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Abstract

A common belief in unbiased active learning
is that, in order to capture the most infor-
mative instances, the sampling probabilities
should be proportional to the uncertainty of
the class labels. We argue that this produces
suboptimal predictions and present sampling
schemes for unbiased pool-based active learn-
ing that minimise the actual prediction error,
and demonstrate a better predictive perfor-
mance than competing methods on a num-
ber of benchmark datasets. In contrast, both
probabilistic and deterministic uncertainty
sampling performed worse than simple ran-
dom sampling on some of the datasets.

1 Introduction

Consider a statistical learning problem where we want
to estimate a parameter 6 of a statistical model
fo(ylx) given a random sample (x;,y;),t = 1,..., N,
with the aim of making predictions ¢; of y; given input
features x;. Suppose further that the features x; are
observed for all 7, but that the outcomes y; are expen-
sive to measure and therefore may be observed only
for a subset of size n; this subset is, however, up to us
to choose freely.

The setting described above is the set-up of pool-
based active learning, an algorithmic framework where
a semi-supervised learning algorithm iterates between
data collection and model fitting by repeatedly query-
ing the label of new instances from a large pool of
unlabelled observations (Settles, 2012). However, this
may also be recognised as a problem arising in the
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field of finite population sampling, where the parame-
ter of interest may be estimated from a subset of el-
ements selected non-uniformly at random by applica-
tion of suitable sample weighting techniques (Binder,
1983; Skinner, 1989). Indeed, the connection between
active learning and finite population sampling has re-
cently been recognised, and several active learning
algorithms using finite population sampling method-
ology have been proposed (Bach, 2007; Beygelzimer
et al., 2009; Chu et al., 2011; Ganti and Gray, 2012).

The finite population sampling methodology offers a
promising solution to the subset selection problem in
active learning, as it allows for oversampling of the
most informative instances without compromising un-
biasedness. By use of inverse probability weighting, an
unbiased estimator of the total loss is obtained, from
which consistent estimates of the optimal parame-
ter may be computed. Furthermore, this holds true
even under the realistic assumption of model misspec-
ification (Binder, 1983; Skinner, 1989; Pfeffermann,
1993; Yuan and Jennrich, 1998), as opposed to or-
dinary maximum likelihood estimation or empirical
risk minimisation, which produce inconsistent parame-
ter estimates for misspecified models under covariate
shift (Shimodaira, 2000; Sugiyama, 2006; Bach, 2007;
Sugiyama and Nakajima, 2009). On the other hand,
the increase in variance by use of inverse probabil-
ity weighting may be substantial (Pfeffermann, 1993;
Chambers et al., 2012). Thus, the development of un-
biased active learning algorithms that yield low vari-
ances in the quantities of interest is essential.

For classification problems, it has been suggested
that unbiased active learning algorithms with good
properties are obtained by use of probabilistic uncer-
tainty sampling, assigning sampling probabilities pro-
portional to the entropy of the label distribution eval-
uated at the current parameter estimate (Chu et al.,
2011; Ganti and Gray, 2012). This seems to be mo-
tivated by the heuristic argument that it would cap-
ture the most informative instances (Lewis and Gale,



Optimal sampling in unbiased active learning

1994; Ganti and Gray, 2012), and has further been
supported by the assertion that it would minimise the
variance of the estimated (logarithmic) loss (Chu et al.,
2011). However, we argue that this sampling strategy
is suboptimal and reaches none of the desired targets,
as it i) disregards the fact that instances vary in in-
fluence and informativeness also by their location in
the feature space, and ii) targets the variance of the
estimated (logarithmic) loss given the expected data,
rather than the expected variance given the actual
data. Additionally, the idea of minimising the vari-
ance of the expected loss generalises poorly to general
prediction problems, as it in fact suggests that passive
learning, i.e. uniform random sampling, would be op-
timal for regression problems, clearly an unsatisfactory
result.

Contributions Considering a general family of
parametric prediction models, we derive an asymp-
totic expansion for the expected generalisation error
and for the mean squared error of the predictions, and
consequently present sampling schemes that optimise
the performance of the active learning algorithm with
respect to these quantities. The resulting sampling
schemes depend both on the label uncertainty and on
the influence on model fitting through the location of
data points in the feature space, and have a close con-
nection to statistical leverage — a commonly used mea-
sure of influence in generalised linear regression mod-
elling (McCullagh and Nelder, 1989).

In the next section, we outline the algorithm for unbi-
ased pool-based active learning, introduced by Ganti
and Gray (2012), that will be considered in this paper.
Our main results are presented in Section 3, where op-
timal sampling schemes for three different optimality
criteria are derived. Specifically, we consider the vari-
ance of the estimated loss, the expectation of the total
loss of the active learning algorithm, and the mean
squared error of the predictions. The suggested sam-
pling procedures are evaluated empirically in Section
4. Proofs of our theoretical results are provided in the
online supplementary appendix.

2 Unequal probability sampling in
pool-based active learning

Consider a pool P of N instances, labelled as i =
1,...,N. Each member of the pool is associated with
an outcome y; and a feature vector x;, where the fea-
tures are known for all instances in the pool, but the
outcomes may be observed only for a smaller subset.
The outcome may be either categorical, as in classifica-
tion problems, or numeric, as in regression problems.
We consider also a statistical model fg(y|x), indexed

by a parameter vector 0, and let u(x,0) := Eg[Y|x]
denote the conditional mean of the outcome under the
model fg(y|x), which we use to make predictions ¢;
of y; from the features ;. For estimation, we con-
sider a loss function £(y,x,0)," describing the loss
associated with the prediction derived from the pair
(x,0) when the true outcome is y, and denote by
£;(0) = L(y;, x;, 0) the loss associated with an instance
1 € P for a specific parameter value 8. Also, we let

lo(8) =Y _1:(6) (1)
icP
denote the total loss as a function of 6, and 8y the
corresponding optimal parameter in the sense that

0y = argmin ¢(0) .
0

An active learning algorithm sequentially samples new
training examples from the pool of available instances,
and retrieves the corresponding labels or outcomes y;.
We let Q:; be the sample inclusion indicator variable
taking the value 1 if instance ¢ is selected in itera-
tion ¢ and 0 otherwise, m; ; := P(Q¢,; = 1) denote the
corresponding inclusion probability, and £; the collec-
tion of labelled instances up to and including iteration
t. In each step, one instance is selected at random
according to a Multinomial(1, 7;) distribution, where
my = (T¢1,...,m n). Typically, the sampling scheme
7, employed in the current iteration will depend on the
parameter estimate from the previous iteration. We
do, however, postpone the discussion on the choice of
sampling scheme to Section 3.

After retrieving the label y; of the selected instance,
the model fg(y|x) is updated by choosing 6, as the
minimiser of a weighted loss

0,(0) = Z we,i4;(0) (2)
€Ly

for some appropriately chosen weights w; ;. Following
Ganti and Gray (2012), we use the sampling weights

t
1 Qs@' .
wt,iZEZE, 1eP, (3)

s=1

which can be computed recursively as

. 1 ( Qi
Wy =Wi—1;+ - | —— — W14 |,

t Tt,q

starting with wp; = 0. An algorithmic description of
this active learning procedure is summarised in Algo-
rithm 1.

We note that a loss function commonly is written as a
function #(§,y) of the prediction § and the outcome y, but
use the notation £(y, z, @) to emphasise the dependence on
the data (y,z) and parameter 6.
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Using survey sampling terminology, we may, with the
choice of sampling weights (3), think of the weighted
loss (2) as a Horvitz-Thompson estimator (Horvitz and
Thompson, 1952) of the total loss (1). As such, the
weighted loss (2) is an unbiased estimator of the total
loss (1), provided that all sampling probabilities are
strictly positive, following from the fact that the sam-
pling weights have expectation equal to 1; see Ganti
and Gray (2012) for additional details. Consequently,
active learning algorithms with this property are com-
monly referred to as unbiased active learners, referring
to the unbiasedness of the estimated loss. This prop-
erty in its turn implies that the weighted estimator 0,
is a consistent estimator of the optimal parameter
under general regularity conditions. Importantly, this
holds even if the model fo(y|x) would be misspeci-
fied and differ from the actual data generating model;
see e.g. Binder (1983); Skinner (1989); Pfeffermann
(1993); Yuan and Jennrich (1998) and Bach (2007).

Algorithm 1 Sampling-weighted active learning

Start with an empty sample L.
Initialise the sampling weights to wo,; = 0 for all 7 € P.
1. fort=1,2,... do
2:  Compute sampling probabilities 7 ; € (0,1) for all
i€ P.
3:  Select one instance at random from the pool accord-
ing to 7.
4:  Query the value of y; of the selected instance and
add the corresponding index to L.
5:  Update the sampling weights according to

1

Tt,i

1 .
We,i =wz71,z‘+¥ — W14 ), 1€ L.

6:  Update the model fo(y|x) by choosing

6; = arg min Z we,i£:(0) .2 (4)

1€Ly

7: end for

3 Optimal sampling schemes

For the estimation of a simple population characteris-
tic, such as a finite population mean or total, it is a
well known fact that the variance of an inverse proba-
bility weighted estimator of the corresponding statistic
is minimised by assigning sampling probabilities pro-
portional to the size of the characteristic of interest,
commonly referred to as PPS sampling (Hansen and
Hurwitz, 1943; Horvitz and Thompson, 1952; Sarndal
et al., 2003). For predictive modelling, however, there

2We note that this step of the algorithm only can be
performed if a sufficient number of instances have been
selected, and that a penalised weighted loss may be con-
sidered for improved performance in small samples.

is some ambiguity in what quantity that should be tar-
geted, and consequently what measure of ’size’ that
should be used. In this section, we consider three dif-
ferent targets relevant for predictive modelling, and
consequently derive sampling schemes that minimise
the variances, expectations or mean squared errors of
the corresponding quantities. We further show that
the notion of sampling with probability proportional
to size in the context of predictive modelling naturally
translates into sampling with probability proportional
to ’influence’.

Our first proposition relates to Chu et al. (2011) and
considers the variance of the estimated loss at a spe-
cific parameter value. In the second proposition, we
consider the expected generalisation error in terms of
the total loss of the active learning algorithm, £o(6;),
which is similar to Bach (2007). The third proposition
is inspired by Schein (2005) and Schein and Ungar
(2007), and considers the mean squared error of the
predictions derived from 6;. All propositions are for-
mulated in terms of Algorithm 1 but may immediately
be generalised to batch sampling using e.g. Poisson
sampling or multinomial sampling, as outlined in Im-
berg (2019), and to e.g. Lo-penalised loss functions,
which we will use in Section 4. Proofs are presented
in the online supplementary appendix.

In the propositions that follow, we adopt a finite
population sampling viewpoint where the outcomes
Y1,...,yn are considered to be unknown but fixed
constants, as motivated by the fact that the random
process generating the data in the pool is carried
out prior to instance selection; the values of y; are
merely waiting to be observed. The actual values of
y := (y1,...,yn) are, however, in general unknown
to us, and we introduce a collection of random vari-
ables Y7*,..., Y}, distributed according to the model
fo(yi|x;), to account for our uncertainty about the
true values of y. We use subscript 8 to denote ex-
pectations with respect to Y* = (Y7*,...,Yy) un-
der the model fg(y|x), and subscript m to denote
expectations and variances with respect to Q. :=
Q,,...Q,, i.e with respect to the sampling mecha-
nism. Following Isaki and Fuller (1982), we define
the anticipated variance of a statistic T(y, Q...;X,600)
as Bg[Varg(T(Y*, Q,..; X, 6)|Y )], i.e. as the model-
based expectation of the variance of T under repeated
subsampling; a useful quantity for deriving practically
implementable sampling schemes with certain optimal-
ity properties.®> The anticipated mean squared error
of a statistic 7' is defined analogously. We may now
present our first theoretical result:

3By a statistic T(y,Ql:t;X,Oo), we simply mean a
random variable 7" that is a function of y, Qq,...,Q,,
x1,...,x N and, possibly, 0.
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Proposition 1
Consider the anticipated variance of the contribution
to the weighted loss (2) from iteration t at the parame-

ter value 0:
Qt 1 *
Var, < E oy L xy, )|Y . (5)

As a function of m¢, the anticipated variance (5) is
minimised by choosing sampling probabilities according

to
i o< \/ Ba[l(Y*, 4, 0)?] (6)

for all i € P, normalised so that ), T = 1.

Eg

As opposed to Chu et al. (2011), Proposition 1 sug-
gests that the variance of the estimated loss at a spe-
cific parameter value is minimised by sampling with
probability proportional to the square root of the ex-
pected squared loss, and not by sampling with proba-
bility proportional to the expected loss. To highlight
the difference, the sampling scheme of Proposition 1
aims to minimise the expected variance of the actual
data, while sampling with probability proportional to
the expected loss would replace the actual data by its
expectation. To implement this sampling scheme in
practice, one would typically evaluate the loss at the
current parameter estimate and compute the expecta-
tions involved in the sampling scheme (6) under the
current model, i.e. take @ = 6 = 6,_;.

We point out that the result of Proposition 1 has its
main use when estimation of the total loss is of primary
interest, as is the case in e.g. model validation, and
that the sampling scheme (6) not necessarily yields an
active learning algorithm that produces optimal pre-
dictions. Thus, we provide in Proposition 2 an asymp-
totic expansion of the generalisation error in terms of
the total loss £o(6;) of the active learning algorithm,
and consequently present a sampling scheme that min-
imises the expectation of this quantity in Corollary 1a.
Similarly, we provide in Proposition 3 an asymptotic
expansion of the mean squared error of the predictions
derived from éh and present a sampling scheme that
minimises the expectation of this quantity in Corol-
lary 1b. To do so, we first need to introduce some
additional notation and assumptions, as detailed be-
low.

First, assume that

A1 the loss function ¢(y,x,0) is twice differentiable
with respect to the parameter 6,

and let S(0) and H () denote the (p x 1) gradient
vector and the (p x p) Hessian matrix of the total loss
£y(0), respectively, and let S(0) and H(0) be their

corresponding weighted estimators, defined in analogy
with the weighted loss (2). Assume further that

A2 the distributions of v/#(8; — 6y) and (S(6) —
S(60)) with respect to the subsampling mechanism
converge to normal laws with zero mean and non-
degenerate covariance matrices as N — oo, t —
oo and N —t — oo,

A3 the limit of %I:I(HO) as N — oo, t — oo and
N —t — oo exists and equals the limit of 4 H (6y),
and that the matrix H(60) has full rank.

For Proposition 3 we also need the following assump-
tion:

A4 the mean function p(x, ) := Eg[Y|x] is differen-
tiable with respect to the parameter 6.

We note that assumptions Al and A4 are immedi-
ately fulfilled for a wide range of statistical models,
including e.g. generalised linear models (McCullagh
and Nelder, 1989). Conditions necessary for assump-
tions A2 and A3 to hold are given in the literature; see
e.g. Binder (1983) and references therein.*

Finally, we let X denote the (IV x p) model matrix with
rows !, 8;(0) = Vel(y;,x;,0) the (p x 1) gradient
vector of the loss pertaining to instance i, M (0) the
(N x p) matrix with rows Veu(z;,0)T, and ||v|| the
Euclidean norm of a vector v, i.e. ||[v|| = VoTv. We

are now ready to formulate our main results.

Proposition 2

Lety := (y1,...,yn) and w14 := (7y,..., ) be fized,
and assume that A1 - A8 holds. Then, the expected
generalisation error En [Eo(ét)] admits the asymptotic
expansion

t N
I 1 ci(y, X, 0o)
™ {Nfo(gt)} = yl000) + 557 ;; B
+k+o(t™),
(7)

where
ci(y, X,0) = s,(0)"H(0) '5;(0)

and k is a constant not depending on 71.;. Moreover,
the second term of (7) is minimised by choosing 1.4
according to

T, X ci(y,X,Oo) (8)

4Formally, we consider in assumption A2 and A3 a (hy-
pothetical) sequence P1, Pa, ... of pools of increasing sizes
Ni, Na, ..., but leave the dependence on this sequence im-
plicit our somewhat simplified notation.
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for all i € P and s = 1,...,t, normalised so that
2iep Tsi = 1.
Proposition 3
Lety := (y1,...,yn) and w14 := (w1, ..., 7;) be fized,

and assume that A1 - A4 holds. Then, the mean
squared error of the predictions {u(x;, 0+)}iep admits
the asymptotic expansion

where
di(y, X,0) =||M(0)H(0) "s;(0)||*

and k is a constant not depending on m1.;. Moreover,
the first term of (9) is minimised by choosing 1.+ ac-
cording to

di(y, X, 00) (10)

Ts,i X

for all i € P and s = 1,...,t, normalised so that
Diep s = 1.

We emphasise that the results of Proposition 2 and 3
are based on a finite population sampling viewpoint
where the outcomes y; are considered to be fixed but
unknown constants. Consequently, all randomness in-
volved is ascribed to the selection mechanism and the
results are free of modelling assumptions in the sense
that they do not rely on fg(y|x) being the model from
which the data was actually generated. On the other
hand, these results are rather impractical, since com-
putation of the sampling schemes (8) and (10) would
require the outcomes y; and the optimal parameter
0y to be known. In practice, one may thus instead
aim to minimise the model-based expectations of these
quantities. This amounts to replacing ¢;(y, X, 6o)
and d;(y, X,0p) in (8) and (10) by Eg[c;(Y™, X, 0)]
and Eg[d;(Y", X, 0)], where the expectation is taken
with respect to Y7*,..., Y% under the model fo(y|x),
and @ may be taken as the current parameter esti-
mate 0;_;. Such a procedure provides practically im-
plementable approximations to the unknown optimal
sampling schemes (8) and (10) that ideally would ap-
proach optimal performance.

As an example, we present in Corollary 1 two practi-
cally implementable sampling schemes that are opti-
mised to minimise the anticipated generalisation error
in terms of the total loss of the active learning algo-
rithm (Corollary 1a), and to minimise the anticipated
mean squared error of the predictions (Corollary 1b)
for a class of generalised linear models (McCullagh and
Nelder, 1989).

Corollary 1

Consider a generalised linear model with canonical link
function. Let V. = V(0) be the (N x N) diago-
nal matriz with entries Varg(Y;*|x;), and assume that

H=H(9) x X"V (0)X has full rank. Then,

(a) the anticipated asymptotic generalisation er-
ror, given by the model-based expectation of

Ex {Zo (ét)} , is minimised by choosing

71'1571‘ X

where hi(0) = Varg(Y/|x))xl H 'x; is the
(scaled) statistical leverage score pertaining to in-
stance 1,

(b) the anticipated asymptotic mean squared error
of the predictions {p(x;,0+)}icp is minimised by
choosing

i o ||SDe (Y |2) VX H 'y (12)
where SDg (Y;*|x;) = /Vare(Y;*|x;).

For a linear regression model with constant error vari-
ance, (11) and (12) coincide and simply further to
T o2l (XTX)1ay,

where mf(XTX)_lwi =: h;; is the statistical leverage
score for linear regression.

As highlighted by Corollary 1, the optimal sampling
schemes suggested by the discussion succeeding Propo-
sition 2 and 3 are not simply functions of the label un-
certainty alone, but depend also on the location of data
points in the feature space and account for additional
problem specific information captured by the Hessian
of the total loss and the gradients of the individual
losses and predictions. Furthermore, we may interpret
the quantities Eg[c; (Y™, X, 0)] and Eg[d;(Y*, X, 0)]
used in the practical approximations of the (unknown)
optimal sampling schemes (8) and (10) as measures of
influence, measuring the anticipated influence of indi-
vidual data points on the total loss of the active learn-
ing algorithm and on the resulting predictions. Indeed,
Corollary 1 shows that the suggested sampling schemes
have a close connection to statistical leverage — an in-
fluence measure commonly used in generalised linear
regression modelling (Pregibon, 1981; McCullagh and
Nelder, 1989; Rawlings et al., 1998).

To conclude this section, an illustration of the sam-
pling scheme used in Chu et al. (2011) and Ganti
and Gray (2012) is provided in Figure 1, along with
the sampling schemes suggested by Proposition 1 and
Corollary 1.
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Sampling probability

= Chu et al. (2011), Ganti & Gray (2012)
=== Proposition 1
e Corollary 1a
Corollary 1b

Figure 1: Sampling probability and label uncertainty
according to probabilistic uncertainty sampling (Chu
et al., 2011; Ganti and Gray, 2012), and according to
Proposition 1 and Corollary 1 for a binary classifica-
tion problem using logistic regression on a simulated
dataset with 5 features.

4 Empirical evaluation’®

4.1 Methods

We evaluated the empirical performance of the pro-
posed sampling schemes for unbiased active learn-
ing on binary classification problems on six different
data sets: the Abalone dataset, the Statlog Australian
Credit Approval and German Credit Data datasets,
the Red and White Wine Quality datasets (Cortez
et al., 2009), and a dataset derived from the DNA
sequence of the E. coli bacteria. The first five datasets
were retrieved from the UCI Machine learning repos-
itory (Dua and Graff, 2019). For the wine quality
datasets, a cut-off at > 6 was used to create a binary
outcome from the wine quality score.

The E. coli dataset was constructed by extracting the
DNA sequences of all coding sequences (i.e. genes) and
all non-coding sequences located between genes. As
predictors, we used the relative frequency of two-letter
"words” AA, AC, AG, AT, CA, CC, ..., TT made from
the "alphabet” A, C, G and T. Thus, there are 16 such
word frequencies, used to predict whether a sequence
is coding or non-coding. The genomic data, including
the complete DNA sequence with annotations, was re-
trieved from GenBank (2017) (Clark et al., 2016). A

5A preliminary version of these experiments has pre-
viously been presented as a manuscript in Imberg (2019).
In the preparation of this paper, an error in the imple-
mentation of deterministic uncertainty sampling has been
detected and corrected, and the results and discussion have
been updated accordingly.

summary of the characteristics of the six datasets con-
sidered is presented in Table S1 in Appendix C in the
online supplement.

Active learning was performed using logistic regres-
sion for prediction and implemented according to Algo-
rithm 1, with the following modifications. First, an Lo
(ridge) penalty term was incorporated in the weighted
loss function (2) in the estimation step (4), to enable
estimation and improve performance in small samples.
The penalty parameter was chosen using leave-one-
out cross-validation for samples of sizes less than or
equal to 50, and 10-fold cross-validation otherwise. To
reduce computation time, instances were sampled in
batches rather than one at a time, starting with a
simple random sample of 25 instances. In each iter-
ation, 25 new instances were sampled from the pool of
unlabelled instances using multinomial sampling, thus
avoiding unnecessary re-queries on already labelled in-
stances. To retain unbiasedness, labelled instances
were re-queried with probability 1 in all succeeding
iterations. This comes with no additional cost since
the labels of those instances are known already.

The following sample selection procedures were con-
sidered: sampling with probabilities computed accord-
ing to Proposition 1; sampling with probabilities com-
puted according to Corollary la (hereafter also re-
ferred to as leverage sampling) and Corollary 1b, re-
placing the Hessian of the ordinary loss by the Hessian
of the corresponding Ls-penalised loss; and probabilis-
tic uncertainty sampling, assigning sampling probabil-
ities proportional to the entropy of the label distribu-
tion (Chu et al., 2011; Ganti and Gray, 2012). For ref-
erence, we also implemented deterministic uncertainty
sampling (Lewis and Gale, 1994), querying the labels
of the most uncertain unlabelled instances based on
the entropy of the label distribution, and passive learn-
ing, i.e. uniform random sampling.

Predictive performance was evaluated as follows. The
generalisation error was measured by the total loss of
the active learning algorithm, i.e. by the negative log-
likelihood of the predicted class probabilities on the en-
tire dataset, and the performance on binary classifica-
tion was measured by the misclassification rate on the
entire dataset and by the proportion of correctly classi-
fied minority examples, using 50% probability cut-off.
The discriminative ability was further assessed by the
area under the receiver operating characteristic curve
(AUC), which compared to the misclassification rate
has the advantage of not being dependent on any par-
ticular probability cut-off. The accuracy of the pre-
dicted class probabilities was further assessed by the
root mean squared error (RMSE) of the predictions,
as compared to the predictions obtained when using
the entire dataset for training.



Henrik Imberg, Johan Jonasson, Marina Axelson-Fisk

To further assess the bias or unbiasedness of the pre-
dictions, we also evaluated the calibration of the pre-
dicted class probabilities to the observed outcomes
by calculating the calibration slope, as described by
Steyerberg and Vergouwe (2014), and by calculating
the ratio of observed vs. predicted (expected) number
of minority examples. A calibration slope > 1 cor-
responds to conservative predictions that are shrunk
towards the overall mean, and < 1 to overfitting in
the sense that the predicted class probabilities are too
extreme: low predictions too low and high predictions
too high.

The active learning procedure was repeated 10 000
times, and the average or median of the performance
metrics was computed. Finally, we estimated the
sample sizes required for active learning to achieve
equal performance as simple random sampling of n =
50,...,250 instances in terms of AUC, misclassifi-
cation rate, negative log-likelihood and RMSE;, i.e.
estimating the sample size reduction that could be
achieved by use of active rather than passive learning.

All computations were performed in R v. 3.5.2 (R Core
Team, 2018), using the doParallel package v. 1.0.15
(Microsoft Corporation and Weston, 2018) for parallel
computing and the glmnet package v. 2.0-18 (Fried-
man et al., 2010) for fitting ridge logistic regression
models. The full code used for the experiments is pro-
vided at https://github.com/imbhe/0SiUAL.

4.2 Results

The predictive performance in terms of the misclassifi-
cation rate and negative log-likelihood of the predicted
class probabilities for the various active learning algo-
rithms is presented in Figure 2 on the Abalone, E. coli
and Red Wine datasets, and in Figure S1 - S7 in Ap-
pendix C in the online supplement for all datasets and
performance metrics. The impact of active learning on
label complexity in terms of the number of instances
that need to be queried in order to achieve equal per-
formance as passive learning with a given sample size
is presented for all benchmark datasets in Figure S8 -
S10 and Table S2 in Appendix C in the online supple-
ment.

As expected, leverage sampling (Corollary 1a) overall
achieved the best performance in terms of the neg-
ative log-likelihood of the predictions (Figure 2 and
S4, Table S2). Similarly, the sampling scheme opti-
mised towards the mean squared error of the predic-
tions (Corollary 1b) produced, together with leverage
sampling, the most accurate predictions in terms of the
RMSE of the predicted class probabilities (Figure S5,
Table S2). Indeed, the two sampling schemes of Corol-
lary 1 had almost identical performance. Both per-

formed better than passive learning on all datasets and
performance metrics, and reduced the label complexity
for classification by up to 23% (median 8%) compared
to passive learning (Table S2). In contrast, the two
probabilistic sampling schemes that were determined
by label uncertainty alone (Proposition 1, probabilis-
tic uncertainty sampling) both performed worse than
passive learning with respect to essentially all perfor-
mance metrics on four of the datasets.

The predictions obtained by the probabilistic sampling
procedures were fairly well-calibrated on most of the
datasets, with a slight bias in the predicted probabili-
ties towards the overall mean, as expected by the use
of a penalised loss function (Figure S6 and S7). Deter-
ministic uncertainty sampling generated the best clas-
sification results (Figure 2, Figure S1 - S2), but per-
formed worse than passive learning with respect to the
AUC, RMSE and negative log-likelihood of the pre-
dictions on four of the datasets (Figure 2, Figure S3 -
S4), and produced poorly calibrated predictions with
a severe bias towards the majority class in two of the
examples (Figure S6) and overfitted class probability
estimates on the majority of the examples (Figure S7).

5 Conclusion

We have studied the impact of the choice of sampling
scheme on the statistical properties of unbiased active
learning algorithms, conducted an asymptotic analy-
sis of the generalisation error and prediction error, and
derived sampling schemes that minimise the expecta-
tions of these quantities. We have shown that optimal
predictive performance is achieved by oversampling in-
fluential instances and high-leverage data points, and
that uncertain instances not necessarily are informa-
tive ones. Thus, our results stand in contrast to exist-
ing algorithms that suggest the use of probabilistic un-
certainty sampling (Chu et al., 2011; Ganti and Gray,
2012). Influence-based sampling schemes, on the other
hand, have recently been suggested for linear and gen-
eralised linear regression modelling in big data appli-
cations (Ma et al., 2014; Ma and Sun, 2015; Ma et al.,
2015; Wang et al., 2018), as further supported by our
findings.

Although our theoretical results are based on asymp-
totic arguments, we have demonstrated that major im-
provements in predictive performance may be achieved
already at moderate sample sizes. However, the opti-
mality of our theoretical results is somewhat compro-
mised by replacing unknown quantities by their ex-
pectations, and by not knowing the optimal parame-
ter. Consequently, only minor improvements were ob-
served on some of the datasets, as compared to passive
learning. On the other hand, the suggested sampling
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Figure 2: Predictive performance in terms of average misclassification rate and median of the negative log-
likelihood (scaled by a factor 1/N) of the predictions in 10 000 active learning experiments on three benchmark
datasets, using sampling schemes optimised to minimise the anticipated variance of the estimated loss (Proposi-
tion 1), to minimise the total loss of the active learning algorithm (leverage sampling, Corollary 1a), to minimise
the anticipated mean squared error of the predictions (Corollary 1b), probabilistic uncertainty sampling (Chu
et al., 2011; Ganti and Gray, 2012), deterministic uncertainty sampling (Lewis and Gale, 1994), and uniform
random sampling. The grey solid line shows the performance when using the entire dataset for training.

schemes that were optimised towards predictive per-
formance never performed worse than passive learning,
and performed markedly better than passive learning
in the majority of the examples.

Somewhat unexpectedly, the best performance in
terms of misclassification rate was obtained by deter-
ministic uncertainty sampling, which for some of the
datasets even achieved a lower misclassification rate
than when using the entire dataset for training. At
the same time, deterministic uncertainty sampling per-
formed worse than passive learning with respect to es-
sentially all other performance metrics on the majority
of the datasets. Our experiments also revealed a sub-
stantial loss of accuracy in the predicted class probabil-
ities, sometimes with a bias towards the majority class
and often with an over-optimism in the certainty of the
predictions. Despite the positive classification results,
our study therefore raises major concerns about the
use and applicability of deterministic sample selection

procedures, in particular in applications where unbi-
ased estimates of class probabilities are required.

To conclude, our study reveals serious problems with
the use of seemingly well-performing deterministic
selection procedures in active learning, and demon-
strates the benefits of unbiased active learning through
unequal probability sampling with inverse probability
weighting. Our study further provides a unified frame-
work for optimal sampling in unbiased active learning
that is applicable to both regression and classification
problems, and suggests that instance selection in un-
biased active learning primarily should be influence-
driven rather than uncertainty-driven. Even though
our theoretical results are limited to regular paramet-
ric models and smooth loss functions, we postulate
that the same conclusion holds generally, although the
notion of influence certainly is model dependent, and
studies of sampling strategies for non-regular problems
and non-parametric methods are encouraged.
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