figure 3 shows a
similar behavior as in Figure 2 no matter which kernel
function is used. We observe that all kernel functions
behave very similarly, meaning subsampling works in-
dependently of the choice of the kernel function as our
theory suggested. Due to the page limitation, we only
show the result with a single data set here; see Ap-
pendix E for the complete results.

Shttps://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets
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abalone

cpusmall

housing mg space_ga

abalone cpusmall housing mg space_ga

e
56
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Nl
NG

rank of (vz,h)

Figure 1: Top: Contours of the CV error for the noise
variance 2 and the kernel bandwidth k in a loga-
rithmic scale (v2,h~1 € {1073 | i = 0,1,...,11}).
White dots indicate the selected hyperparameters by
CV (i.e., the minima of the contours). Bottom: CV
error for each pair (v2, h) in increasing order. The se-
lected (v2, h) with other s are also shown as black dots
with the same shape as above.

6.2 Prediction Accuracy and Runtime

Next, we compared the prediction performance.
Specifically, we are interested in the trade-off be-
tween the prediction accuracy on the test data (i.e.,
the generalization power) and the runtime. To this
end, we prepared several large-scale datasets: cadata
(n ~ 20K), YearPredictionMSD (~ 0.4M), covtype
(~ 0.6M), SUSY (=~ 5M), and Airline (~ 7M).* Af-
ter standardizing both input and output, we split each
data set into a test set consisting of 1,000 randomly
selected samples and a training set consisting of the
rest of the samples. As baselines, we prepared the
Nystrom method, RFE, and stochastic variational in-
ference GP (SVI-GP) (Hensman et al., 2013)—an in-

“The labels of covtype and SUSY were binary but we
regarded them as real values and solved as regression prob-
lems.

abalone cpusmall housing mg space_ga

'
1
1
1
—_— !
aAnoalqo

Er-c---f

s

o 02 } -]

IR RS Sl

R 01 Ty-p---. 2

:% { I F 1 i I SN :
0.04 N . -
003 2
I =1 II I; ------ T %
oor 1 LA + . L 8

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
S

Figure 2: Errors of the predictive mean/variance and
the normalized loss function with the Gaussian kernel.
The hyperparameters were set as the noise variance
v? = 0.01 and the bandwidth h = 10. The error bars
indicate the standard deviation of the results over ten
trials with different random seeds. The dashed lines
indicate the theoretical bounds (Theorems 3.1 and 3.2)
where we set unknown linear coefficients of the bounds
as they fit the results.

ducing points method based on the variational prin-
ciple. All the methods were implemented in Python
(we used GPytorch (Gardner et al., 2018) for SVI-
GP). SVI-GP determined hyperparameters by varia-
tional inference; for the other methods we conducted
3-fold CV before training. The runtime was recorded
with 32-core Intel Xeon 3.20GHz.

Figure 4 shows the trade-off curves between the test er-
ror and the total runtime for training including hyper-
parameter selection. Overall, subsampling achieved
better trade-off than the other methods. In cadata,
YearPredictionMSD, and SUSY, subsampling mostly
dominated the Pareto frontier, meaning that it out-
performed the others in terms of both runtime and
accuracy. In airline, on the other hand, RFE and
SVI-GP achieved better accuracy. This might be be-
cause of the high-variance of the output y. The task
of airline is to predict the delays of flights in min-
utes, in which the distribution is skewed and heavy
tailed (Bandyopadhyay and Guerrero, 2012). The high
variance of y can increase the prediction error (see Re-
mark 3.3).

7 Discussion

In this work, we explored the theoretical aspects of
random subsampling of GPR. Using the tool of
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Figure 3: Approximation errors with the Laplacian,
linear, polynomial, Gaussian (RBF), and sigmoid ker-
nel functions on abalone data set. The hyperparam-
eters were set as the noise variance 2 = 0.01 and the
bandwidth A = 10. Other kernel parameters were fixed
as the default values of scikit-learn library (Pedregosa
et al., 2011)

graphons, we built the error bounds for the predictive
distribution and generalization. Although the derived
rates are slower than other structure-based approx-
imations, they only require minimum assumptions.
The experimental results demonstrated that in many
cases subsampling achieved a better runtime-accuracy
trade-off than the Nystrom, RFE, and SVI-GP meth-
ods. Combining the theoretical and empirical results,
we conclude that subsampling is worth a try as well as
more other complicated approximations.

The empirical results (Figures 2 and 3) repeatedly in-
dicate that the actual performance of subsampling is
far better than theoretically expected. This would be
because the derived bounds (Theorem 3.2 and Corol-
lary 3.4) are too conservative. Actually, they consider
almost worst-case scenarios, such as the truth function
is peaky everywhere or drawn subsamples are densely
collected in a small input area. Adding some realistic
assumptions such as smoothness may help to derive
better error bounds.

We note that our methodology has less restrictions
than the Nystrom method and RFE. Specifically,
the Nystrom method requires that the Gram matri-
ces are incoherent (Drineas and Mahoney, 2005). Also,
RFE works only on shift-invariant kernels (Rahimi and
Recht, 2008) and cannot be applied to polynomial and
sigmoid kernels, which are commonly used. In con-
trast, our methodology is free from these restrictions.
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Figure 4: Comparison of runtime-accuracy trade-off.
We changed the subsample size over {10 -2¢ | i €
{4,...,9}} for subsampling, and changed the number
of basis over {10 -2" | i € {1,...,7}} for the other
methods. We stopped the training when the runtime
exceeded 12 hours and those results are not shown.

We have shown that the CV strategy well admits sub-
sampling (Section 5), but we may want to use subsam-
pling to approximate other criteria. The marginal like-
lihood would be the most popular criterion in the GP
community for hyperparameter selection (Rasmussen,
2004). Unfortunately, our analysis is not immedi-
ately applicable to approximating it. Let us explain
why. The marginal likelihood has the explicit form
of log det(K 4+ n\l) + (y, (K +nAI) " 'y) +n/2log 2.
The second term has the quadratic form as we have
already seen (e.g., Eq. 3) and indeed subsampling can
approximate it. The difficulty is in the first term,
which we have to deal with the determinant of the
kernel matrix. Remember that we treat the kernel
matrix as the graphon in our analysis. However, the
determinant of the graphon is not well-defined, mean-
ing that we cannot compare kernel matrices with dif-
ferent sample size, and therefore, the approximation
accuracy remains unknown. Further investigation on
the marginal likelihood approximation is one of our
future works.
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