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Abstract

Machine learning and statistics are invaluable
for extracting insights from data. A key as-
sumption of most methods, however, is that
they have access to independent samples from
the distribution of relevant data. As such,
these methods often perform poorly in the
face of biased data which breaks this assump-
tion. In this work, we consider the classical
challenge of bias due to truncation, wherein
samples falling outside of an “observation win-
dow” cannot be observed [Coh16; Bre96]. We
present a general framework for regression
and classification from samples that are trun-
cated according to the value of the dependent
variable. The framework argues that stochas-
tic gradient descent (SGD) can be efficiently
executed on the population log-likelihood of
the truncated sample. While our framework is
broadly applicable, we also provide end-to-end
guarantees for the well-studied problems of
truncated logistic and probit regression, where
we use it to argue that the true model param-
eters can be identified computationally and
statistically efficiently from truncated data,
extending recent work on truncated linear
regression [Das+19]. We also provide exper-
iments to illustrate the practicality of our
framework on synthetic and real data.

1 Introduction

An emergent threat to the practical use of machine
learning is the presence of bias in the data used to train
ML models. Biased training data can result in models
which make incorrect or disproportionately correct de-
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cisions, or that reinforce the biases reflected in their
training data. For example, some recent works [Bol+16;
CBN17] show that semantics derived automatically
from language corpora contain human-like biases; oth-
ers [Kla+12; NG15; BG18] show that the accuracies of
face and gender recognition systems are systematically
lower for people of color and for women; and, lots of
works outline the dangers arising from the use of AI
systems trained on biased data ; see e.g. [CP14; GBF16;
Bol+16; HPS+16; Kil+17; Kle+17; AMT17; ONe17;
BG18; Ren+18] and their references.

While the root causes of AI bias are mutlifaceted, a
common source of bias is the violation of the perva-
sive “i.i.d. assumption”—the assumption that training
and test data are independent samples from the same
distribution, i.e. that the training examples are a rep-
resentative sample of the conditions that the trained
model will encounter in the future. Of course, this
assumption is very commonly violated. Measurement
limitations, experimental design, data collection prac-
tices, and legal or privacy constraints on data use often
make it so that that the training data are a biased
sample of the distribution of interest. Unfortunately,
training a model naively on a biased sample from a
distribution is well-known to potentially lead to very
poor performance on an unbiased sample.

In this work, we focus on a specific type of bias that
is commonly found in data, in particular bias due
to output truncation, i.e., when samples are filtered
out according to the value of the response variable.
Truncation occurs very commonly in practice due to
saturation of measurement devices, poor data collection,
or legal and privacy constraints preventing the use of
some of the data, and has been known to bias statistical
inference, since at least the work of Berkson [Ber46] in
their eponymous paradox. A classical example of biased
inference due to output truncation can be found in a
line of work in Econometrics studying the importance
of IQ in predicting the earnings of low-skill workers.
Studies based on surveys of families whose income was
at most 1.5 times the poverty line concluded that there
is a negligible contribution of IQ to earnings [Hau72],
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Truncation

Figure 1: An illustrated example of bias that can be
induced by truncation in training inputs.

only to be disproved once the underlying truncation
was taken into account [HW77]—the truncation arose
from the fact that low-skill workers (individuals earning
at most certain amount per hour) who were making
incomes larger than 1.5 times the poverty line, were
truncated in the surveys.

To illustrate mathematically how output truncation
leads to biased estimation, we consider the following
simple regression. We have covariates xi ∼ N (0, 1),
and for each covariate a response is computed as
yi = m ·xi+εi, where m > 0 and εi ∼ N (0, σ2) is sam-
pled independently for each observation i. Estimating
m given examples (xi, yi)i generated from this model
is very well understood, and can be done with ordinary
least squares regression. Now, consider the following
twist to the plot: suppose that some filtering mecha-
nism filters out observations i whose response variable
yi is negative. Performing ordinary least squares re-
gression on the data surviving truncation will no longer
lead to an unbiased estimate of m—OLS will return
an estimated coefficient that is smaller than the truth,
regardless how many truncated observations we collect!
(Figure 1 illustrates this phenomenon.)1

How do we recover from this? The topic of statisti-
cal estimation from truncated samples is the focus of
the field of truncated statistics [Sch86; Coh16; BC14],
which finds its roots in Bernoulli’s 1766 analysis of
smallpox morbidity and mortality to demonstrate the
efficacy of vaccination [Ber60], and which was further
developed since the beginning of the twentieth cen-
tury starting with the work of Galton [Gal97], Pearson
and Lee [Pea02; PL08], and Fisher [Fis31]. Truncated
statistics is widely applicable in Econometrics and many
other theoretical and applied fields. Despite intense
work, however, there are still numerous outstanding
challenges, targeting density estimation, regression and
classification tasks. For example, attaining efficient
statistical rates for truncated linear regression was only
achieved recently [Das+19] despite lots of work in the

1Note that in the truncation setting, the learner is not
made aware of dropped samples—this makes it substantially
more challenging than the censored setting in which the
learner is notified when samples are dropped.

past several decades [Tob58; Ame73; HW77; Mad86;
Kea93; Bre96; HM98], while attaining efficient statis-
tical rates in other basic truncated problems such as
truncated logistic and probit regression still remained
open prior to our work.

Our Contributions. The goal of our paper is to
develop a general framework of truncated statistics,
pushing both the frontier of what is currently known
in theory, and developing generally applicable methods
that are practical.

We first propose a general model that encapsulates
truncation in a broad range of scenarios (Definition 1).
We demonstrate that the model is very general and
effectively captures problems spanning truncated clas-
sification and regression (Section 2.3).

We next present a general, simple-to-implement SGD-
based framework for regression and classification under
our presented model. Under two concrete instantiations
of our model, namely truncated logistic and truncated
probit regression, we provide end-to-end theoretical
guarantees, showing that in both cases our framework
computationally and statistically efficiently identifies
the model parameters (Theorems 2 and 4). We then
demonstrate the generality of our framework experi-
mentally; we show that the framework is both easy to
instantiate and highly effective even in settings with
no theoretical guarantees.

2 A General Framework for Learning
from Truncated Data

In this section, we develop the preliminaries and general
approach to estimation in the presence of truncated
samples. We begin by defining a general form of the
truncated learning problem. We show that the frame-
work is sufficiently general, and can be instantiated in
the form of logistic, linear, and probit regression. We
then outline a general approach to truncated estimation
problems based on log-likelihood maximization.

2.1 Preliminaries

We begin with a general definition of the truncated
estimation model, which is similar to the classical re-
gression/classification framework.
Definition 1 (Truncated Regression/Classification
Model). The truncated regression/classification model
consists of co-variate vectors X = {x1, . . . , xn|xi ⊆ Rd}
and corresponding response vectors zi ∈ Rq, where the
zi are sampled according to

zi = hθ?(xi) + εi,

where h is a response function parameterized by an
unknown parameter θ? ∈ Θ, and εi ∼ DN is mean-zero
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independently sampled noise. The covariate-response
pair (xi, zi) is silently removed with probability 1−φ(zi),
for a fixed known filtering mechanism φ : Rq → [0, 1].
Otherwise (w.p. φ(zi)), we observe a pair (xi, yi), where
yi is determined by a projection yi = π(zi) and π :
Rq → Rq is a Markov kernel.

For regression we assume that π is given by a deter-
ministic measurable map and denote by π−1(y) the
pre-image of y under π. For classification we assume
that there is a finite set A such that suppπ(z) ⊆ A for
all z.

We include π in the model primarily for classification
tasks, to allow truncation on the intermediate value
z before observing the discrete value y. For regres-
sion tasks π will generally be the identity function,
although our results for regression easily extend to
the case when π is any deterministic function. Using
an arbitrary noise distribution DN allows us to cap-
ture linear and probit regression (which use Gaussian
noise), and also logistic regression (which uses logistic
noise). For simplicity of exposition, we will consider
the case where DN has fixed variance—the framework
can also be extended to the setting where DN has vari-
able/learned variance. The goal of truncated regression
is to recover the true parameters θ given a truncated
dataset generated according to Definition 1.
Definition 2 (Truncated Regression Problem). Given
a filtering mechanism φ, a projection mechanism π, a
space of parameters Θ, and a training set (xi, yi)

N
i=1

generated according to the procedure of Definition 1
using some θ∗ ∈ Θ, our goal is to identify θ∗.

The truncated regression problem of Definition 2 is
quite general and captures many standard problems in
the literature. For example:

• Untruncated linear regression: To cast the
standard (untruncated) linear regression model in
the framework of Definition 2, we take the output
dimension q = 1; the response function parameter
space Θ = Rd with the class of response functions
being hθ(x) = θ>x for all x, θ. The filtering mech-
anism is simply φ(z) = 1 (nothing is truncated)
and π(z) = z for all z (there is no projection).
Lastly, we take DN to be Gaussian N (0, I).

• Untruncated logistic regression: To cast the
standard (untruncated) logistic regression model
in the framework of Definition 2, we make use
of the latent variable formulation of logistic re-
gression. In particular, we take q = 1, Θ = Rd,
and hθ(x) = θ>x. The added noise DN is the
Logistic distribution Logistic(0, 1) with scale 1.
Lastly, we define π(zi) = 1zi≥0. (One can show
the equivalence of this latent variable formulation

to the standard formulation by noting that the
CDF of Logistic(0, 1) is the logistic sigmoid func-
tion). Finally, since we are in the untruncated
setting, φ(z) = 1 for all z.

• Untruncated probit regression: The probit
regression model can be captured in an almost
identical manner to logistic regression model. The
only difference is that instead of having DN =
Logistic(0, 1), the noise DN = N (0, 1) is Gaussian.

• Adapting to truncation: The truncated ver-
sions of the afore-described problems arise by tak-
ing the filtering mechanism φ(·) to not be identi-
cally 1.

In the next sections, we outline our general frame-
work for solving such truncated estimation problems
(Section 2.2), and give concrete instantiations of this
framework for linear, probit, and logit regression (Sec-
tion 2.3). Then in Section 3 we present instances of the
framework for which we can give theoretical guarantees.

2.2 Approach

We will approach such truncated regression and clas-
sification problems via optimization of the population
log-likelihood with respect to the parameters θ:

max
θ

¯̀(θ; θ∗) where

¯̀(θ; θ∗) =
∑
xi∈X

E
zi

φ∼hθ∗ (xi)+DN
[`(θ;xi,1zi≥0, φ)] .

This log-likelihood for an observation (x, y) is deter-
mined by the choice of noise distribution DN . In a
slight abuse of notation, we use DN (·) to denote the
probability density function of the chosen noise distri-
bution. Recall that the likelihood for an estimation
problem of this kind in the non-truncated case for a
single sample (x, y) and choice of parameter θ ∈ Θ is
given by

p(θ;x, y, φ) =

∫
z∈π−1(y)

DN (z − hθ(x)) dz. (1)

In the case of truncation, the likelihood becomes:

p(θ;x, y, φ) =

∫
z∈π−1(y)

DN (z − hθ(x)) · φ(z) dz∫
z
DN (z − hθ(x)) · φ(z) dz

, (2)

and so the log-likelihood is

`(θ;x, y, φ) = log

(∫
z∈π−1(y)

DN (z − hθ(x)) · φ(z) dz∫
z
DN (z − hθ(x)) · φ(z) dz

)

= log

(∫
z∈π−1(y)

DN (z − hθ(x)) · φ(z) dz

)

− log

(∫
z

DN (z − hθ(x)) · φ(z) dz

)
. (3)
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The gradient of the first term in (3) w.r.t. θ is

∇θ log

(∫
z∈π−1(y)

DN (z − hθ(x)) · φ(z) dz

)

=

∫
z
∇θDN (z − hθ(x)) · φ(z) · 1π−1(y)(z) dz∫
z
DN (z − hθ(x)) · φ(z) · 1π−1(y)(z) dz

= −E
ε
φ∼DN

[
∇εDN (ε)>Jθ[hθ(x)]

DN (ε)

∣∣∣∣ hθ(x) + ε ∈ π−1(y)

]
(4)

where Jθ[hθ(x)] ∈ Rq×d is the Jacobian of hθ with
respect to θ. The gradient of the second term of (3) is
nearly identical, except that there is no conditioning
on the event z ∈ π−1(y) (since the integral is over the
entire domain, rather than just the pre-image of y).
Thus, the full gradient of (3) with respect to θ is

∇θ `(θ;x, y, φ) =

(
E
ε
φ∼DN

[
∇εDN (ε)

DN (ε)

]
−E

ε
φ∼DN

[
∇εDN (ε)

DN (ε)

∣∣∣∣ hθ(x) + ε ∈ π−1(y)

])>
Jθ[hθ(x)],

(5)

where in each expectation ε is distributed just as in (4).
Now, note that under our setup (c.f. Definition 2), we
have sample access to the distribution ε

φ∼DN , and
thus can compute estimates of the gradient above and
use first-order methods.

2.3 Instantiations: Linear, Logistic, and
Probit Regression

In the last section, we introduced the general SGD
framework that we use to approach the truncated learn-
ing setting. Here, we consider concrete problems ex-
pressible under in this setting (namely linear, logit,
and probit regression) and provide their corresponding
SGD update steps.

Linear regression. We begin by demonstrating that
our truncated estimation framework captures the trun-
cated linear regression setting studied in [Das+19].
Recall from Section 2.1 that linear regression is ex-
pressible under the problem setting of Definition 1. In
particular, we have hθ(x) = θ>x and Jθ[hθ(x)] = x,
π(y) = y and DN = N (0, 1), where N (x;µ,Σ) corre-
sponds to the PDF of the normal distribution with
mean µ and covariance Σ, evaluated at x. Recall that
∇xN (x; 0, 1) = −x · N (x; 0, 1). Thus, the gradient for
linear regression truncated by φ : Rq → [0, 1] can be
computed to be:

∇θ`(θ;x, y, φ) = =
(
y − E

ε
φ∼DN

[hθ(x) + ε]
)>

x,

which matches the gradient calculation of Daskalakis et
al. [Das+19]. As shown in that work, by computing the

Hessian of the truncated likelihood, one can find that
under mild conditions, the truncated linear regression
problem is in fact strongly convex.

Logistic regression. Next, we demonstrate how to
instantiate the truncated learning setup in the setting
of logistic regression. As with linear regression, we
have hθ(x) = θTx and Jθ[hθ(x)] = x. We denote f`(·)
to be the PDF of the logistic distribution with mean
zero and scale one—then, direct calculation shows that
∇xf`(x) = f`(x) · (1− 2 · σ(x)), where σ is the sigmoid
function σ(x) = [1 + e−x]

−1
. Thus, the gradient of the

log-likelihood with respect to θ becomes:

∇θ`(θ;x, y, φ) =

(
E
ε
φ∼DN

[
2 · σ(ε)

∣∣∣∣ hθ(x) + ε ∈ π−1(y)

]
−E

ε
φ∼DN

[2 · σ(ε)]

)>
x

= 2 ·
(
E
ε
φ∼DN

[
σ(ε)

∣∣∣∣ 1hθ(x)+ε≥0 = y

]
− E

ε
φ∼DN

[σ(ε)]

)>
x

(6)

Unlike for linear regression where π−1(y) = {y}, here
the inverse of π is a non-singleton set, and thus we will
need to assume that it has non-zero measure under f`
in order to be able to sample from the first expectation.

Probit regression. All parameters in probit regres-
sion are the same as for linear regression, except for the
noise distribution DN , which is now N (·; 0, 1) instead
of f`(·). Thus, the gradient can be computed as

∇θ`(θ;x, y, φ) =(
E
ε
φ∼DN

[
ε | 1hθ(x)+ε≥0 = y

]
− E

ε
φ∼DN

[ε]
)>

x. (7)

In the next section, we present instances of logistic
and probit regression where we can derive theoretical
guarantees for the convergence of stochastic first-order
methods on the truncated log-likelihood.

3 Theoretical Analysis for Probit and
Logistic Regression

In this section we present theoretical results for identi-
fying the parameters of logistic and probit regression,
given access to samples from the corresponding models.
Results for truncated linear regression have been shown
in the recent work of Daskalakis et al. [Das+19].

Our goal in both probit and logistic regression is to
maximize the population version of the log-likelihood
function. In the population version, where we have
infinite many samples, we can compute the expected
value of the log-likelihood function for all the possible
values of the parameters and we can prove that the
optimum of the likelihood is consistent. The next step is
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to observe that for both probit and logistic regression,
we have enough statistical information available to
compute an unbiased estimate of the gradient of the
population log-likelihood function. The main technical
difficulty is to prove the upper bound on the samples
that we need in order for SGD to find an estimate
for which the expected gradient of the population log-
likelihood is small.

Recall from the definitions of logistic and probit re-
gression in Section 2 that the response variables are
one-dimensional, i.e. q = 1. In this section, we consider
the case where the filtering mechanism is of the form
φ(x) = 1x∈[a,b]. For brevity, we write `(θ;x, y) in place
of `(θ;x, y, φ). In both logistic and probit regression,
the projection is π(x) = 1x≥0. If a ≥ 0 (or b ≤ 0) the
label will be y = 1 (or y = 0) regardless of x, and so
no inference is possible. Hence, we assume throughout
that a ≤ 0. In fact, we show that the relevant quantity
to lower bound is the probability of any particular data
point being be classified as positive or negative; that is,
no data point should be classified positively/negatively
with 100% probability:

α? = min
x∈X

min
y∈{0,1}

∫
z∈π−1(y)

DN (z − hθ∗(x)) · φ(z) dz,

(8)

where we recall from Section 2.1 that DN (z) is the
distribution of the response variables. In particular,
we will use a lower bound α on α∗ to construct our
projection set as:

Rᾱ =

{
θ

∣∣∣∣ min
x∈X ,y∈{0,1}

∫
z∈π−1(y)

DN (z; θ>x) · φ(z) dz > ᾱ

}
, (9)

which, by definition contains θ∗, and by the continuity
of the noise distribution, can be enforced as constraint
on θ>x for all x. We discuss how this set can be
efficiently projected to in Appendix A. We also require
the following (standard) assumptions on the covariates:

Assumption 1. (Norm bound) maxx∈X ‖x‖2 ≤ B,

Assumption 2. (Thickness of covariance matrix of
covariates)

∑
xi
xix
>
i � cI.

3.1 Probit Regression

We begin by showing identifiability of parameters in
the case of probit regression. Our approach is to use
the following theorem, which describes the performance
of (projected) SGD on a strongly convex function:
Theorem 1 (Theorem 14.11 of [SB14].). Let f : Rd →
R be a convex function, let v(1), . . . , v(M) be a se-
quence of random vectors such that E

[
v(i) | θ(i−1)

]
∈

∂f(θ(i−1)) and let θ∗ = arg minθ∈D f(θ) be a minimizer
of f . If we assume the following:

(i) bounded variance step: E
[∥∥v(i)∥∥2

2

]
≤ ρ2,

(ii) strong convexity: f(θ) is λ-strongly convex,

then E
[
f(θ̄)

]
− f(θ∗) ≤ ρ2

2λM (1 + log(M)) , where θ̄
is the average of the steps of the projected stochastic
gradient descent algorithm with projection set D and
learning rate at step t, ηt = 1/(λ · t).

To apply Theorem 1, we need to prove that (i) gradient
steps have bounded variance and (ii) the function being
optimized is strongly convex. We begin with (ii); for a
current value of θ and a sample (x, y), the log-likelihood
in our setting can be written as:

`(θ;x, y) = y · log

(∫ b

0

N
(
z; θ>x

)
dz

)

+(1− y) · log

(∫ 0

a

N
(
z; θ>x

)
dz

)
− log

(∫ b

a

N
(
z; θ>x

)
dz

)
. (10)

In order to prove strong concavity of the population
log-likelihood, we demonstrate that the likelihood for
a single sample is strongly concave for both y = 1 and
y = 0. Recall that we found the gradient of the log-
likelihood in Section 2.3; through a calculation shown
in Appendix B.1, the Hessian is given by:

∇2
θ`(θ;x, y) =

[
(1− y) ·Var

z
z∈[a,0]∼N (·;µ)

[z] (11)

+ y ·Var
z
z∈[0,b]∼N (·;µ)

[z]− Var
z
z∈[a,b]∼N (·;µ)

[z]

]
· xx>.

We proceed by proving that the inner term of (11) is
strictly negative, which can then be combined with
the thickness assumption to yield strong concavity. To
accomplish this, we make use of the following Lemma,
which we prove in Appendix B.2:

Lemma 1. Let θ0 be the density of the standard normal
distribution truncated to a half-open interval (r,∞).
Now, we define the function V (s) to be the variance of
the left-truncated distribution when also right-truncated
at s > r, that is, V (s) = Varx∼N (0,1)[x|r ≤ x ≤ s].
Then, for any b1, b2, γ ∈ R such that s > b2 > b1 >
r and Px∼N (0,1)([b1, b2]) > γ > 0, we have V (b2) −
V (b1) > poly(γ, b2 − b1).

In order to be able to apply Lemma 1 to our setting, we
need to ensure that there exists a lower bound γ such
that min(Pz∼N (θ>x,1)([0, b]), Pz∼N (θ>x,1)([a, 0])) > γ.
Note that α as defined in (8) bounds precisely this
value for θ = θ∗. Also, from the analysis of [Das+18] it
follows that because α∗ ≥ α we have |a|, |b| ≥ poly(α).
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If we additionally assume that µ = θ>x and θ ∈ Rα
then together with Lemma 1 we get that

Var
z
z∈[a,b]∼N (·;µ)

[z]−Var
z
z∈[0,b]∼N (·;µ)

[z] > poly(α),

(12)
Var

z
z∈[a,b]∼N (·;µ)

[z]−Var
z
z∈[a,0]∼N (·;µ)

[z] > poly(α).

(13)

Thus, `(θ>x; y) is strongly convex in θ within the
projection set. In order to apply the theoretical results
about the convergence of stochastic gradient descent
we also need the following lemma which follows directly
from the log-likelihood gradient, the definition of the
set Rα, the Assumption 1 and α∗ ≥ α:
Lemma 2. For any θ ∈ Rα we have that
E[|`(θ;x, y)|2] ≤ poly(1/α,B).

Combining Lemmata 1 and 2 with equations (12) and
(13) and Theorem 1 yields the following theorem.

Theorem 2 (Main result for probit regression). Let
X = {x1 . . . xn} be covariates satisfying Assumptions
1 and 2 and such that α∗ ≥ α. Let {y1, . . . , yn}
be independent samples from the probit regression
model with vector of parameters θ∗ ∈ Rd. If n ≥
poly(1/ε, 1/α,B, d, c) then projected SGD on the log-
likelihood with projection set Rα, outputs an estimate
θ such that ‖θ − θ∗‖2 ≤ ε with probability at least 99%.

3.2 Logistic Regression

We now move to the setting of logistic regression, for
which we briefly derived the gradient in Section 2.3.
Just as for probit regression, we take the truncation
function φ to be a thresholding function to the interval
[a, b]. We demonstrate that in contrast to the probit
model, the log-likelihood for truncated logistic regres-
sion can in fact be non-concave, but fortunately is
everywhere quasi-concave. Our main tool in showing
convergence will thus be the following result of Hazan,
Levy, and Shalev-Shwartz [HLS15], which guarantees
the convergence of stochastic normalized gradient de-
scent (SNGD) for sequences of strictly locally quasi-
concave (SLQC) functions (the definition of SLQC
functions is given in Definition 3 of Appendix C.1):

Theorem 3 (Normalized PGD on locally quasi-con-
cave functions; [HLS15]). Fix δ, ε, G, M , κ > 0. Sup-
pose we run projected stochastic normalized gradient de-
scent with T ≥ κ2‖x1−x∗‖2/ε2 iterations and batch size
b ≥ max

{
M2 log(4T/δ

2ε2 , b0(ε, δ, T )
}
, where b0 : R3 → N

is a function defining the minimum batch size necessary
such that w.p. 1− δ and for all t ∈ [T ], the minibatch
average at time t is M -bounded and (ε, κ, x∗)-SLQC in
xt. Then, with probability of at least 1− 2δ, we have
that f(xT )− f(x∗) ≤ 3ε.

To apply Theorem 3, if suffices to show that with
high probability, the log-likelihood for a finite batch of
samples is strictly locally quasi-concave (SLQC). To do
so, we will first prove that the population log-likelihood
is SLQC, then exploit concentration of measure to show
that for large enough batch sizes, replacing expectations
with finite averages (i.e. calculating the empirical log-
likelihood) does not break the (local) quasi-concavity.

Recall from Section 2.3 the gradient for truncated lo-
gistic regression which we can use to write the corre-
sponding population version (for brevity here we omit
an all-enclosing

∑
xi∈X [·]):

∇θ`(θ;x, y) = 2 ·
(
E
ε
φ∼DN

[
σ(ε)

∣∣∣∣ 1hθ(x)+ε≥0 = y

]
− E

ε
φ∼DN

[σ(ε)]
)
x

∇θ ¯̀(θ; θ∗) = ∑
y∈{0,1}

p∗(x,y) · E
z
φ∼f`(·;θ>x)

[
σ(z − θ>x)

∣∣∣∣ 1z≥0 = y

]
− E

z
φ∼f`(·;θ>x)

[
σ(z − θ>x)

])
x

where p∗(x,y) = P
z
φ∼f`(θ>∗ x)

(1z≥0 = y)

Through some calculation (c.f. Appendix C.2), we can
derive a closed-form for the above gradient as follows:

∇θ ¯̀(θ; θ∗) =
(
σ
(
a− θ>x

)
− σ

(
b− θ>x

))
·(

σ
(
b− θ>x

)
− σ

(
− θ>x

)
σ (b− θ>x)− σ (a− θ>x)

(14)

− σ(b− θ>∗ x)− σ(−θ>∗ x)

σ(b− θ>∗ x)− σ(a− θ>∗ x)

)
x. (15)

We can use (15) to show that the population likelihood
¯̀(θ; θ∗) is strictly quasi-convex in θ.
Lemma 3. The population log-likelihood from logistic
regression truncated to the interval [a, b] is strictly quasi-
concave—in particular, we have that for any θ ∈ Rα:

〈¯̀(θ; θ∗), θ − θ∗〉 ≤ −
α2 · ε2

4 ·B2
· (1− ea)(eb − 1)

eb − ea
,

where B is an upper bound on ‖x‖2.

The proof of Lemma 3 can be found in Appendix
C. Finally, we can exploit concentration of single-
dimensional bounded random variables to show that,
for sufficiently large batch sizes, the minibatch log-
likelihoods are also strictly locally quasi-concave, al-
lowing us to apply Theorem 3:
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Lemma 4. For a minibatch size b ≥
Θ̄
(
poly(B, 1

α ) · 1
ε2

)
, the minibatch log-likelihood,

`b(θ; θ∗) =
∑b
i=1 `(θ;xi, yi), is (ε, κ, θ∗)-SLQC where

κ ∈ Θ
(
1
ε · poly

(
B, 1

α

))
.

The proof of Lemma 4 can be found in Appendix C.
Together, these results suffice to show that normal-
ized gradient descent can recover the true regression
parameters θ∗ in the presence of truncation.

Theorem 4 (Main result for logistic regression). Let
X = {x1 . . . xn} be covariates satisfying Assumptions
1 and 2 and such that α∗ ≥ α. Let {y1, . . . , yn} be
independent samples from the truncated logistic regres-
sion model with vector of parameters θ∗ ∈ Rd. If
n ≥ poly(1/ε, 1/α,B, d, c) then projected normalized
SGD with batch size as in Lemma 4 on the log-likelihood
with projection set Rα, outputs an estimate θ such that
‖θ − θ∗‖2 ≤ ε with probability at least 99%.

4 Experimental Results

In the previous sections we introduced a general SGD
framework for learning from truncated samples. Here,
we conduct experiments demonstrating the practicality
of the resulting algorithms. We present the experi-
ments and their results here, with precise details and
hyperparameters in Appendix D.

Logistic/Probit Regression on Synthetic Data.
In Section 3 we provided theoretical guarantees for
truncated logistic and probit regression. Here, we test
the practicality of these instantiations of the truncated
learning framework on synthetic data, generated using
the underlying latent variable model of each algorithm.
In particular, we generate a dataset (X,y) as:

1. We compute X0 = {x[1,...,n] : xi ∼ U ([0, 100])
d}

is an n× d random data matrix. A “ground-truth”
θ∗ is selected at random (θ∗ ∼ U([−1, 1])).

2. For each xi, a latent zi is sampled as zi = θ>∗ xi+ε,
where ε is a centered Gaussian (Logistic) random
variable for probit (logistic) regression. We remove
all (x, z) where z is less than some threshold C.

3. We set X to be a matrix comprised of the vectors
not removed in the last step. Each xi is labeled
as yi = 1zi≥0, and we set y = {y1, . . . , yn}.

This dataset represents one that has been biased by
output truncation, for varying amounts of output trun-
cation C (which corresponds to truncation based on
the probability that a point gets classified positively).
We compare the performance of our truncation-aware
algorithm, to standard logistic/probit regression (which
is done obliviously to the bias in the data). We vary

C within [−10,−0.1], and study the ability of the two
algorithms to recover the parameter θ∗.

In Figures 2a and 2b we evaluate the performance
of each algorithm based on how precisely they can
recover θ∗ (the ground-truth parameter) from truncated
data. The results indicate that the truncated learning
algorithms presented in Section 2.2 are able to correctly
recover the parameters even when the truncation nearly
eliminates an entire class of outputs.

Logistic Regression on UCI data. To further
demonstrate the practicality of our framework, we test
the truncated classification algorithm on data from the
UCI machine learning repository [DG17]. Specifically,
we use the MillionSongDataset [Ber+11] where the
task is to predict, given a set of attributes, whether the
song was recorded before or after the millenium. The
truncation mechanism is as follows: for varying values
of C, we remove all songs from the training set that
were recorded on or before the year C. We then train
a logistic regression classifier on the resulting training
set, comparing standard likelihood minimization to our
first-order algorithm in terms of accuracy on the un-
truncated test set. Figure 2c shows that bias in the
training set is much slower to affect test results when
the truncated regression algorithm is used.

Neural Networks. Finally, we demonstrate that our
framework provides compelling practical performance,
even in the absence of theoretical guarantees. Specif-
ically, we study classification and regression settings
in which deep neural networks are trained on noisy,
biased (truncated) data. Our results indicate that the
general framework we present Section 2 indeed extends
beyond simple settings with provable convergence. To
implement our algorithm in this setting, we implement
custom versions of the cross-entropy (for classification)
and squared-error (for regression) loss functions which
return the gradient of the truncated likelihood (c.f. Sec-
tion 2.3) on the backwards pass We provide the code
for this in Appendix E.

First, we consider a regression task where a CNN
(ResNet-50) is tasked with predicting the angle of rota-
tion of randomly rotated images from the CIFAR-10
dataset. A varying amount of label noise σ is added—
note that conceptually, as more label noise is added,
the bias incurred from truncation tends to increase
(c.f. Figure 1). The training data is then truncated
based on the labeld angle of rotation, so that only im-
ages labeled 0 ≤ y ≤ 180 degrees are present in the
training set. The results (c.f. Figure 3a) demonstrate
that standard log-likelihood maximization can lead to
poor performance in the presence of truncation, while
the algorithm derived from the truncated likelihood
maximization framework maintains good performance.
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Figure 2: (a) and (b): Comparing estimation methods (standard vs truncation-aware) in terms of their ability
to recover the true parameter θ∗ on synthetic data generated according to the probit latent variable model and
biased via truncation. 95% confidence intervals are shown. (c): comparing standard vs truncation-aware logistic
regression on the YearPredictionMSD dataset, in terms of test set accuracy.

We then consider a two-class classification task (CIFAR
dogs vs. cats) with truncated samples. Concretely, a
base model is first trained on the untruncated data—
samples are removed from the training set if the log-
probability assigned to them by the base model is less
than or equal to a C (which we vary). We then use
the truncated training set to train a new network, and
measure its performance on the untruncated test set.
The results, presented in Figure 3b, demonstrate that
without knowing the relative frequency of each class in
the test set, maximizing the truncated log-likelihood
still manages to alleviate a significant amount of the
bias affecting classifiers obtained via standard training
(i.e. minimizing cross-entropy loss).

5 Conclusion

We introduce a general framework for training machine
learning models on truncated samples, i.e., on training
data that has been biased by omitting samples whose
labels fall outside of an observation window.

We instantiate this framework for two specific model
classes on which we can derive provable guarantees.
We then demonstrate the practicality of our method
at learning correctly from biased data in both provable
and complex settings. Our findings thus put forth a
promising avenue for accounting for known biases in
the data generation or collection process.
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Figure 3: Comparing neural networks obtained via stan-
dard loss minimization vs our framework when trained
on truncated data. We train networks to (a) estimate
the angle that an image has been rotated; (b) classify
between CIFAR dogs and cats. In both cases, the train-
ing set undergoes label truncation—networks trained
using our framework perform significantly better in the
presence of truncation.
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