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A OUTLINE

The appendix of this paper is organized as follows:

• Appendix B provides the proofs for Section 3.

• Appendix C shows how we can replace d
2
⌘̄ in Theorem 1 by stronger notions.

• Appendix D provides an example in which taking a learning rate larger than results in faster learning under
misspecification than ⌘ = 1.

• Appendix E provides (implementation) details on the ⌘-generalized Bayesian lasso and logistic regression;
and the Safe-Bayesian algorithm.

• Appendix F contains details for the experiments and figures in the main text, and provides additional figures.

B PROOFS

B.1 Proof of Theorem 2

The second part of the theorem about the Gaussian location family is a straightforward calculation, which we
omit. As to the first part (Part (i)—(iii)), we will repeatedly use the following fact: for every ⇥ that is a
nonempty compact subset of the interior of ⇥̄, in particular for ⇥ = [✓, ✓̄] with ✓ < ✓̄ both in the interior of ⇥,
we have: −∞ < inf

✓∈⇥F (✓) < sup
✓∈⇥ F (✓) <∞

−∞ < inf
✓∈⇥F

′(✓) < sup
✓∈⇥ F

′(✓) <∞
0 < inf

✓∈⇥F
′′(✓) < sup

✓∈⇥ F
′′(✓) <∞.

(7)

Now, let ✓, ✓∗ ∈ ⇥. We can write

E �e−⌘(`✓−`✓∗)� = EY ∼P �� p✓(Y )
p✓∗(Y )�

⌘� = exp (−G(⌘(✓ − ✓∗)) + ⌘F (✓∗) − ⌘F (✓)) . (8)

where G(�) = − logEY ∼P [exp(�Y )]. If this quantity is −∞ for all ⌘ > 0, then (i) holds trivially. If not, then (i)
is implied by the following statement:

lim sup
✏→0

{⌘ ∶ for all ✓ ∈ [✓∗ − ✏, ✓∗ + ✏], E[exp(⌘Lp✓)] ≤ 1} = (�∗)2
�2

. (9)

Clearly, this statement also implies (iii). To prove (i), (ii) and (iii), it is thus su�cient to prove (ii) and (9). We
prove both by a second-order Taylor expansion (around ✓

∗) of the right-hand side of (8).

Preliminary Facts. By our assumption there is a ⌘
○ > 0 such that E[exp(⌘○�Y �)] = C̄ <∞. Since ✓

∗ ∈ ⇥ = [✓, ✓]
we must have for every 0 < ⌘ < ⌘○�(2�✓ − ✓�), every ✓ ∈ ⇥,

E[exp(2⌘(✓ − ✓∗) ⋅ Y )] ≤ E[exp(2⌘�✓ − ✓∗� ⋅ �Y �)] ≤ E[exp(⌘○(�✓ − ✓∗���✓ − ✓�) ⋅ �Y �)] ≤ C̄ <∞. (10)

The first derivative of the right of (8) is:

⌘E �(Y − F ′(✓)) exp�⌘�(✓ − ✓∗)Y + F (✓∗) − F (✓)��� . (11)

The second derivative is:

E ��−⌘F ′′(✓) + ⌘2(Y − F ′(✓))2� ⋅ exp�⌘�(✓ − ✓∗)Y + F (✓∗) − F (✓)��� . (12)

We will also use the standard result (Grünwald, 2007; Barndor↵-Nielsen, 1978) that, since we assume ✓
∗ ∈ ⇥,

E[Y ] = EY ∼P✓∗ [Y ] = µ(✓∗); for all ✓ ∈ ⇥̄: F ′(✓) = µ(✓); F
′′(✓) = EY ∼P✓(Y −E(Y ))2, (13)
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the latter two following because F is the cumulant generating function.

Part (ii). We use an exact second-order Taylor expansion via the Lagrange form of the remainder. We already
showed there exist ⌘′ > 0 such that, for all 0 < ⌘ ≤ ⌘′, all ✓ ∈ ⇥, E[exp(2⌘(✓ − ✓∗)Y )] <∞. Fix any such ⌘. For
some ✓

′ ∈ {(1 − ↵)✓ + ↵✓∗∶↵ ∈ [0,1]}, the (exact) expansion is:

E �e−⌘(`✓−`✓∗)� = 1 + ⌘(✓ − ✓∗)E [Y − F ′(✓∗)] − ⌘

2
(✓ − ✓∗)2F ′′(✓′) ⋅E �exp�⌘�(✓′ − ✓∗)Y + F (✓∗) − F (✓′)���

+ ⌘
2

2
(✓ − ✓∗)2E �(Y − F ′(✓′))2 ⋅ exp�⌘�(✓′ − ✓∗)Y + F (✓∗) − F (✓′)��� .

Defining � = ✓′ − ✓, and since F
′(✓∗) = E[Y ] (see (13)), we see that the central condition is equivalent to the

inequality:

⌘E �(Y − F ′(✓′))2e⌘�Y � ≤ F ′′(✓′)E �e⌘�Y � .
From Cauchy-Schwarz, to show that the ⌘-central condition holds it is su�cient to show that

⌘ �(Y − F ′(✓′))2�
L2(P ) �e⌘�Y �

L2(P ) ≤ F ′′(✓′)E �e⌘�Y � ,
which is equivalent to

⌘ ≤ F
′′(✓′)E �e⌘�Y ��

E [(Y − F ′(✓′))4]E [e2⌘�Y ] . (14)

We proceed to lower bound the RHS by lower bounding each of the terms in the numerator and upper bounding
each of the terms in the denominator. We begin with the numerator. F ′(✓) is bounded by (7). Next, by Jensen’s
inequality,

E [exp(⌘�Y )] ≥ exp(E[⌘� ⋅ Y ]) ≥ exp(−⌘○�✓ − ✓��µ(✓∗)�)
is lower bounded by a positive constant. It remains to upper bound the denominator. Note that the second factor
is upper bounded by the constant C̄ in (10). The first factor is bounded by a fixed multiple of E �Y �4+E[F ′(✓)4].
The second term is bounded by (7), so it remains to bound the first term. By assumption E[exp(⌘○�Y �)] ≤ C̄
and this implies that E �Y 4� ≤ a

4 + C̄ for any a ≥ e such that a
4 ≤ exp(⌘○a); such an a clearly exists and only

depends on ⌘
○.

We have thus shown that the RHS of (14) is upper bounded by a quantity that only depends on C̄,⌘
○ and the

values of the extrema in (7), which is what we had to show.

Proof of (iii). We now use the asymptotic form of Taylor’s theorem. Fix any ⌘ > 0, and pick any ✓ close enough
to ✓

∗ so that (8) is finite for all ✓′ in between ✓ and ✓
∗; such a ✓ ≠ ✓∗ must exist since for any � > 0, if �✓ − ✓∗� ≤ �,

then by assumption (8) must be finite for all ⌘ ≤ ⌘○��. Evaluating the first and second derivative (11) and (12)
at ✓ = ✓∗ gives:

E �e−⌘(`✓−`✓∗)� = 1 + ⌘(✓ − ✓∗)E [Y − F ′(✓∗)] − �⌘
2
(✓ − ✓∗)2F ′′(✓∗) − ⌘

2

2
(✓ − ✓∗)2 ⋅E �(Y − F ′(✓∗))2��

+ h(✓)(✓ − ✓∗)2 = 1 − ⌘

2
(✓ − ✓∗)2F ′′(✓∗) + ⌘

2

2
(✓ − ✓∗)2E �(Y − F ′(✓∗))2� + h(✓)(✓ − ✓∗)2,

where h(✓) is a function satisfying lim✓→✓∗ h(✓) = 0, where we again used (13), i.e. that F
′(✓∗) = E [Y ]. Using

further that �2 = E �(Y − F ′(✓∗))2� and F
′′(✓∗) = (�∗)2, we find that E �e−⌘(`✓−`✓∗)� ≤ 1 i↵

−⌘
2
(✓ − ✓∗)2(�∗)2 + ⌘

2

2
(✓ − ✓∗)2�2 + h(✓)(✓ − ✓∗)2 ≤ 0.

It follows that for all � > 0, there is an ✏ > 0 such that for all ✓ ∈ [✓∗ − ✏, ✓∗ + ✏], all ⌘ > 0,
⌘
2

2
�
2 ≤ ⌘

2
(�∗)2 − �⇒ E �e−⌘(`✓−`✓∗)� ≤ 1 (15)

⌘
2

2
�
2 ≥ ⌘

2
(�∗)2 + �⇒ E �e−⌘(`✓−`✓∗)� ≥ 1 (16)
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The condition in (15) is implied if:

0 < ⌘ ≤ (�∗)2
�2

− 2�

⌘�2
.

Setting C = 4�2�(�∗)4 and ⌘� = (1 − C�)(�∗)2��2 we find that for any � < (�∗)4�(8�2), we have 1 − C� ≥ 1�2
and thus ⌘� > 0 so that in particular the premise in (15) is satisfied for ⌘�. Thus, for all small enough �, both
the premise and the conclusion in (15) hold for ⌘� > 0; since lim�↓0 ⌘� = (�∗)2��2, it follows that there is an
increasing sequence ⌘(1),⌘(2), . . . converging to (�∗)2��2 such that for each ⌘(j), there is ✏(j) > 0 such that for

all ✓ ∈ [✓∗ − ✏(j), ✓∗ + ✏(j)], E �e−⌘(j)(`✓−`✓∗)� ≤ 1. It follows that the lim sup in (9) is at least (�∗)2��2. A similar
argument (details omitted) using (16) shows that the lim sup is at most this value; the result follows.

B.2 Proof of Proposition 2

For arbitrary conditional densities p′(y � x) with corresponding distribution P
′ �X for which

EP ′[Y �X] = g−1(��,X), (17)

and densities pf∗ = p�∗ and p� with �
∗
,� ∈ B, we can write:

EX∼P EY ∼P ′�X �log p�∗(Y �X)
p�(Y �X) � = EE �(✓X(�∗) − ✓X(�))Y − log F (✓X(�∗))

F (✓X(�)) �X�
= EX∼P �(✓X(�∗) − ✓X(�))g−1(��,X�d� − logF (✓X(�∗)) + logF (✓X(�)) �X� ,

where the latter equation follows by (17). The result now follows because (17) both holds for the ‘true’ P and
for Pf∗ .

B.3 Proof of Proposition 1

The fact that under the three imposed conditions the ⌘̄-central condition holds for some ⌘̄ > 0 is a simple
consequence of Theorem 2: Condition 1 implies that there is some compact ⇥ such that for all x ∈ X , � ∈ B,
✓x(�) ∈ ⇥. Condition 3 then ensures that ✓x(�) lies in the interior of this ⇥. And Condition 2 implies that ⌘̄ in
Theorem 2 can be chosen uniformly for all x ∈ X .
C EXCESS RISK AND KL DIVERGENCE INSTEAD OF GENERALIZED

HELLINGER DISTANCE

The misspecification metric/generalized Hellinger distance d⌘̄ appearing in Theorem 1 is rather weak (it is ‘easy’
for two distributions to be close) and lacks a clear interpretation for general, non-logarithmic loss functions.
Motivated by these facts, GM study in depth under what additional conditions the (square of this) metric can be
replaced by a stronger and more readily interpretable divergence measure. They come up with a new, surprisingly
weak condition, the witness condition, under which d⌘̄ can be replaced by the excess risk EP [Lf ], which is the
additional risk incurred by f as compared to the optimal f∗. For example, with the squared error loss, this is the
additional mean square error of f compared to f

∗; and with (conditional) log-loss, it is the well-known generalized

KL divergence EX,Y ∼P [log pf∗(Y �X)
pf (Y �X) ], coinciding with standard KL divergence if the model is correctly specified.

Bounding the excess risk is a standard goal in statistical learning theory; see for example (Bartlett et al., 2005;
Van Erven et al., 2015).

The following definition appears (with substantial explanation including the reason for its name) as Definition
12 in GM:

Definition 2 (Empirical Witness of Badness). We say that (P, `,F) satisfies the (u, c)-empirical witness of
badness condition (or witness condition) for constants u > 0 and c ∈ (0,1] if for all f ∈ F

E �(`f − `f∗) ⋅ 1{`f−`f∗≤u}� ≥ cE[`f − `f∗].
More generally, for a function ⌧ ∶ R+ → [1,∞) and constant c ∈ (0,1) we say that (P, `,F) satisfies the (⌧, c)-
witness condition if for all f ∈ F , E[`f − `f∗] <∞ and

E �(`f − `f∗) ⋅ 1{`f−`f∗≤⌧(E[`f−`f∗ ])}� ≥ cE[`f − `f∗].
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It turns out that the (⌧, c)-witness condition holds in many practical situations, including our GLM-under-
misspecification setting. Before elaborating on this, let us review (a special case of) Theorem 12 of GM, which
is the analogue of Theorem 1 but with the misspecification metric replaced by the excess risk.

First, let, for arbitrary 0 < ⌘ < ⌘̄, cu ∶= 1
c
⌘u+1
1− ⌘

⌘̄
. Note that for large u, cu is approximately linear in u�c.

Theorem 3. [Specialization of Theorem 12 of GM] Consider a learning problem (P, `,F). Suppose that

the ⌘̄-strong central condition holds. If the (u, c)-witness condition holds, then for any ⌘ ∈ (0, ⌘̄),
EZn∼P Ef∼⇧n [E[Lf ]] ≤ cu ⋅EZn∼P [ICn,⌘ (⇧0)] , (18)

with cu as above. If instead the (⌧, c)-witness condition holds for some nonincreasing function ⌧ as above, then

for any � > 0,
EZn∼P Ef∼⇧n [E[Lf ]] ≤ � + c⌧(�) ⋅EZn∼P [ICn,⌘ (⇧0)] .

The actual theorem given by GM generalizes this to an in-probability statement for general (not just generalized
Bayesian) learning methods. If the (u, c)-witness condition holds, then, as is obvious from (18) and Theorem 1,
the same rates can be obtained for the excess risk as for the squared misspecification metric. For the (⌧, c)-
witness condition things are a bit more complicated; the following lemma (Lemma 16 of GM) says that, under
an exponential tail condition, (⌧, c)-witness holds for a su�ciently ‘nice’ function ⌧ , for which we loose at most
a logarithmic factor:

Lemma 1. Define M ∶= supf∈F E �eLf � and assume that the excess loss Lf has a uniformly exponential upper

tail, i.e. M <∞. Then, for the map ⌧ ∶ x � 1∨−1log 2M

x = O(1∨ log(1�x)), the (⌧, c)-witness condition holds

with c = 1�2.
As an immediate consequence of this lemma, GM’s theorem above gives that for any ⌘ ∈ (0, ⌘̄), (using � = 1�n),
there is C⌘ <∞ such that

EZn∼P Ef∼⇧n �E[Lf ]� ≤ 1

n
+C⌘ ⋅ (logn) ⋅EZn∼P �IC⌘,n �f∗ �⇧��� , (19)

so our excess risk bound is only a log factor worse than the bound that can be obtained for the squared
misspecification metric in Theorem 1. We now apply this to the misspecified GLM setting:

Generalized Linear Models and Witness Recall that the central condition holds for generalized linear
models under the three assumptions made in Proposition 1. Let `� ∶= `�(X,Y ) = − log p�(Y � X) be the loss
of action � ∈ B on random outcome (X,Y ) ∼ P , and let �

∗ denote the risk minimizer over B. The first two
assumptions taken together imply, via (7), that there is a  > 0 such that

sup
�∈BEX,Y ∼P �e(`�−`�∗)� ≤ sup

�∈B,x∈X EY ∼P �X=x �e(`�−`�∗)�
= sup
�∈B,x∈X �

F✓x(�)
F✓x(�∗)

� ⋅EY ∼P �X=x �e�Y �� <∞.

The conditions of Lemma 1 are thus satisfied, and so the (⌧, c)-witness condition holds for the ⌧ and c in that
lemma. From (19) we now see that we get an O((logn)2�n) bound on the expected excess risk, which is equal
to the parametric (minimax) rate up to a (logn)2 factor. Thus, fast learning rates in terms of excess risks and
KL divergence under misspecification with GLMs are possible under the conditions of Proposition 1.

D LEARNING RATE > 1 FOR MISSPECIFIED MODELS

In what follows we give an example of a misspecified setting, where the best performance is achieved with the
learning rate ⌘ > 1. Consider a model {P� ,� ∈ [0.2,0.8]}, where P� is a Bernoulli distribution with P�(Y = 1) = �.
Let the data Y1, . . . , Yn be sampled i.i.d. from P0, i.e. Yi = 0 for all i = 1, . . . , n. In this case the log-likelihood
function is given by

log p(Y1, . . . , Yn ��) = n log(1 − �).
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Observe that in this setting �
� = 0.2. Now assume that the model is correct and data Y

′
1 , . . . , Y

′
n is sampled i.i.d.

from P� with � = 0.2. Then the log-likelihood is

log p(Y ′1 , . . . , Y ′n �� = 0.2) ≈ 0.2n log 0.2 + 0.8n log 0.8� n log 0.8 = log p(Y1, . . . , Yn �� = 0.2).
Thus, the data are more informative about the best distribution than they would be if the model were correct.
Therefore, we can a↵ord to learn ‘faster’: let the data be more important and the (regularizing) prior be less
important. This is realized by taking ⌘ >> 1
E MCMC SAMPLING

E.1 The ⌘-generalized Bayesian lasso

Here, following Park and Casella (2008) we consider a slightly more general version of the regression problem:

Y = µ +X� + ",
where µ ∈ Rn is the overall mean, � ∈ Rp is the vector of parameters of interest, y ∈ Rn, X ∈ Rn×p, and
" ∼ N(0,�2

In) is a noise vector. For a given shrinkage parameter � > 0 the Bayesian lasso of Park and Casella
(2008) can be represented as follows.

Y �µ,X,�,�
2 ∼ N(µ +X�,�

2
In) , (20)

��⌧21 , . . . , ⌧2p ,�2 ∼ N(0,�2
D⌧), D⌧ = diag(⌧21 , . . . , ⌧2p ) ,

⌧
2
1 , . . . , ⌧

2
p ∼ p�

j=1
�
2

2
e
−�2⌧2

j �2d⌧2j , ⌧
2
1 , . . . , ⌧

2
p > 0 ,

�
2 ∼ ⇡(�2)d�2

.

In this model formulation the µ on which the outcome variables Y depend, is the overall mean, from which X�

are deviations. The parameter µ can be given a flat prior and subsequently integrated out, as we do in the
coming sections.

We will use the typical inverse gamma prior distribution on �
2, i.e. for �2 > 0

⇡(�2) = �
↵

�(↵)�−2↵−2e−���
2

,

where ↵,� > 0 are hyperparameters. With the hierarchy of (20) the joint density for the posterior with the
likelihood to the power ⌘ becomes

(f(Y �µ,�,�2))⌘ ⇡(�2)⇡(µ) p�
j=1

⇡(�j �⌧2j ,�2)⇡(⌧2j ) =
= � 1

(2⇡�2)n�2 e
1

2�2 (Y −µ1n−X�)T (Y −µ1n−X�)�⌘ �
↵

�(↵)�−2↵−2e−
�

�2

p�
j=1

1

(2�2⌧2j )1�2 e
− 1

2�2⌧2
j
�2
j �

2

2
e
−�2⌧2

j �2 . (21)

Let Ỹ be Y − Y . If we integrate out µ, the joint density marginal over µ is proportional to

�
−⌘(n−1)

e
− ⌘

2�2 (Ỹ −X�)T (Ỹ −X�) �−2↵−2 e− �

�2

p�
j=1

1

(�2⌧2j )1�2 e
− 1

2�2⌧2
j
�2
j
e
−�2⌧2

j �2. (22)

First, observe that the full conditional for � is multivariate normal: the exponent terms involving � in (22) are

− ⌘

2�2
(Ỹ −X�)T (Ỹ −X�) − 1

2�2
�
T
D⌧
−1
� = − 1

2�2
�(�T (⌘XT

X +D⌧
−1)� − 2⌘Ỹ X� + ⌘Ỹ T

Ỹ )� .
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If we now write M⌧ = (⌘XT
X +D⌧

−1)−1 and complete the square, we arrive at

− 1

2�2
�(� − ⌘M⌧X

T
Ỹ )TM−1

⌧ (� − ⌘M⌧X
T
Ỹ ) + Ỹ T (⌘In − ⌘2X−1M⌧X

T )Ỹ � .
Accordingly we can see that � is conditionally multivariate normal with mean ⌘M⌧X

T
Ỹ and variance �

2
M⌧ .

The terms in (22) that involve �
2 are:

(�2){−⌘(n−1)�2−p�2−↵−1} exp� − ⌘

2�2
(Ỹ −X�)T (Ỹ −X�) − 1

2�2
�
T
D⌧
−1
� − �

�2
�.

We can conclude that �
2 is conditionally inverse gamma with shape parameter

⌘
n − 1
2
+ p

2
+ ↵ and scale parameter

⌘

2
(Ỹ −X�)T (Ỹ −X�) + �T

D⌧
−1
��2 + �.

Since ⌧
2
j is not involved in the likelihood, we need not modify the implementation of it and follow Park

and Casella (2008):
1

⌧2j

∼ IG���2�2��2
j , �

2� .
Summarizing, we can implement a Gibbs sampler with the following distributions:

� ∼ N �⌘(⌘XT
X +D⌧

−1)−1XT
Ỹ , �

2(⌘XT
X +D⌧

−1)−1� , (23)

�
2 ∼ Inv-Gamma�⌘

2
(n − 1) + p�2 + ↵, ⌘

2
(Ỹ −X�)T (Ỹ −X�) + �T

D⌧
−1
��2 + �� , (24)

1

⌧2j

∼ IG���2�2��2
j , �

2� . (25)

There are several ways to deal with the shrinkage parameter �. We follow the hierarchical Bayesian approach
and place a hyperprior on the parameter. In our implementation we provide three ways to do so: a point mass
(resulting in a fixed �), a gamma prior on �

2 following Park and Casella (2008) and a beta prior following De
los Campos et al. (2009), details about the implementation of the latter two priors can be found in those papers
respectively.

E.2 The ⌘-generalized Bayesian logistic regression

We follow the construction of the Pólya–Gamma latent variable scheme for constructing a Bayesian estimator
in the logistic regression context described in Polson et al. (2013).

First, for b > 0 consider the density function of a Pólya-Gamma random variable PG(b,0)
p(x � b,0) = 2b−1

�(b)
∞�
n=1(−1)

n �(n + b)
�(n + 1)

(2n + b)√
2⇡x3

e
− (2n+b)28x .

The general class PG(b, c) (b, c > 0) is defined through an exponential tilting of the PG(b,0) and has the density
function

p(x � b, c) = e
− c2x

2 p(x�b,0)
Ee− c2!

2

,

where ! ∼ PG(b,0).
To derive our Gibbs sampler we use the following result from Polson et al. (2013).

Theorem E.1. Let pb,0(!) denote the density of PG(b,0). Then for all a ∈ R
(e )a
(1 + e )b = 2−be �

∞
0

e
−! 2�2

pb,0(!)d!,
where  = a − b�2.
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According to Theorem E.1 the likelihood contribution of the observation i taken to the power ⌘ can be written
as

Li,⌘(�) = �����
(eXT

i �)yi
1 + eXT

i �

�����
⌘

∝ e
⌘iX

T
i � � ∞

0
e
−!i

(XT
i �)2
2 p(!i �⌘,0),

where i ∶= yi − 1�2 and p(!i �⌘,0) is the density function of PG(⌘,0).
Let

X ∶= (X1, . . . ,Xn)T , Y ∶= (Y1, . . . , Yn)T ,  ∶= (1, . . . ,n)T ,
! ∶= (!1, . . . ,!n)T , ⌦ ∶= diag(!1, . . . ,!n).

Also, denote the density of the prior on � by ⇡(�). Then the conditional posterior of � given ! is

p(� �!, Y )∝ ⇡(�) n�
i=1

Li,⌘(� �!i) = ⇡(�) n�
i=1

e
⌘iX

T
i �−!i

(XT
i �)2
2 ∝ ⇡(�)e− 1

2 (z−X�)T⌦(z−X�)
,

where z ∶= ⌘(1

!1
, . . . ,

n

!n
). Observe that the likelihood part is conditionally Gaussian in �. Since the prior on

� is Gaussian, a simple linear-model calculation leads to the following Gibbs sampler. To sample from the the
⌘-generalized posterior one has to iterate these two steps

!i �� ∼PG(⌘,XT
i �), (26)

� �Y,! ∼N (m!, V!), (27)

where

V! ∶=(XT⌦X +B−1)−1,
m! ∶=V!(⌘XT

 +B−1b).
To sample from the Pólya-Gamma distribution PG(b, c) we adopt a method from (Windle et al., 2014), which is
based on the following representation result. According to Polson et al. (2013) a random variable ! ∼ PG(b, c)
admits the following representation

!
d= ∞�

n=0
gn

dn
,

where gn ∼ Ga(b,1) are independent Gamma distributed random variables, and

dn ∶= 2⇡2(n + 1

2
)2 + 2c2.

Therefore, we approximate the PG random variable by a truncated sum of weighted Gamma random variables.
(Windle et al., 2014) shows that the approximation method performs well with the truncation level N = 300.
Furthermore, we performed our own comparison of the sampler with the STAN implementation for Bayesian
logistic regression, which showed no di↵erence between the methods (for ⌘ = 1).
E.3 The Safe-Bayesian Algorithms

The version of the Safe-Bayesian algorithm we are using for the experiments is called R-log-SafeBayes, more
details and other versions can be found in Grünwald and Van Ommen (2017). The ⌘̂ is chosen from a grid of
learning rates ⌘ that minimizes the cumulative Posterior-Expected Posterior-Randomized log-loss :

n�
i=1

E�,�2∼⇧�zi−1,⌘ �− log f(Yi�Xi,�,�
2)� .

Minimizing this comes down to minimizing

n−1�
i=1

av �1
2
log 2⇡�2

i,⌘ + 1

2

(Yi+1 −Xi+1�i,⌘)2
�2
i,⌘

� .
The loss between the brackets is averaged over many draws of (�i,⌘,�

2
i,⌘) from the posterior, where �i,⌘ (or �2

i,⌘)

denotes one random draw from the conditional ⌘-generalized posterior based on data points zi. For the sake of
completeness we present the algorithm below.
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Algorithm 1: The R-Safe-Bayesian algorithm

Input : data z1, . . . zn, modelM = {f(⋅�✓)�✓ ∈ ⇥}, prior ⇧ on ⇥, step-size Kstep, max. exponent Kmax, loss
function `✓(z)

Output: Learning rate ⌘̂Sn ∶= {1,2−KSTEP ,2−2KSTEP ,2−3KSTEP , . . . ,2−KMAX ,} ;
for all ⌘ ∈ Sn do

s⌘ ∶= 0 ;
for i = 1 . . . n do

Determine generalized posterior ⇧(⋅�zi−1,⌘) of Bayes with learning rate ⌘.
Calculate posterior-expected posterior-randomized loss of predicting actual next outcome:

r ∶= `⇧�zi−1,⌘(zi) = E✓∼⇧�zi−1,⌘ [`✓(zi)] (28)

s⌘ ∶= s⌘ + r ;
end

end
Choose ⌘̂ ∶= argmin⌘∈Sn

{s⌘} (if min achieved for several ⌘ ∈ Sn, pick largest) ;

Figure 5: Prediction of standard Bayesian lasso (blue) and Safe-Bayesian lasso (red, ⌘ = 0.5) with n = 200,
p = 100.
F DETAILS FOR THE EXPERIMENTS AND FIGURES

Below we present the results of additional simulation experiments for Section 5.1 (Appendix F.1) and the de-
scription of experiments with real-world data (Appendix F.2). We also give details for Figure 2 in Appendix F.3.

F.1 Additional Figures for Section 5.1

Consider the regression context described in Section 5.1. Here, we explore di↵erent choices of the number of
Fourier basis functions, showing that regardless of the choice Safe-Baysian lasso outperforms its standard coun-
terpart. In Figures 5 and 6 we see conditional expectations E [Y �X] according to the posteriors of the standard
Bayesian lasso (blue) and the Safe-Bayesian lasso (red, ⌘̂ = 0.5) for the wrong-model experiment described in
Section 5.1, with 100 data points. We take 201 and 25 Fourier basis functions respectively.

Now we consider logistic regression setting and show that even for some well-specified problems it is beneficial
to choose ⌘ ≠ 1. In Figure 7 we see a comparison of the log-risk for ⌘ = 1 and ⌘ = 3 in the well-specified logistic
regression case (described in Section 5.1). Here p = 1 and � = 4.
F.2 Real-world data

Seattle Weather Data The R-package weatherData (Narasimhan, 2014) loads weather data available online
from www.wunderground.com. Besides data from many thousands of personal weather stations and government
agencies, the website provides access to data from Automated Surface Observation Systems (ASOS) stations
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Figure 6: Prediction of standard Bayesian lasso (blue) and Safe-Bayesian lasso (red, ⌘ = 0.5) with n = 200,
p = 12.

0 50 100 150 200 250 300

0.
28

0.
30

0.
32

0.
34

0.
36

0.
38

Sample Size

R
is

k

Gen. Bayesian Logistic regression, eta=1
Gen. Bayesian Logistic regression, eta=3

Figure 7: Simulated logistic risk as a function of the sample size for the correct-model experiments described in

Section 5.1 according to the posterior predictive distribution of standard Bayesian logistic regression (⌘ = 1), and
generalized Bayes (⌘ = 3).
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located at airports in the US, owned and maintained by the Federal Aviation Administration. Among them is a
weather station at Seattle Tacoma International Airport, Washington (WMO ID 72793). From this station we
collected the data for this experiment.

The training data are the maximum temperatures for each day of the year 2011 at Seattle airport. We divided
the data randomly in a training set (300 measurements) and a test set (65 measurements). First, we sampled
the posterior of the standard Bayesian lasso with a 201-dimensional Fourier basis and standard improper priors
on the training set, and we did the same for the Horseshoe. Next, we sampled the generalized posterior with the
learning rate ⌘̂ learned by the Safe-Bayesian algorithm, with the same model and priors on the same training set.
The grid of ⌘’s we used was 1,0.9,0.8,0.7,0.6,0.5. We compare the performance of the standard Bayesian lasso
and Horseshoe and the Safe-Bayesian versions of the lasso (SB) in terms of mean square error. In all experiments
performed with di↵erent partitions, priors and number of iterations, SafeBayes never picked ⌘̂ = 1. We averaged
over 10 runs. Moreover, whichever learning rate was chosen by SafeBayes, it always outperformed standard
Bayes (with ⌘ = 1) in an unchanged set-up. Experiments with di↵erent priors for � yielded similar results.

London Air Pollution Data As training set we use the following data. We start with the first four weeks of
the year 2013, starting at Monday January 7 at midnight. We have a measurement for (almost) every hour until
Sunday February 3rd, 23.00. We also have data for the first four weeks of 2014, starting at Monday January 6
at midnight, until Sunday February 2nd, 23.00. For each hour in the four weeks we randomly pick a data point
from either 2013 or 2014. We remove the missing values. We predict for the same time of year in 2015: starting
at Monday January 5 at midnight, until Sunday February 1st at 23.00. We do this with a (Safe-)Bayesian lasso
and Horseshoe with a 201-dimensional Fourier basis and standard improper priors. The grid of ⌘’s we used
for the Safe-Bayesian algorithm was again 1,0.9,0.8,0.7,0.6,0.5. We look at the mean square prediction errors,
and average the errors over 20 runs of the generalized Bayesian lasso with the ⌘ learned by SafeBayes, and the
standard Bayesian lasso and Horseshoe. Again we find that SafeBayes clearly performs better than standard
Bayes.

F.3 Details for Figure 2

Here we sampled the posteriors of the standard and generalized Bayesian lasso (⌘ = 0.25) on 50 model-wrong data
points (approximately half easy points) with 101 Fourier basis functions, and estimated the predictive variance
on a grid of new data points Xnew = {−1.00,−0.99, . . . ,1.00} with the Monte Carlo estimate:

ˆvar(Ynew �Xnew, Zold) = E✓�Zold
[var(Ynew � ✓)] + ˆvar [E(Ynew � ✓)] , (29)

where

E✓�Zold
[var(Ynew � ✓)] = 1

m

m�
k=1

�
2[k] = �2,

ˆvar [E(Ynew � ✓)] = ˆvar [Xnew�] = 1

m

m�
k=1
�Xnew�

[k]�2 − �Xnew��2 .

Here � is the posterior mean of the parameter for the coe�cients and �2 is the posterior mean of the variance.


