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Abstract

Differential privacy (DP) is a leading privacy
protection focused by design on individual pri-
vacy. In the local model of DP, strong privacy
is achieved by privatizing each user’s individual
data before sending it to an untrusted aggrega-
tor for analysis. While in recent years local DP
has been adopted for practical deployments, most
research in this area focuses on problems where
each individual holds a single data record. In
many problems of practical interest this assump-
tion is unrealistic since nowadays most user-
owned devices collect large quantities of data
(e.g. pictures, text messages, time series). We
propose to model this scenario by assuming each
individual holds a distribution over the space of
data records, and develop novel local DP meth-
ods to sample privately from these distributions.
Our main contribution is a boosting-based den-
sity estimation algorithm for learning samplers
that generate synthetic data while protecting the
underlying distribution of each user with local
DP. We give approximation guarantees quanti-
fying how well these samplers approximate the
true distribution. Experimental results against
DP kernel density estimation and DP GANSs dis-
plays the quality of our results.

1 Introduction

Over the past decade, differential privacy (DP) has evolved
as the leading statistical protection model for individuals’
data (Dwork and Roth, 2014). The basis of DP is that a
mechanism is private whenever its output provides insuffi-
cient information to distinguish between two potential in-
put datasets that differ on a single individual. In doing so,
it guarantees plausible deniability regarding the presence
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of an individual in the input of the mechanism. Despite the
popularity of DP, one shortcoming of the standard defini-
tion is the assumption of a frusted curator who has access
to the full dataset of individuals. One way to get around this
is to have individuals run their data through a DP mecha-
nism at the local level before sending it for processing, en-
suring that the curator only gets access to privatized data.
This approach is called the local model of differential pri-
vacy (Raskhodnikova et al., 2008). It requires consider-
ably weaker trust assumptions than the curator model, and
was in fact the basis of the first large-scale deployments of
DP by Apple (Differential privacy team, Apple, 2017) and
Google (Erlingsson et al., 2014).

The interest in the local model has spurred research into lo-
cal DP protocols for a number of practical tasks (see (Cor-
mode et al., 2018) and references therein), as well as the
search for intermediate privacy models achieving a com-
promise between the local and curator DP Bittau et al.
(2017). However, while most of this research focuses, often
implicitly, on the setting where each individual owns a sin-
gle data record, a growing number of applications involve
one individual contributing multiple data records. Exam-
ples include problems where the data evolves over time, as
well as settings where locally each individual owns a whole
dataset containing, e.g., pictures, text messages or histori-
cal device usage information.

In this paper we investigate a method to leverage sensitive
user-level datasets in local DP protocols by constructing
locally private samplers which can release synthetic data
points from the distribution of the underlying dataset. Our
framework accommodates local datasets of arbitrary sizes
by modelling an individual’s private data as a probability
distribution — this is also applicable in situations where the
dataset does not exist per se but an algorithm can sample
from it by, e.g., interacting with the user. We formalize
the problem by (1) introducing the notion of mollifier — a
collection of valid distributions from which one can obtain
samples with a desired privacy level; and, (2) cast the goal
of learning a private sampler as the problem of computing
the information-geometric projection of a private distribu-
tion onto a given mollifier — a process we call mollification.
Our main contribution is an efficient approximate mollifi-
cation algorithm based on recent advances in boosted den-
sity estimation (Cranko and Nock, 2019). In contrast with
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Figure 1: Left: Our method is guaranteed to get a QQp that converges to P as the privacy constraint is relaxed and the
number of boosting iterations increases (under a weak learning assumption). Right: Our method vs private KDE (Alda and
Rubinstein, 2017) and DPGAN (Xie et al., 2018) on a ring Gaussian mixture (see Section 5, m = k = 10000). Remark

that the GAN is subject to mode collapse.

naive solutions we discuss below, our algorithm works on
arbitrary data, including continuous unbounded domains.
This algorithm comes with convergence rate guarantees in
the classical boosting model, that is, under lightweight as-
sumptions on the distribution iterates used in the mollifica-
tion process. Under slightly stronger assumptions, we are
able to show guaranteed approximation with respect to the
optimal distribution in the mollifier. As the privacy con-
straint is relaxed, we get better approximation guarantees
with respect to the target distribution itself. This is illus-
trated in Figure 1 (left). Last but not least, we provide
guarantees in terms of capturing the modes of the target
distribution, which is a prominent problem in generative
approaches (Figure 1, right).

The rest of this paper is organized as follows. Section 2
introduces locally private sampling, mollifiers and their re-
lationships. Section 3 introduces our algorithm that learns
a density in a mollifier and shows several approximation
properties in the boosting model. Section 4 summarizes re-
lated work, Section 5 presents and discusses experiments.

2 Private sampling and mollifiers

We now proceed to formalize the task of sampling from a
private distribution in the local DP model. Then introduce
the concept of mollification which solves this problem by
first projecting the distribution into a carefully constructed
set and releases a sample from the resulting projection.

Locally private sampling Suppose a user holds a private
probability distribution P € D(X) over some domain X
and wants to release a sample from P while preserving the
their privacy. We introduce a user-defined parameter, € >
0, which represents a privacy budget — smaller € correspond
to a stronger privacy demand. An e-private sampler is a
randomized mapping A : D(X) — X such that for any

x € X and any two distributions P, P’ € D(X) we have

Pr[A(P) = z]

Pr[A(P) = z]

<exp(e) . D
This is the same as saying that A is an e-locally differen-
tially private (LDP) mechanism! with inputs in D(X) and
outputs in X, which allows a user to release a privatized
sample from their distribution P. Note that when the user
has a dataset with records from X we can take P to be the
empirical distribution over the sample.

A simple way to construct e-private samplers given an e-
LDP mechanism R : X — X is a follows: take a sample
xo ~ P and then release the output of R(zp). This con-
struction, which we denote by Ag, is appealing because
it enables us to leverage any of the many local randomiz-
ers R that have been proposed in the literature, including,
e.g., randomized response for discrete input spaces, and the
Laplace mechanism with inputs on a bounded real interval.
On the other hand, this generic construction is limited by
the fact that Ar only accesses the private distribution P
through a single sampling operation and has no informa-
tion about the global shape of P.

Mollifiers To address this issue we propose to build pri-
vate samplers by first projecting the distribution P onto a
given mollifier and then releasing one sample from the pro-
jected distribution.

Definition 1 Let M C D(X) be a set of distributions® and
e > 0. We say M is an e-mollifier iff

Qz) < exp(e)-Q'(x),YQ,Q € M,Vz € X. (2)

'A randomized mechanism R Y — Zis e-LDP if
Pr[R(y) = 2] < e® Pr[R(y') = 2] forall y, ¢/, 2.
ZFor the sake of simplicity (and at the expense of slight abuses

of language) we use the same notation for distributions and their
densities with respect to some base measure throughout the paper.
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Figure 2: Left: example of mollifiers for two values of
€, € = 1 (red curves) or ¢ = 0.2 (blue curves), with
X = [0,1]. For that latter case, we also indicate in light
blue the necessary range of values to satisfy (2), and in
dark blue a sufficient range that allows to satisfy (2). Right:
schematic depiction of how one can transform any set of
finite densities in an e-mollifier without losing the modes
and keeping derivatives up to a positive constant scaling.

For example, a singleton M = {Q} is a O-mollifier. In-
tuitively, these mollifiers consist of distributions which are
all close to each other with respect to the divergence used
to define local DP. Figure 2 (left) features examples of mol-
lifiers with densities supported in X = [0, 1]. Two ranges
indicated in blue depict necessary or sufficient conditions
on the overall range of a set of densities to be a mollifier.
For the necessary part, we note that any continuous density
must have 1 in its range of values (otherwise its total mass
cannot be unit), so if it belongs to an e-mollifier, its maxi-
mal value cannot be > ¢° and its minimal value cannot be
< e~¢. We end up with the range in light blue, in which any
e-mollifier has to fit. For the sufficiency part, we indicate
in dark blue a possible range of values, [6’5/2, 65/2], which
gives a sufficient condition for the range of all elements in
a set M for this set to be an e-mollifier.

Mollifiers play a central role in the theory developed in this
paper, and they might also be of independent interest in
the field of differential privacy. Before we show how they
relate to private samplers, we first discuss some properties.

Constructing mollifiers Taking the convex hull of a
mollifier produces a new mollifier. That is, given an e-
mollifier® M = {Q1, ..., Qy}, the convex hull

cvx(M) = {Z a;Q; : a; >0, Zai = 1} 3)

is again an e-mollifier. We call cvx(M) the mollifier gen-
erated by M. A mollifier is convex if cvx(M) = M. Of
particular interest are the convex e-mollifiers generated by
a e-LDP mechanism R on some finite set X, obtained as
Mg := cwx({R(z) : x € X}). This mollifier is in fact
equivalent to the range of distributions of the naive sampler
ARg, in the sense that

Mg = {Law(4g(P)) : P € DX)} , )

3 Assumed finite for simplicity of exposition.

where Law(AR(P)) denotes the distribution of the out-
put of Ar(P) which can be written as the mixture
Law(ARr(P)) = >, cx P(x) - Law(R(x)). This construc-
tion can be directly extended to bounded X C R<, but for
unbounded domains it is unclear how to proceed as most
known LDP mechanisms R require bounded sensitivity.

Another way to obtain mollifiers starting from a reference
distribution Qg is to consider the set of all distributions
which are close to (Qg. In particular, we define the e-
mollifier relative to Qg, denoted M. q,, to be the set of
all distributions () such that

{Qo(fr) Q(z)
Qx) " Qo(x)

To verify that this is indeed an e-mollifier just note that for
any Q, Q" € M. g, we have

Q) _ Q) Q)
Q) Qole) Q')

Whenever @ is clear from the context we shall omit if
from our notation.

sup max
xX

} <exp(/2) . )

< exp(e) . (6)

Unlike with finitely generated mollifiers, relative molli-
fiers are not easy to parametrize in closed form. This
is due to the “non-parametric” nature of the definition
of M. g,, as opposed to the parametric definition of
cvx({Q1,...,Qm}). However, from the point of view of
the problem we consider in the sequel — namely, finding the
closest projection of a distribution onto a given mollifier —
we shall see that relative mollifiers are also computationally
tractable. In particular, we show that finding such projec-
tions when X is finite can be done in closed-form, and that
when X is infinite one can use boosting-based techniques
to efficiently approximate the corresponding projection.

Private sampling via mollification We call mollification
the process of taking a distribution P and finding a distri-
bution P inside a given mollifier M that minimizes the KL
divergence:

P € argmin KL(P,Q) . @)
QeM

We pick the KL divergence for its popularity and the fact
that it is the canonical divergence for broad sets of distribu-
tions (Amari and Nagaoka, 2000). The appeal of this con-
struction stems from the following result, which says that a
mechanism that releases samples from some distribution in
a mollifier provides privacy.

Lemma?2 Let A : D(X) — X by a randomized mecha-
nism such that, for any P, A(P) releases a sample from
some QQ € M. If M is an e-mollifier; then A is an e-private
sampler.
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Thus, the mollification mechanism Ay, that on input P re-
leases a sample from the mollification Pisa private sam-
pler which tries to maximize utility by finding the closest
distribution to P in a given mollifier. In order to implement
the mechanism Ay it is necessary to solve the optimization
problem (7). Furthermore, one also requires that the re-
sulting distribution admits an efficient sampling procedure.
With respect to the first requirement, we note that the prob-
lem in (7) is convex whenever the mollifier M is convex.
Thus, the mollification problem could be solved efficiently
using (stochastic*) convex optimization methods as long as
M has a tractable representation. However, here we take a
different approach.

For the case where the domain X is finite, the optimum of
(7) admits a simple closed-form whenever M is a relative
mollifier. In particular, for M g, it is easy to solve the
Karush-Kuhn-Tucker (KKT) optimality conditions for (7)
to show that the optimum is given by

P(z) = min {max { %OSZ) , ch) } ,eE/QQO(x)} . (®)

where C'is a constant such that P sums to one. If P is
only accessible through sampling, one can plug estimators
for the probability of each element in X into the closed-
form solution to obtain approximations to P. An important
observation is that no matter how bad this approximation
is, the overall mechanism Ay remains private because the
form of these closed-form solutions ensures the approxima-
tion is always inside the mollifier M. ¢, ; this is a property
that any private sampler using approximate mollification
should satisfy.

When X is infinite this strategy is not immediately
tractable, although one could try to obtain a non-parametric
approximation to P and use it as a plug-in estimator in (8).
Known properties of such estimators could be used to an-
alyze the convergence of these non-parametric approxima-
tions, but the alternative approach we consider in this paper
is more in line with modern methods in generative mod-
elling. In particular, in Section 3 we provide a method for
approximate mollification with relative mollifiers based on
boosted density estimation. The boosting-based approach
allows us to encode prior knowledge about the distributions
P that we expect to encounter in practice in the choice
of )y and the architecture of the weak classifier trained
at each iteration. This opens the door to using mollifiers
learned from (non-private) data to improve the sample effi-
ciency of private samplers; we leave this question for future
research.

“Depending on whether we have access to P through a proba-
bility oracle for evaluating P(x) or just through sampling.

Algorithm 1 MBDE(WL, T, €, Qo)

1: input: Weak learner WL, # iterations 7', privacy pa-
rameter ¢, initial distribution ), private target P;
fort=1,...,T do

t
o)  (raemy)
Ct < WL(P, Qt)
Qi < Q-1 -exp(fi(e) - )
end for
return: Qp

AN A S

3 Mollification with approximation
guarantees

The cornerstone of our approach to locally private sam-
pling is an algorithm that (i) learns an explicit density in
an e-mollifier and (ii) with approximation guarantees with
respect to the target P. We refer to the algorithm as MBDE,
for Mollified Boosted Density Estimation; its pseudo-code
is given in Algorithm 1.

To show convergence result on MBDE, we borrow the
standard machinery from boosting, which includes clas-
sifiers ¢ : X — R where sign(c(x)) € {—1,1} denotes
classes. For technical convenience we assume c(x) €
[—log 2,10g 2] and so the output of ¢ is bounded. This is
a common assumption in the boosting literature (Schapire
and Singer, 1999). We also require a pivotal condition from
boosting: the weak learning assumption.

Definition 3 (WLA) Fix ~vp,7g € (0,1] two con-
stants. ~ We say that WeakLearner(.,.) satisfies the
weak learning assumption (WLA) for vp,~q iff for any
P, Q, WeakLearner(P, Q) returns a classifier c satisfying
Eple] > ¢* - vp and Eg[—c] > c¢* - yg, where ¢* =
sup, e ()]

Briefly stated, a weak learner can be thought of as an or-
acle taking as inputs two distributions P and () and is re-
quired to always return a classifier ¢ that weakly guesses
the sampling from P vs ). Remark that as the two in-
puts P and @) become “closer” in some sense to one an-
other, it is harder to satisfy the WLA. However, this is not a
problem as whenever this happens, we shall have success-
fully learned P through (). The classical theory of boost-
ing would just assume one constraint over a distribution M
whose marginals over classes would be P and @) (Kearns,
1988), but our definition can in fact easily be shown to co-
incide with that of boosting (Cranko and Nock, 2019).

MBDE is a private refinement of the DISCRIM algorithm
of (Cranko and Nock, 2019, Section 3). It uses a weak
learner whose objective is to distinguish between the target
P and the current guessed density (J; — the index indicates
the iterative nature of the algorithm. @); is progressively
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refined using the weak learner’s output classifier ¢, for a
total number of user-fixed iterations 7. We start boosting
by setting (¢ as the starting distribution, typically a simple
non-informed (to be private) distribution such as a standard
Gaussian (see also Figure 1, center). The classifier is then
aggregated into (Q;_1 as:

exp(0i(e)ct) Qi1

“T Ten)e)Qi s
= exp ((0(e),¢) — ¢(0(¢))) Qo, ©
where 0(e) = (01(¢),...,0(¢)), ¢ = (c1,...,¢) (from

now on, ¢ denotes the vector of all classifiers) and ¢ (6(¢))
is the log-normalizer given by

#(8(e)) = log /x exp ((0(e), ) dQo.  (10)

This process repeats until ¢ = 7" and the proposed distribu-
tion is Q¢ (z; P) = Q7. We now show three formal results
on MBDE.

MBDE is a private sampler Recall M. := M, ¢, is the
set of densities whose range is in exp[—e/2, /2] with re-
spect to (Qg. Due to Lemma 2, it suffices to show that the
output density Q) of MBDE is in M,.

Theorem 4 Q1 € M..

We observe that privacy comes with a price, as for example
lim. 0 60:(¢) = 0, so as we become more private, the
updates on (), become less and less significant and we
somehow flatten the learned density — such a phenomenon
is not a particularity of our method as it would also be
observed for standard DP mechanisms (Dwork and Roth,
2014).

Convergence guarantees for MBDE As explained in
Section 2, it is not hard to fit a density in M. to make its
sampling private. An important question is however what
guarantees of approximation can we still have with respect
to P, given that P may not be in M.. We now give such
guarantees to MBDE in the boosting framework, and we
also show that the approximation is within close order to
the best possible given the constraint to fit Q4 in M.. We
start with the former result, and for this objective include
the iteration index ¢ in the notations from Definition 3 since
the actual weak learning guarantees may differ across itera-
tions, even when they are still within the prescribed bounds.

Theorem 5 For any t > 1, suppose WL satisfies at itera-
tion t the WLA for %, vb. Then we have:

KL(P,Q:;) < KL(P,Qi-1)—0i(e)- Ay, (11)

where (letting T'(z) = log(4/(5 — 32))):
p={ P FT0G) g e /3UCHES)
Tk g i 9 € (0,1/3) (“LBS”)

Here, HBS means high boosting regime and LBS means low
boosting regime.

Remark that in the high boosting regime, we are guaranteed
that A; > 0 so the bound on the KL divergence is guaran-
teed to decrease. This is a regime we are more likely to
encounter during the first boosting iterations since (Q;_1
and P are then easier to tell apart — we can thus expect a
larger 'yé). In the low boosting regime, the picture can be
different since we need 7p + v, > ¢ - 0:(¢)/2 to make
the bound not vacuous. Since 6;(¢) —; 0 exponentially
fast and ¢; < log2, a constant, the constraint for (12) to
be non-vacuous vanishes and we can also expect the bound
on the KL divergence to also decrease in the low boosting
regime. We now check that the guarantees we get are close
to the best possible in an information-theoretic sense. Let
us define A(Q) = KL(P, Qo) — KL(P, Q). Intuitively,
the farther P is from (), the farther we should be able to
get from @)y to approximate P, and so the larger should
be A(Q). Notice that this would typically imply to be in
the high boosting regime for MBDE. For the sake of sim-
plicity, we consider yp, ¢ to be the same throughout all
iterations.

Theorem 6 We have A(Q) < ¢/2, YVQ € M., and if
MBDE is in the high boosting regime, then

a@n = 5 {0 0o oy
Hence, as vp — 1 and 79 — 1, we have
A(Qr) > (¢/2) - (1 — Or(e)) and since Op(e) — 0O

as T" — oo, MBDE indeed reaches (in the high boosting
regime) the information-theoretic limit, which is the
mollification of P. As ¢ increases (the privacy constraint
is reduced), Theorem 6 shows that we are guaranteed
to progressively come closer to P, and if we make the
additional assumption that there exists ep < oo such that
P € M., — which appears to be quite reasonable given
the definition in (5) —, then Theorem 6 delivers a direct
approximability result for MBDE with respect to P for all
privacy levels € > ep. This is a new result compared to
the privacy-free approximation bounds of P in (Cranko
and Nock, 2019), but it requires to be in the high boosting
regime.

MBDE captures the modes of P Mode capture is a
prominent problem in the area of generative models (Tol-
stikhin et al., 2017). We have already seen that enforc-
ing mollification can be done while keeping modes, but we
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would like to show that MBDE is indeed efficient at build-
ing some @ with guarantees on mode capture. For this
objective, we define for any set B C X and distribution @,

Ma(@Q) = [ Q. KLs(PQ) = [ 10g (g) aP,

respectively the total mass of B on @ and the KL diver-
gence between P and @ restricted to B.

Theorem 7 Suppose MBDE stays in the high boosting.
ThenVa € [0,1], VB C X, if

M2 —vp —19)-T)

Ma(P) 2 e T TR

(14)

then Mp(Qr) > (1 — a)Mp(P) — KLg(P,Qo), where
h(z) =&+ 2z.

There is not much we can do to control KL (P, Qo) as this
term quantifies our luck in picking () to approximate P in
B but if this restricted KL divergence is small compared to
the mass of B, then we are guaranteed to capture a substan-
tial part of it through Q7. As a mode, in particular “fat”,
would tend to have large mass over its region B, Theorem
7 says that we can indeed hope to capture a significant part
of it as long as we stay in the high boosting regime. As
vp — 1 and 7o — 1, the condition on Mp(P) in (14)
vanishes with 7" and we end up capturing any fat region
B (and therefore, modes, assuming they represent “fatter”
regions) whose mass is sufficiently large with respect to
KLg(P, Qo).

With regards to a practical application, consider the prob-
lem of generating synthetic text data from conversational
English. Each individual user holds their own distribution
(own speech patterns and vocabulary) and the goal is to be
able to model these distributions with privacy and approxi-
mation guarantees. We point out two implicit advantages of
our method over standard local DP and federated learning
methods: (i) Our method relies on the reference distribution
(o, which in this application, one may use public conversa-
tional data to learn () using a strong non-private algorithm.
In this case, the e-mollifier centered at () will contain ad-
missible conversations with relatively high utility, meaning
that mollifications will still be reasonable. (ii) Our method
is non-interactive: each user generates a privatized sample
which is submitted to the server for post-processing.

To finish up this Section, recall that M. is also defined
(in disguise) and analyzed in (Wang et al., 2015, Theo-
rem 1) for posterior sampling. However, the convergence
in (Wang et al., 2015, Section 3) does not dig into spe-
cific forms for the likelihood of densities chosen — as a
result, it remains essentially in weak asymptotic form, and
furthermore it is only applied to DP in the curator model.
We exhibit particular choices for these mollifier densities,
along with a specific training algorithm to learn them, that

allow for significantly better approximation, quantitatively
and qualitatively (mode capture) in the local DP setting.

4 Related work

A broad literature has been developed early for discrete dis-
tributions (Machanavajjhala et al., 2008) (and references
therein). For a general () not necessarily discrete, more
sophisticated approaches have been tried, most of which
exploit randomisation and the basic toolbox of differential
privacy (Dwork and Roth, 2014, Section 3): given non-
private Q, one compute the sensitivity s of the approach,
then use a standard mechanism M (Q, $) to compute a pri-
vate (). Such general approaches have been used for )
being the popular kernel density estimation (KDE, (Givens
and Hoeting, 2013)) with variants (Alda and Rubinstein,
2017; Hall et al., 2013; Rubinstein and Alda, 2017).

On the algorithmic side, our work shares some ideas with
DP methods based on the multiplicate weights technique
(Hardt and Rothblum, 2010; Hardt et al., 2012; Ullman,
2015). These papers leverage ideas similar to boosting to
solve problems like answering linear queries, solving con-
vex minimization problems, or releasing synthetic data to
accurately answer a pre-determined set of queries. None
of these works, however, apply directly to the local DP
model.

5 Experiments

Architectures We carried out experiments on a simu-
lated setting inspired by (Alda and Rubinstein, 2017), to
compare MBDE (implemented following its description in
Section 3) against differentially private KDE (Alda and Ru-
binstein, 2017). As a weak learner for MBDE, we fit for
each ¢; a neural network (NN) classifier:

X tanh st tanh st tanh R25 sigmoid (071)’ (15)

dense dense dense dense

where X € {R, R?} depending on the experiment. At each
iteration ¢ of boosting, ¢, is trained using 10000 samples
from P and );_; using Nesterov’s accelerated gradient
descent with = 0.01 based on cross-entropy loss with
750 epochs. Random walk Metropolis-Hastings is used
to sample from @);_; at each iteration. For the number of
boosting iterations in MBDE, we pick 7' = 3. This is quite
a small value but given the rate of decay of 6;(c) and the
small dimensionality of the domain, we found it a good
compromise for complexity vs accuracy. Finally, @ is a
standard Gaussian N(0, I).

Contenders We know of no local differentially private
sampling approach operating under conditions equivalent
to ours, so our main contender is going to be a particular
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Figure 3: Gaussian ring: densities obtained for DPB (upper row) against MBDE (lower row)
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Figure 4: Metrics for MBDE (blue): NLL (lower is better) and mode coverage (higher is better). Orange: DPB (see text).

state of the art e-differentially private approach which pro-
vides a private density, DPB (Alda and Rubinstein, 2017).
We choose this approach because digging in its technical-
ities reveal that its local differential privacy budget would
be roughly equivalent to ours, mutatis mutandis. Here is
why: this approach allows to sample a dataset of arbitrary
size (say, k) while keeping the same privacy budget, but
needs to be scaled to accomodate local differential privacy,
while in our case, MBDE allows to obtain local differential
privacy for one observation (k = 1), but its privacy bud-
get needs to be scaled to accomodate for larger k. It turns
out that in both approaches, the scaling of the privacy pa-
rameter to accomodate for arbitrary £ and local differential
privacy is roughly the same. In our case, the change is ob-
vious: the privacy parameter ¢ is naturally scaled by %k by
the composition property of e-LDP. In the case of (Alda
and Rubinstein, 2017), the requirement of local differential
privacy multiplies the sensitivity’ by k by the group privacy
property.

We have also compared with a private GAN approach,
which has the benefit to yield a simple sampler but involves
a weaker privacy model (Xie et al., 2018) (DPGAN). For

SCf (Alda and Rubinstein, 2017, Definition 4) for the sensitiv-
ity, (Alda and Rubinstein, 2017, Section 6) for the key function
Fr(.,.) involved.

DPB, we use a bandwidth kernel and learn the bandwidth
parameter via 10-fold cross-validation. For DPGAN, we
train the WGAN base model using batch sizes of 128 and
10000 epochs, with § = 10~!. We found that DPGAN is
significantly outperformed by both DPB and MBDE, so to
save space we have only included the experiment in Figure
1 (right). We observed that DPB does not always yield a
positive measure. To ensure positivity, we shift and scale
the output.

Metrics We consider two metrics, inspired by those we
consider for our theoretical analysis and one investigated
in (Tolstikhin et al., 2017) for mode capture. We first
investigate the ability of our method to learn highly dense
regions by computing mode coverage, which is defined to
be P(dQ < t) for ¢ such that Q(dQ < t) = 0.95. Mode
coverage essentially attempts to find high density regions
of the model @ (based on t) and computes the mass of the
target P under this region. Second, we compare the neg-
ative log likelihood, — F'p[log Q] as a general loss measure.

Domains We essentially consider three different prob-
lems. The first is the ring Gaussians problem now common
to generative approaches (Goodfellow, 2016), in which
8 Gaussians have their modes regularly spaced on a
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circle. The target P is shown in Figure 1. Second,
we consider a mixture of three 1D gaussians with pdf
Px) = % (N(0.3,0.01) + N(0.5,0.1) + N(0.7,0.1)).
For the final experiment, we consider a 1D domain and
randomly place m gaussians with means centered in the
interval [0, 1] and variances 0.01. We vary m = 1,..., 10,
e € (0,2] and repeat the experiment four times to get
means and standard deviations. More experiments can be
found in the Appendix.

Results Figure 3 displays contour plots of the learned )
against DPB (Alda and Rubinstein, 2017). Figure 4 pro-
vides metrics. We indicate the metric performance for DPB
on one plot only since density estimates obtained for some
of the other metrics could not allow for an accurate com-
putation of metrics. The experiments bring the following
observations: MBDE is significantly better at local differen-
tially private density estimation than DPB if we look at the
ring Gaussian problem. MBDE essentially obtains the same
results as DPB for values of ¢ that are 400 times smaller as
seen from Figure 1. We also remark that the density mod-
elled are more smooth and regular for MBDE in this case.
One might attribute the fact that our performance is much
better on the ring Gaussians to the fact that our () is a stan-
dard Gaussian, located at the middle of the ring in this case,
but experiments on random 2D Gaussians (see Appendix)
display that our performances also remain better in other
settings where )y should represent a handicap. All do-
mains, including the 1D random Gaussians experiments in
Figure 1 (Appendix), display a consistent decreasing NLL
for MBDE as ¢ increases, with sometimes very sharp de-
creases for ¢ < 2 (See also Appendix, Section 2). We at-
tribute it to the fact that it is in this regime of the privacy
parameter that MBDE captures all modes of the mixture.
For larger values of ¢, it justs fits better the modes already
discovered. We also remark on the 1D Gaussians that DPB
rapidly reaches a plateau of NLL which somehow show that
there is little improvement as ¢ increases, for € > 1. This
is not the case for MBDE, which still manages some addi-
tional improvements for € > 5 and significantly beats DPB.
We attribute it to the flexibility of the sufficient statistics
as (deep) classifiers in MBDE. The 1D random Gaussian
problem (Figure 1 in Appendix) displays the same pattern
for MBDE. We also observe that the standard deviation of
MBDE is often 100 times smaller than for DPB, indicating
not just better but also much more stable results. In the
case of mode coverage, we observe for several experiments
(e.g. ring Gaussians) that the mode coverage decreases un-
til € =~ 1, and then increases, on all domains, for MBDE.
This, we believe is due to our choice of )y, which as a
Gaussian, already captures with its mode a part of the ex-
isting modes. As ¢ increases however, MBDE performs bet-
ter and obtains in general a significant improvement over
®o. We also observe this phenomenon for the random 1D
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Figure 5: Mode coverage for MBDE on 1D random Gaus-
sian.

Gaussians (Figure 5) where the very small standard devia-
tions (at least for € > .25 or m > 1) display a significant
stability for the solutions of MBDE.

6 Discussion and Conclusion

In this paper, we proposed a new method to learn densi-
ties that can be sampled from privately at the local level,
paving the way for synthetic data generation. In order to
prove privacy guarantees, we introduced the notion of mol-
lifiers, which are of independent interest. Furthermore, we
proved convergence guarantees of our method in the con-
text of boosting along with additional formal results re-
garding capturing of modes and approximation of the tar-
get density. The use of the boosting framework allows to
dampen the effects of a “’curse of complexity” — e.g. when
the dimension of the support of P increases —, as conver-
gence primarily relies on weak guessing in sampling P vs
sampling vs .. Additional assumptions, like sparsity in
the expected parameters of the target or publicly available
information allowing to tune (g, could boost further con-
vergence. Finally, we conducted experiments, which advo-
cate for our method, especially on the utility side of things
when it comes to capturing statistical features of the true
distribution.
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