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Abstract

Identifying features that leak information
about sensitive attributes is a key chal-
lenge in the design of information obfusca-
tion mechanisms. In this paper, we pro-
pose a framework to identify information-
leaking features via information density es-
timation. Here, features whose information
densities exceed a pre-defined threshold are
deemed information-leaking features. Once
these features are identified, we sequentially
pass them through a targeted obfuscation
mechanism with a provable leakage guaran-
tee in terms of Eγ-divergence. The core
of this mechanism relies on a data-driven
estimate of the trimmed information den-
sity for which we propose a novel estimator,
named the trimmed information density es-
timator (TIDE). We then use TIDE to im-
plement our mechanism on three real-world
datasets. Our approach can be used as a
data-driven pipeline for designing obfusca-
tion mechanisms targeting specific features.

1 Introduction
A challenging problem in dataset and information
sharing platforms is limiting the leakage of sensitive
or private information. Sensitive information leakage
can be controlled by obfuscating samples in a dataset
prior to disclosure; i.e., perturbing the sample in a
way that sensitive information cannot be effectively
inferred (Bertran et al., 2019; Chen et al., 2019; Zemel
et al., 2013). Samples may contain several features,
only some of which might leak information about sen-
sitive attributes. For example, not all areas in a fa-
cial image equally disclose emotion (as a sensitive at-
tribute), and not all terms used in Tweets equally re-
veal a user’s political preference. Given a set of sensi-
tive attributes, an information obfuscation mechanism
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should ideally target only those features of the data
that leak excessive amount of sensitive information.
Such mechanisms usually achieve higher utility (e.g.,
the quality of the image) by incorporating either com-
plete (cf. information-theoretic privacy (Calmon and
Fawaz, 2012; Asoodeh et al., 2018; Issa et al., 2018; Hsu
et al., 2018; Diaz et al., 2018)) or partial (cf. generative
adversarial privacy (Huang et al., 2017)) knowledge of
the underlying data distribution.

In this paper, we propose a data-driven information-
obfuscation mechanism. As a natural first step, we
identify the information-leaking features in the data
via an information-theoretic quantity called the infor-
mation density (Pinsker, 1964). This quantity is at
the heart of most information-theoretic measures of
privacy (Asoodeh et al., 2018; Issa et al., 2018; Hsu
et al., 2018) as well as differential privacy (DP) (Bun
and Steinke, 2016; Dwork and Rothblum, 2016; Balle
and Wang, 2018; Chaudhuri et al., 2011). Intuitively,
the information density captures the change of the be-
lief about a sensitive attribute upon an observation of
a sample in a disclosed dataset.

Features whose information density are above a certain
threshold (which we call information-leaking features)
can be randomized (e.g., perturbed) via an obfusca-
tion mechanism. The goal of the obfuscation mecha-
nism is to limit unwanted inferences about a sensitive
attribute from disclosed data. We argue that this ob-
jective can be mathematically formulated in terms of
a specific type of f -divergence (Csiszár, 1967), called
the Eγ-divergence, which captures the tail distribu-
tion of the information density. We propose a feature-
dependent Gaussian mechanism that ensures obfusca-
tion in terms of Eγ-divergence by targeting only the
information-leaking features.

The methodology proposed here aims to develop a the-
oretical foundation for expounding existing approaches
that completely rely on neural networks to identify and
obfuscate the information-leaking features (Bertran
et al., 2019; Chen et al., 2019). Despite its theoretical
nature, our approach has a comparable performance in
terms of sensitive information leakage as Bertran et al.
(2019), without a specific “utility” target having to be
pre-determined by a user. Furthermore, it adds a layer
of interpretability, enabling features that pose an ex-
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cessive leakage risk to be identified and communicated
to the data owner.

In practice, we need to estimate the information den-
sity from samples. This estimation problem is in-
herently connected to mutual information estimation
(since the expected value of information density is
equal to the mutual information) which is known to be
challenging (Valiant and Valiant, 2011; Wu and Yang,
2016; Gao et al., 2017) unless an adequate parametric
model is assumed (Vapnik, 2013). The main difficulty
lies in the unboundedness of the information density,
which leads to high sample complexity for reliable esti-
mation. However, since our mechanism perturbs only
information-leaking features, it requires the trimmed
information density whose estimation is a much easier
task than the original information density estimation
problem. Inspired by Belghazi et al. (2018); Liu et al.
(2017), we develop the trimmed information density
estimator (TIDE), based on the variational represen-
tations of f -divergences (Nguyen et al., 2010).

The contributions of this paper, from theoretical re-
sults to practice, are listed as follows:

1. We propose a framework for identifying
information-leaking features by the trimmed
information density, and use the Eγ-divergence
between the distributions over a sensitive at-
tribute prior and posterior to a disclosed sample
to measure the information leakage. Moreover,
we show that obfuscation mechanisms that aim
to minimize the Eγ-divergence satisfies several
desirable properties in terms of information
leakage guarantees (cf. Section 2).

2. We propose an estimator for the trimmed (thresh-
olded) information density, named TIDE, and de-
rive accompanying consistency and sample com-
plexity guarantees. On the practical side, we
present a neural network-based implementation
for the TIDE (cf. Section 3).

3. We apply the obfuscation mechanism in Sec-
tion 2 for image obfuscation (McPherson et al.,
2016; Oh et al., 2017; Wu et al., 2018) with
GENKI-4k (MPLab, 2009) and Celebrity At-
tributes (CelebA) (Liu et al., 2015) datasets, and
for identifying politically-charged terms in Tweets
collected from online media (Rachez, 2017) (cf.
Section 4). These experiments provide evidence
that the TIDE can potentially serve as a building
block in the design of obfuscation mechanisms.

Proofs, experimental details, discussions, and addi-
tional experiments on synthetic data are provided in
the Supplement. Source code for reproducing our ex-
perimental results is given at Hsu (2020).

Related Work The problem of balancing the com-
peting objectives of providing meaningful information
and inference from disclosed data, on the one hand,

and obfuscating sensitive information, on the other
hand, has been widely studied in information-theoretic
privacy (cf., e.g., Calmon and Fawaz (2012); Issa et al.
(2018); Diaz et al. (2018)). Following the information-
theoretic trend, these works exploit average measures
(in particular mutual information and its variants) to
obfuscate data. Recently, information obfuscation has
been achieved using neural networks. For example, in
Bertran et al. (2019), an optimization problem similar
to the privacy funnel (Makhdoumi et al., 2014) is for-
mulated to train a neural network to automatically ob-
fuscate sensitive information while maintaining utility.
In Chen et al. (2019); Huang et al. (2017), neural gen-
erative models are introduced to generate “privatized”
data that resemble the original data. These works rely
on neural networks to select and perturb features. The
approach proposed here is different in the sense that
it first identifies the information-leaking features using
the information density, and then applies local obfus-
cation only on these features.

The two-stepped approach of first identifying the
information-leaking features and then perturbing
those features is inspired by the instance-based ad-
ditive mechanism of Nissim et al. (2007) in the DP
setting. In fact, the information density appears in
DP under the name of privacy loss variable (cf., e.g.,
Dwork and Rothblum (2016), thereby connecting DP
and information-theoretic quantities, e.g., mutual in-
formation DP (Cuff and Yu, 2016) and Rényi DP
(Mironov, 2017). Despite this connection, we empha-
size that our approach is fundamentally different from
DP, in that we consider prior distribution on sensitive
attributes and also we allow correlation among fea-
tures (see, e.g., (Kifer and Machanavajjhala, 2011) for
the limitations of DP for correlated data).

Estimating information density from samples is con-
nected to density ratio estimation (Nguyen et al., 2010;
Liu et al., 2017; Yamada et al., 2011) — a funda-
mental task in various applications of machine learn-
ing and statistics, including outlier detection (Smola
et al., 2009), transfer learning (Sugiyama et al., 2007),
and generative adversarial networks (Goodfellow et al.,
2014). A näıve approach to determine the density ra-
tio is to use the plug-in estimator, which is known to
perform poorly (Vapnik, 2013) unless adequate para-
metric models (e.g., linear (Yamada et al., 2011), ker-
nel (Sugiyama et al., 2012), or exponential family (Liu
et al., 2017) models) are assumed. The two closest ap-
proaches to the trimmed information density estima-
tion in this paper are (i) Nguyen et al. (2010), which
proposed using the variational representation of f -
divergences to convert information density estimation
into an optimization problem over finite-complexity
set of functions and (ii) Liu et al. (2017), which es-
timated the trimmed density ratio of variables from
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exponential family distributions. We enforce a thresh-
old on the information density when solving the opti-
mization problem in the variational representation of
f -divergences (see Section 3).

Notation Capital letters (e.g., X) denote random
variables, and calligraphic letters (e.g., X ) denote
sets. We denote the probability measure of X × S
by PX,S , the conditional probability measure of S
given X by PS|X , and the marginal probability mea-
sure of X and S by PX and PS respectively. We use
PS|X(·|x) and PS|x interchangeably. We represent the
fact that X is distributed according to PX by X ∼
PX . KL-divergence is given by DKL(PS,X‖PSPX) =
EPS,X [log(PS,X/PSPX)]. We denote the realization
(i.e., sample) drawn from a probability distribution
by x = (x1, · · · , xj , · · · , xm), where xj is the jth fea-
ture for j = 1, · · · ,m. Similarly, Xj is the jth fea-
ture of the data variable. We denote [k] = [1, · · · , k],
xk = [x1, · · · , xk], and (z)+ = max{z, 0} for a scalar
z. Finally, Id×d is the identity matrix of dimension d,
and 1{·} is the indicator function.

2 Problem Formulation
We consider the setting where a user wishes to dis-
close data X (e.g., image, tweet) while controlling
the information revealed about a (correlated) sensi-
tive attribute S (e.g., emotion, political preference).
The goal is to produce an obfuscated representation Y
of X that discloses only negligible information about
S. We assume that X consists of m features, i.e.,
X = (X1, . . . , Xm), where each feature takes values
in a compact set X . Throughout this section, we as-
sume that (S,X) ∼ PS,X and the underlying distribu-
tion PS,X is given. This restrictive assumption will be
dropped in the subsequent section.

One possible approach to obfuscate X is to indepen-
dently perturb each feature (e.g., by adding noise to
each pixel of an image). However, in many applica-
tions, only a few features of the data are correlated
with the sensitive attribute, rendering adding indepen-
dent noise highly sub-optimal. In this section, we pro-
pose an information-theoretic framework for data ob-
fuscation which consists of two parts: First, we identify
information-leaking features, and then obfuscate only
those features. In particular, our framework allows the
flexibility to obfuscate those features in accordance to
privacy and utility requirements. This way, many fea-
tures need not be perturbed, leading to a potential
improvement in the utility of the disclosed data.

Our framework relies on an information-theoretic
quantity called the information density, a term coined
in Pinsker (1964) and has since been used in numer-
ous applications in information theory and statistics,
particularly in binary hypothesis testing (see, e.g.,
Neyman-Pearson Lemma (Cover and Thomas, 2012)).

Definition 1 (Information Density). Given a pair of
realization (s, x) of (S,X) ∼ PS,X , the information
density between s and x is defined as

i(s;x) , log
PS,X(s, x)

PS(s)PX(x)
= log

PX|S(x|s)
PX(x)

. (1)

Similarly, information density can be defined for each
feature xj as

i(s;xj) , log
PS,Xj (s, xj)

PS(s)PXj (xj)
, (2)

and the conditional information density between s and
xj given another feature xr as

i(s;xj |xr) , log
PS,Xj |Xr (s, xj |xr)

PS|Xr (s|xr)PXj |Xr (xj |xr)
. (3)

Intuitively, i(s;xj) evaluates the change of belief about
s upon observing xj . In particular, if |i(s;xj)| is
small, then xj does not significantly contribute in
increasing the belief of an adversary about s, since
PS|X(s|xj) ≈ PS(s). This, however, does not mean
that xj can be disclosed “as is” without incurring an
information leakage risk. To see why, consider, for ex-
ample, that m = 2, X1 and X2 are independent and
uniform binary random variables, and S = X1 + X2

(modulo 2). Although i(s;x1) = i(s;x2) = 0 for any
realization (s, x1, x2) of (S,X1, X2), the release of both
x1 and x2 would allow perfect reconstruction of s. To
account for such inferences of sensitive attributes, we
consider the conditional information density as a yard-
stick for identifying information-leaking features.

Definition 2 (Information-Leaking Feature). Given
an observed sample x = (x1, · · · , xm), j ∈ [m], and
ε ≥ 0, the feature xj is said to be an ε-information-
leaking feature if there exists a sensitive attribute s
such that |i(s;xj |xj−1)|> ε.

The threshold ε is a tradeoff parameter between in-
formation leakage risk and the utility of the disclosed
data (e.g., the quality of an image). Notice that if
the data is not equipped with a natural ordering (e.g.,
time series), we can choose an arbitrary ordering for
the conditioning features xj−1 (cf. Section 4.1 for an
example in images).

2.1 A Näıve Obfuscation Mechanism

Given any j ∈ [m], ε ≥ 0, and all features xj−1, define

Bεj (x
j−1)

, {x ∈ X : |i(s;x|xj−1)|> ε for some s ∈ S}.
(4)

If xj /∈ Bεj (xj−1), then it can be disclosed “as is” be-
cause it cannot be used to infer sensitive attributes
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given all the previous features. On the other hand,
each feature xj ∈ Bεj (x

j−1) is required to be obfus-
cated. To do so, we shall pass all such features se-
quentially through an obfuscation mechanisms to en-
sure that they no longer belong to Bεj (x

j−1).

Consider the mechanisms Mj : X → X such that if
xj /∈ Bεj (xj−1) then Mj(xj) = xj (deterministic) and

if xj ∈ Bεj (xj−1) then Mj(xj) generates Yj a random
variable from a distribution to be designed. A natural
question raised here is: how should information obfus-
cation be measured? To answer this question, we in-
troduce the obfuscation metric Pr(|i(s;Yj |yj−1|) > ε)
and require

Pr(|i(s;Yj |yj−1|) > ε) ≤ δ

m
, (5)

for all s ∈ S, where yj−1 is any output of the
M1(x1), . . . ,Mj−1(xj−1). Although this metric is in-
tuitive, it presents a serious drawback for use in prac-
tice. Any reasonable mechanism must be immune to
post-processing: any processing of the mechanism’s
output should only decrease the information leakage
risk or equivalently the obfuscation metric. However,
the obfuscation metric in (5) may violate this prop-

erty. To see this, let m = 1 and Ỹ be obtained by
applying an arbitrary post-processing to Y the out-
put of the mechanism M1 satisfying the obfuscation
metric Pr(i(Y ; s) > ε) ≤ δ for all s. Immunity to
post-processing is then equivalent to requiring

Pr(i(s; Ỹ ) > ε) ≤ Pr(i(s;Y ) > ε), (6)

for all s, ε ≥ 0 and δ ∈ [0, 1]. However, we show in the
following that there must exist some ε for which (6)

is violated. To see this, notice that E
[
PỸ |S(Ỹ |s)
PỸ (Ỹ )

]
=

E
[
PY |S(Y |s)
PY (Y )

]
= 1 and hence we have∫ ∞

0

Pr(ei(s;Ỹ ) ≥ t)dt =

∫ ∞
0

Pr(ei(s;Y ) ≥ t)dt. (7)

Suppose Eq. (6) is equality for all ε except an ε0 for
which it holds with strict inequality, then the integrals
in (7) cannot be equal; therefore, Eq. (6) must hold
with equality for all ε ≥ 0 which in turn implies

DKL(PỸ |s‖PỸ ) = DKL(PY |s‖PY ). (8)

However, according to data processing inequality for
KL divergence, Eq. (8) cannot hold true in general.
Therefore, there must exist some ε for which (6) does
not hold. For more details about this construction, see
Liu et al. (2017).

Next, we propose another metric in terms of a cer-
tain f -divergence, the so-called Eγ-divergence, and
show that it implies (5) while being immune to post-
processing.

2.2 Eγ-Divergence

To address the issue raised above, we resort to a par-
ticular divergence metric between two probability dis-
tributions called Eγ-divergence, and show that this di-
vergence bounds an appropriately weighted tail distri-
butions of i(s;Y ).

Definition 3 (Eγ-Divergence (Polyanskiy et al.,
2010)). Given two probability distributions P and Q
defined on the same support setA and γ ≥ 1, we define
Eγ-divergence as

Eγ(P‖Q) , sup
A⊂A

P (A)− γQ(A) (9)

=

∫
a∈A

(dP (a)− γdQ(a))+, (10)

where the equality comes from the fact that the opti-
mizer in (9) is A∗ = {a ∈ A|P (a)− γQ(a) ≥ 0}.

Eγ-divergence has been considered in various fields; for
example, it appears in DP literature as an equivalent
definition for differentially private mechanisms (see
e.g, Barthe and Olmedo (2013); Balle et al. (2019)),
in statistics as the probability of correct decision in
Bayesian binary hypothesis testing (Polyanskiy et al.,
2010), and in information theory for proving gen-
eral channel coding converse results (Polyanskiy et al.,
2010; Polyanskiy and Verdú, 2010).

Notice that Eγ(P‖Q) ≤ 1 for all γ ≥ 1 and any pair
of distributions (P,Q). It is clear that the constraint
Eγ(PY ‖PY |s) ≤ δ for some δ ∈ (0, 1) ensures that
PY (A) − γPY |s(A) ≤ δ for all subsets A ⊂ X and
in particular PY (A∗) ≤ δ. Since for γ = eε, the set
A∗ corresponds to the tail events of the random vari-
able i(Y ; s), we henceforth assume γ = eε. Note also
that to have control on both tail events {i(Y ; s) <
−ε} and {i(Y ; s) > ε}, we need to consider both
Eeε(PY ‖PY |s) ≤ δ and Eeε(PY |s‖PY ) ≤ δ. In the se-
quel, we present our results only for Eeε(PY |s‖PY ) ≤ δ.
The results for the reversed divergence can be derived
mutatis mutandis.

Having this divergence at our disposal, we can
now propose obfuscation criteria for the mechanisms
{Mj}. As before, if xj /∈ Bεj (xj−1), we set Mj(xj) =
xj ; otherwise, we shall construct randomized mecha-
nism Mj : X → X such that Mj(xj) = Yj satisfies

Eeε(PYj |s,yj−1‖PYj |yj−1) ≤ δ

m
, (11)

where yj−1 is a realizations of all previous mechanisms
M1(x1), . . . ,Mj−1(xj−1). The factor 1

m in the right-
hand side of (11) is only for the sake of normalization
(to be clarified in Theorem 2).

It is clear from (9) that upper bounds on
Eγ(PYj |s,yj−1‖PYj |yj−1) directly translate into low-
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leakage guarantee (5). Furthermore, since Eγ-
divergence belongs to the family of f -divergences (Sa-
son and Verdú, 2016), it satisfies the data processing
inequality which in turn implies that mechanisms sat-
isfying (11) are immune to post-processing.

To even further justify the choice of Eγ-divergence as
a “proxy” for the obfuscation metric in (5), we prove
in the following theorem an equivalent formula for
Eeε(PYj |s,yj−1‖PYj |yj−1) in terms of the tail distribu-

tion Pr(i(s;Yj |yj−1) > t) for t ≥ 0.

Theorem 1 (Tail Distribution Formula). Given dis-
tributions PYj |s,yj−1 and PYj |yj−1 , we have

Eeε(PYj |s,yj−1‖PYj |yj−1)

= eε
∫ ∞
ε

e−t Pr(i(s;Yj |yj−1) > t)dt.
(12)

This result provides an operational interpretation for
Eγ-divergence for our obfuscation setting. More pre-
cisely, Eeε(PYj |s,yj−1‖PYj |yj−1) ≤ δ enforces the events
{i(Y ; s) > t} to have small aggregate (weighted) prob-
ability for all t ≥ ε.

Next, we address the composition property of the
above mechanisms: If each mechanism Mj satisfies
(11), then so does the composed mechanism M =
(M1, . . . ,Mm) with parameters mε and δ. Recall that
Y = (Y1, . . . , Ym) is the output of the mechanism M.

Theorem 2 (Composition). For all mechanisms
Mj , j ∈ [m] satisfying (11), we have for all s ∈ S

Eemε(PY |s‖PY ) ≤ δ. (13)

This theorem states that a guarantee for each feature,
given by (11), will result in a meaningful guarantee for
the whole sample. This, in particular, demonstrates
the need for conditional information density in Defini-
tion 2, as opposed to the unconditional one.

2.3 A Gaussian Obfuscation Mechanism

We next give an explicit construction of mechanisms
{Mj} satisfying (11). Here, we assume that each fea-
ture xj ∈ C where C is a compact subset of Rr. Re-
call that each mechanism Mj is required to gener-
ate Yj satisfying (11). As a simple approach to en-
force this guarantee, we propose the additive Gaus-
sian mechanism; that is, for each given j ∈ [m], ε, and
xj−1 ∈ X j−1, we consider the following mechanism

Yj = xj + λ1{xj∈Bεj (xj−1)}N, (14)

where N is an independent standard Gaussian noise
N (0, Ir×r) and λ > 0 is determined according to the
following theorem.

Theorem 3 (Gaussian Obfuscation). The Gaussian
obfuscation mechanism (14) satisfies (11) if λ satisfies

θeε(K,λ) ≤ δ

m
, (15)

where K is the radius of C, i.e., K = maxw∈C‖w‖,
and for any a > 0

θeε(a, λ) , Q

(
λε

a
− a

2λ

)
− eεQ

(
λε

a
+

a

2λ

)
, (16)

where Q(v) = Pr(N (0, 1) ≥ v) =
∫∞
v

1√
2π
e−t

2/2dt.

In light of this theorem, if ε ≈ 0, then the noise vari-
ance λ must be of order O( K

− log(1− δ
m )

). The exact

value of noise variance, however, cannot be derived as
there is no analytic expression for the Q function.

We have thus far made the information-theoretic as-
sumption that the underlying distribution PS,X is
given and, consequently, the information density is
known exactly. In the following section, we propose
a data-driven estimator for information density which
renders our proposed mechanism applicable to real-
world datasets.

3 Trimmed Information Density
The obfuscation mechanism in Section 2 relies on the
conditional information density i(s;xj |xj−1) to iden-
tify the set of information-leaking features. Notice
that, since information density satisfies the chain rule,
i.e.

i(s;xj |xj−1) = i(s;xj)− i(s;xj−1), (17)

an estimate of i(s;xj |xj−1) can be constructed by es-
timates of i(s;xj) and i(s;xj−1).

In general, exact estimation of the information den-
sity is hard due to its unboundeness. However, we do
not need the exact estimation; instead, we only need
to know if the absolute value of the conditional infor-
mation density is larger than the threshold ε (Defini-
tion 2). In other words, estimating the trimmed infor-
mation density is sufficient for obfuscation purposes.
Moreover, the tail of the information density satisfies
(Polyanskiy et al., 2010)

Pr
{
i(s;Xj) > t

}
≤ e−t, ∀s, (18)

indicating that the estimation error caused by trim-
ming the information densities can be controlled. Ex-
ploiting the property in (18), in this section, we
propose a consistent and scalable estimator for the
trimmed information density, called the TIDE, and
show that estimating the trimmed information density
can be easier than estimating the exact information
density in terms of sample complexity.
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3.1 Trimmed Information Density Estimator

TIDE is based on a variational representation of KL di-
vergence1 known as the Donsker-Varadhan (DV) rep-
resentation (Donsker and Varadhan, 1983), given by

DKL(PS,X‖PSPX)

= sup
g:S×X→R

{EPS,X [g(S,X)]− logEPSPX [eg(S,X)]}. (19)

Recall that DKL(PS,X‖PSPX) is equal to the mutual
information I(S;X) between S and X, which is in fact
the expected information density EPS,X [i(S,X)]. It
can be shown that the maximizer g∗ of (19) is exactly
the information density, i.e., g∗(s, x) = i(s;x). Hence,
the problem of estimating information density is equiv-
alent to solving the functional optimization problem
(19) given access to samples drawn from PS,X .

Since the search space in (19) is unconstrained, di-
rectly solving the optimization by computing the em-
pirical expectations would fail in general. One practi-
cal approach is to restrict the search space to a family
G(Θ) of continuous and bounded (by M) functions gθ
parameterized by θ in a compact domain Θ ⊂ Rd,
where d is the number of parameters. The new con-
strained optimization problem corresponds to approxi-
mating the information density by a bounded function,
thus the name trimmed information density.

The TIDE is then given by

ĝn , argmax
gθ∈G(Θ)

{EPSn,Xn [gθ(S,X)]

− logEPSnPXn [egθ(S,X)]},
(20)

where PSn,Xn and PSnPXn denote the empirical distri-
butions of PS,X and PSPX by n samples, respectively.

3.2 Consistency and Sample Complexity

The TIDE obtained by solving (20) belongs to a
broader class of extremum estimators (Amemiya,
1985) of the form â = argmaxa∈A Λn(a), where Λn(a)
is an objective function and A is a parameter space.
The consistency of extremum estimators is guaranteed
by the Newey-McFadden Lemma (Newey and McFad-
den, 1994) (cf. Supplement), which in turn implies the
consistency of the TIDE, as stated in the following
theorem.

Theorem 4 (Consistency). If G(Θ) is the family of
continuous and bounded functions (with large enough
M) parameterized by θ taking values in a compact
domain Θ, then the TIDE (20) is consistent, i.e., for
any η > 0, there exist N > 0 such that for all n > N ,

1Other f -divergences (Csiszár, 1967; Sason and Verdú,
2016) could also be used, see the Supplement for more de-
tails.

we have |ĝn(s, x) − g∗(s, x)|≤ η with high probability
for all s ∈ S and x ∈ X .

We turn our attention to deriving the sample com-
plexity of the TIDE. We make further assumption
that functions in G(Θ) are Lipschitz, and use (18)
to prove the following theorem. To avoid techni-
cal complications, we assume that EPS,X [g(S,X)] and

EPSPX [eg(S,X)] are finite for all functions g in G(Θ).

Theorem 5 (Sample Complexity). Assume that func-
tions in G(Θ) are bounded by M and Lipschitz with
respect to θ, and Θ ⊂ Rd is compact. Then we
have |ĝn(s, x) − g∗(s, x)|≤ η with probability at least

1− e−M , for all s ∈ S and x ∈ X , where n = O(M
3d
η2 ).

Observe that trimming the information density is cru-
cial for the bound in the previous theorem to hold: if
M → ∞ (i.e., estimating the exact information den-
sity), the sample complexity of the TIDE grows to
infinity and the result is vacuous. In fact, we need to
restrict the search space to all continuous and bounded
functions G to exactly approximate the trimmed infor-
mation density. However, for computational reason,
we assume that these functions can be parameterized
by a compact domain Θ, and the complexity of the
family G(Θ) is characterized by its number of param-
eters d. As the complexity of the functions d → ∞,
meaning the search space is too large, the sample com-
plexity goes to infinty. This assumption allows us to
approximate the functions in G(Θ) by neural networks,
where Θ is the weights in all layers, as we will see next.

3.3 Implementation

In practice, we use the set of functions representable
by a neural network with output clipped to [−M,M ]
to approximate the set of continuous and bounded
functions g(s, x) in G. By sampling (s, x) from PS,X
and from PS × PX for the first and second expec-
tations in (20), we can fit the neural network. Af-
ter training, the g(s, x) outputs the estimate of the
trimmed information density of samples |i(s;x)|≤ M .
In order to reconstruct the conditional information
density by the chain rule (17), we compute g(s, xj)
for i(s, xj) and g(s, xj−1) for i(s, xj−1); then the
i(s, xj) − i(s, xj−1) gives the desired conditional in-
formation density |i(s;xj |xj−1)|≤ 2M .

4 Experiments
The experiments contain two parts. First, we inves-
tigate image obfuscation (McPherson et al., 2016; Oh
et al., 2017; Wu et al., 2018) as a common use case of
our approach with the GENKI-4k (MPLab, 2009) and
Celeberity Attributes (Liu et al., 2015) datasets. Sec-
ond, we demonstrate how TIDE can be possibly used
to discover politically-charged terms in the Tweets of
online media (Rachez, 2017). Detailed experimental
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Figure 1: Row (a) shows original images. Rows (b), (c) and (d) show
the information-leaking patches found by the TIDE (20) with patch
sizes 32× 32, 8× 8 and 2× 2 pixels respectively (color red indicates
higher value). Row (e) shows the Gaussian obfuscation mechanism
(14) on row (d) with ε = 0.5 and λ = 1.0, which successfully hide
the sensitive attribute of emotion. The information-leaking patches
is easy to interpret: the TIDE focuses more on the mouth area as
the patches become finer.

setups (e.g., architecture of the function g in TIDE,
training details) and additional experiments on Gaus-
sian synthetic data are provided in the Supplement.

4.1 Image Obfuscation

A common application of information obfuscation is
image obfuscation, where we aim to hide information
related to a given sensitive attribute in an image. Un-
like existing works which rely on neural networks to
select and perturb features (McPherson et al., 2016),
we apply the TIDE to identify information-leaking fea-
tures for the Gaussian obfuscation mechanism (Sec-
tion 2). We split x into a grid, where each “patch” of
size p×p pixels in the grid represents the low-level fea-
tures xj of the image x. It is a common method to ex-
tract low-level features in an image. We number each
xj in an image from the upper-left corner to the lower-
right, and use the TIDE (with M = 3) to determine
the information-leaking features by (4), and demon-
strate our obfuscation approach on two datasets: the
GENKI-4k and Celeberity Attributes datasets.

4.1.1 GENKI-4K Dataset

This dataset contains 2400 images for training and 600
for testing, where each image x is a 64× 64 pixels face
that has emotion smiling (s = 1) or not (s = 0). We
select 10 faces for illustration in Figure 1. When the
patch size is 32 × 32 (4 patches), the TIDE flags the
lower two patches to be information-leaking. As the
patch becomes finer, the information-leaking patches
concentrate to the mouse area; thus when applying the
Gaussian obfuscation mechanism, it is visually possi-
ble to identify the gender of the subject but with their
emotion obfuscated. The leakage guarantee in The-
orem 3, δ/m ≈ 0.24, can be computed by (16) with
ε = 0.5 and K = 1 since the images are normalized.
The TIDE not only reveals the patches informative of
emotion, but also captures the contour of faces.

We train an adversary that can classify the emo-
tion of the subject with accuracy 92.04%, and report

Table 1: Classification accuracy of emotion obfuscation for the
GENKI-4k dataset with different patch sizes p × p and threshold
ε. Results on obfuscating the lower-half image by Gaussian noise
(LHI) and on random guessing are shown as comparison.

Classification Accuracy %

p× p
ε

0.5 0.6 0.7 0.8 ∞

32× 32 50.54 50.54 92.04 92.04 92.04
16× 16 50.72 51.46 79.14 89.52 92.04
8× 8 50.93 68.94 78.71 87.33 92.04
4× 4 50.60 65.06 75.23 83.89 92.04
2× 2 50.64 62.25 68.59 80.26 92.04
LHI 50.58 - - - -

Guess 50.41 - - - -

the classification accuracy of the Gaussian obfusca-
tion mechanism (λ = 1 in (14)) under different patch
sizes and threshold ε in Table 1. When ε = ∞ (i.e.
Bεj (x

j−1) = φ for all j), no patch is identified by the
TIDE, and therefore the performances are the same as
the adversary. A simple mechanism to hide the emo-
tion in images is adding Gaussian noise onto the Lower
Half of the Image (LHI). As a comparison, the results
of LHI and random guessing are also included in Ta-
ble 1. The LHI gives similar performance when the
patch size is 32× 32 since when ε = 0.5, the lower two
patches of the image will be identified as information-
leaking for the mechanism (Figure 1 row (b)), but LHI
will erase too much information that is not related to
the emotion. The random guessing values correspond
the to prior distribution of the emotion labels in the
training set. Note that the information densities of the
patches that leak privacy are around 0.6, according to
Table 1. Hence, for ε < 0.7, all of the information-
leaking patches around the mouth area are perturbed
and the adversarial classifier has no useful information
to infer emotion, resulting in a sharp drop of accuracy.
In contrast, when ε is large, only a tiny portion of
patches are perturbed and the classifier is still able to
infer the emotion. This phenomenon can also be veri-
fied by the heatmaps in Figure 1 row (d), where only a
small portion of patches have very high (crimson) val-
ues while most of the patches around the mouth have
moderate (red/white) values. Moreover, when fixing
an ε, the non-monotonicity of the accuracy in terms
of the patch size is very data-driven since the mouth
area may be located in different patches in the image.

4.1.2 Celebrity Attributes (CelebA) Dataset

This more challenging dataset contains 202599 col-
orful high-resolution images, where each image is a
218×178-pixel face image of a celebrity with 40 distinct
binary labels, including smiling, gender, Arched

Eyebrows, etc. We select 100k images as X and the
sensitive attribute S to be emotion as well for train-
ing the TIDE. In Figure 2, we randomly pick 4 images
for illustration. Given a small patch size, the Gaus-
sian obfuscation mechanism (λ = 1 in (14)) perturbs
selective patches to hide the sensitive attribute while
keeping other useful information (e.g. gender) intact.
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Figure 2: Row (a) shows original images. Row (b) shows the
information-leaking patches with size 2× 2 by the TIDE (color red
indicates higher value). Row (c) shows the Gaussian obfuscation
mechanism on row (b) with ε = 0.74 and λ = 1, and row (d) shows
information obfuscation in Bertran et al. (2019) with the sensitive
information budget equal to 0.72 bits.

Table 2: Comparison between our approach (with patch size 2× 2)
and Bertran et al. (2019) (ε here stands for the tolerance of sensitive
information leak) on emotion and gender classification accuracy for
the CelebA dataset.

Classification Accuracy %

Threshold Our approach Bertran et al. (2019)

ε Emotion Gender Emotion Gender
∞ 92.04 94.29 92.04 94.29
0.8 85.97 91.48 85.59 92.53
0.7 75.15 90.39 76.40 91.20
0.6 71.33 87.61 70.88 89.77
0.5 69.01 86.97 68.60 89.47
LHI 53.91 69.35 53.91 69.35

Guess 51.79 58.32 51.79 58.32

The leakage guarantee (Theorem 3), δ/m ≈ 0.18, can
be computed by (16) with ε = 0.74 and K = 1. In
Figure 2 row (d), we reproduce the method by Bertran
et al. (2019) since it is the state-of-the-art result in in-
formation obfuscation and its implementation is pub-
licly available. The main difference between our ap-
proach and theirs is that Bertran et al. (2019) requires
an additionally pre-specified utility (i.e. the labels of
gender), while our approach does not require such la-
bels. As we can see, both methods shown in Figure 2
rows (c) and (d) obfuscate the mouth and some other
area. We compute the number of perturbed pixels as
a utility measure, i.e., the `0-norm of the difference
between the original and obfuscated images, since the
less number of perturbed pixels, the more informa-
tion will be preserved. We evaluate the ratio of the
number of perturbed pixels over the total number of
pixels in percentage for the 4 images in Figure 2, and
our method (from left to right) gives 10.12%, 9.05%,
7.88% and 15.91%, while (Bertran et al., 2019) gives
18.82%, 20.11%, 31.46% and 27.42%. Hence, our ap-
proach tends to obfuscate less of the subject’s face.

We train two classifiers for emotion and gender, and
report the accuracy of our approach and Bertran et al.
(2019) in Table 2. Both methods block emotion recog-
nition, effectively pushing the accuracy of the emo-

tion classifier towards random guessing as ε decreases.
More importantly, the gender classifier still performs
well over the sanitized images. The experiments re-
sults in Table 2 shows that despite the theoretical fla-
vor of our work and the clear level of interpretability,
our method is comparable to the neural network-based
algorithm in Bertran et al. (2019).

4.2 Information-Leaking Terms in Tweets
Finally, we showcase how the TIDE can be used in nat-
ural language to identify politically-charged terms in
the Tweets from online media (Rachez, 2017). The in-
formation density is called the pointwise mutual infor-
mation (PMI) in natural language processing to mea-
sure associations between words and labels (Church
and Hanks, 1990). Since perturbation on languages is
not yet well-defined (Alzantot et al., 2018), we do not
perform the mechanism in (14), but focus on identify-
ing information-leaking terms.

We collect N = 75946 Tweets from more than 20
online publishers (e.g. CNN, Bloomberg, New York
Times), and determine their private attribute S as the
political preference of being right-wing (s = 0) and
left-wing (s = 1) according to Rachez (2017), where
the numbers of samples with each political bias are
equivalent. We pre-process the Tweets to keep only
meaningful terms (i.e. pieces of words) and use bag-
of-words representation (Manning et al., 2010) to to-
kenize all the pieces of words for each Tweet accord-
ing to term frequency, ending up with 24657 terms
(i.e. features xj , j ∈ [24657]). We train the TIDE
using the tokenized Tweets as x. In Figure 3, we show
the estimate of trimmed conditional information den-
sity i(s;xj |xj−1) of each term. It is clear that some
terms carry more information about the political bias.
For instance, terms such as “Grand Old Party” and
“National Rifle Association” associate with right-wing
politics, and terms “Europe” and “liberal(s)” with the
left. In this scenario, our approach could be eventually
deployed as a plug-in to warn the users about potential
political preference leaks before posting Tweets.

Figure 3: i(s; xj |xj−1) for terms in Tweets. GOP: Grand Old Party
(i.e. the Republican Party), NRA: National Rifle Association, EO:
Entrepreneurs’ Organization, Euromaidan Pr.: Euromaidan Press.
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