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Abstract

Active learning is a framework in which the
learning machine can select the samples to be
used for training. This technique is promis-
ing, particularly when the cost of data acqui-
sition and labeling is high. In active learn-
ing, determining the timing at which learn-
ing should be stopped is a critical issue. In
this study, we propose a criterion for au-
tomatically stopping active learning. The
proposed stopping criterion is based on the
difference in the expected generalization er-
rors and hypothesis testing. We derive a
novel upper bound for the difference in ex-
pected generalization errors before and af-
ter obtaining a new training datum based
on PAC-Bayesian theory. Unlike ordinary
PAC-Bayesian bounds, though, the proposed
bound is deterministic; hence, there is no un-
controllable trade-off between the confidence
and tightness of the inequality. We combine
the upper bound with a statistical test to de-
rive a stopping criterion for active learning.
We demonstrate the effectiveness of the pro-
posed method via experiments with both ar-
tificial and real datasets.

1 Introduction

In supervised learning problems, increasing the num-
ber of training samples can improve prediction per-
formance. However, to train a predictor, annotated
datasets are required, and annotation frequently re-
quires the knowledge of experts or the conduction of
experiments with a high cost, such as large-scale ex-
periments or long-term experiments, for example, agri-
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cultural examinations. Active learning (AL) (Settles,
2009) is a framework in which learners can select data
that improve the prediction accuracy. Although var-
ious methods have been proposed for selecting new
data, only a few studies have reported on the criteria
for stopping learning (Vlachos, 2008; Ertekin et al.,
2007; Paisley et al., 2010; Krause and Guestrin, 2007),
which is a critical aspect to make active learning prac-
tical. Furthermore, most existing criteria depend on
a specific learning tasks, and parameters such as the
threshold need to be appropriately defined.

The purpose of this study is to develop a versatile stop-
ping criterion for active learning, that is, a criterion in-
dependent of task or loss function. Realization of this
goal faces two challenges. The first issue is determin-
ing the measure to use for the stopping criterion. The
simplest approach is to evaluate the convergence of
learning by monitoring the generalization error of the
prediction model using the test dataset. However, ac-
tive learning is often applied in circumstances in which
obtaining a sufficient amount of test data is unreason-
able. Therefore, it is necessary to evaluate the con-
vergence of learning without using the test dataset.
The second issue is the development of a concrete al-
gorithm to determine the stop timing of learning. The
simplest approach for this is to set a threshold and stop
learning when a value defined based on a certain mea-
sure exceeds the threshold. However, in general, the
appropriate threshold may not be known in advance.

In this study, the generalization error is evaluated
without using the test data by employing the up-
per bound of the difference in the expected gener-
alization errors based on the PAC-Bayesian frame-
work (McAllester, 1999, 2003; Langford, 2005; Catoni,
2007). Furthermore, the sequence of the difference in
the expected generalization errors is regarded as time
series data, and the stop timing of learning is deter-
mined automatically via a runs test (Wald and Wol-
fowitz, 1940).

The major contributions of our work are as follows:

A versatile stopping criterion for active learning is pro-
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posed. The proposed method is applicable to arbitrary
cost functions and can be applied to both classification
and regression tasks. Moreover, the proposed criterion
can evaluate performance of a model at low calculation
cost. In the stopping criterion of AL, we need to con-
sider a trade-off between the labeling cost, computa-
tional cost for both learning the model and determin-
ing the criterion as well as the predictive performance
of the model. The proposed method assume the cost of
labeling is dominant, and the predictive performance
of the model is of importance. The computational cost
for evaluating the stopping criterion is of the constant
order, hence it does not increase the over all compu-
tational cost.

Theoretical guarantees for the criterion are derived
based on the PAC-Bayesian theory. The proposed
criterion is the upper bound of the optimal value in
terms of the PAC-Bayesian framework. It is notable
that even though the proposed criterion is derived from
the PAC-Bayesian theory, it is a deterministic bound;
therefore, there is no trade-off between the confidence
and tightness of the bound. We combine the proposed
bound with statistical test to realize a statistically
sound criterion for stopping active learning.

2 Active learning and its stopping
criteria

Let x ∈ X and y ∈ Y be the input variable and the
corresponding output variable, respectively, in certain
domains X and Y. Supervised learning considers the
problem of estimating the predictor f : x 7→ E[y|x].
For problems with high annotation cost or acquisi-
tion cost, active learning (Settles, 2009) is a practical
method for constructing a useful prediction model with
the minimum number of annotations or labeling for the
output variable. Specifically, active learning yields a
new datum by repeating two processes: (i) estimat-
ing the predictor from the acquired training data and
(ii) determining the new input datum x∗ to maximize
the acquisition function a(x|f) based on the current
predictor:

x∗ = arg max
x∈X

a(x|f). (1)

In practical application of active learning algorithms,
the timing to terminate learning is decided based on
a predetermined budget, which is called the “fixed-
budget” approach. However, there are two problems
in this standard approach. (1) Even within the fixed
budget, it is possible that the learner has enough train-
ing data, and the fixed-budget approach oversamples
in this situation, which misses possible saving of bud-
get. In addition, if we knew that the learner has much
room for improvement when we have reached the bud-

get limit, we can claim that we should spend more
of the budget. (2) Active learning can be used for
outlier removal (Kobayashi and Sugiyama, 2012; Co-
han and Naderiparizi, 2018), but the fixed-budget ap-
proach cannot rule out sampling outliers. Developing
a stopping criterion for active learning is in these sense
important.

The existing stopping criteria for active learning can
be classified into accuracy- and uncertainty-based ap-
proaches. Methods pertaining to the accuracy-based
approach evaluate predictive errors. A typical method
is to evaluate the predictive error by using selected
unlabeled data or pool data (Zhu, 2007; Zhu et al.,
2008a,b; Laws and Schütze, 2008). Another popular
method is based on the stability of agreement of mul-
tiple predictors (Bloodgood and Vijay-Shanker, 2009;
Bloodgood and Grothendieck, 2013; Altschuler and
Bloodgood, 2019; Olsson and Tomanek, 2009). Meth-
ods pertaining to the uncertainty-based approach eval-
uate the uncertainty of prediction by using the pooled
data. The margin of support vector machine (SVM)
classifier is used for measuring the uncertainty (Schohn
and Cohn, 2000; Vlachos, 2008). Criteria based on the
convergence of the margin or other related quantities
evaluated by using the pooled dataset are proposed in
(Laws and Schütze, 2008; Krause and Guestrin, 2007).
However, most of those criteria depend on the learn-
ing models, acquisition function, and problem settings
such as the use of classification or regression.

Apart from the studies on active learning, some other
studies have considered the optimal stopping timing
for learning algorithms. In the nonparametric re-
gression and neural networks literature, early stop-
ping (Prechelt, 2012; Raskutti et al., 2011) and its
variants (Wang and Yan, 2018; Raskutti et al., 2011)
have been widely used in practice to reduce compu-
tational time and overfitting. In the framework of
Bayesian optimization, several heuristics have been de-
vised (Lorenz et al., 2015; Desautels et al., 2014), al-
though a theoretically supported method with practi-
cal utility is yet to be developed. In the multi-armed
bandit literature, the best arm identification has been
considered as a problem of finding the best model
in the minimum number of trials (Kaufmann et al.,
2016; Even-Dar et al., 2006; Audibert and Bubeck,
2010; Aziz et al., 2018). Determining an appropriate
stopping timing is also a critical issue when running
Markov chain Monte Carlo (MCMC) algorithms, in
which the sequential fixed-width confidence interval is
one of the most popular methods (Chow and Robbins,
1965; Gong and Flegal, 2016; Jones et al., 2006). How-
ever, the methods developed in the studies related to
MCMC algorithms focus on the convergence to a sta-
tionary distribution, and thus they cannot be directly
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applied in active learning because the aim of active
learning is not to obtain a certain probability model
but to train an accurate predictor.

In this work, we focus on a stopping criterion that
monitors the difference in the generalization errors be-
fore and after a new training sample is obtained. If
sufficient test data are available, it is easy to evaluate
the difference in the generalization errors. However,
this is not the case when active learning is involved.
To alleviate this problem, we adopt the PAC-Bayesian
framework (McAllester, 1999, 2003; Langford, 2005;
Catoni, 2007; Germain et al., 2016), in which the gen-
eralization error is bounded by using only the training
dataset.

3 Evaluation of difference between
generalization errors

Let S = (X,Y ) = {(xi, yi)}ti=1, (xi, yi) ∈ X×Y be the
observed dataset. We assume that (X,Y ) is generated
by a probability distribution D. Let l : F × X × Y →
[a, b] be a loss function, where F is a set of predictors
and 0 ≤ a < b < ∞. In the Bayesian framework,
we assume that the predictor f is a function-valued
random variable and consider its prior and posterior
distributions. The expected risk LD(f) and empirical
risk LS(f) can be defined as follows:

LD(f) = E
D
[l(f, x, y)], LS(f) =

1

t

t∑
i=1

l(f, xi, yi).

PAC-Bayesian theory binds the expected gener-
alization error to any posterior q(f) of predic-
tor f (McAllester, 2003; Catoni, 2007), that is,

Eq(f) [LD(f)]. So far, various upper bounds in clas-
sification have been proposed (McAllester, 1999, 2003;
Langford, 2005; Catoni, 2007). Recently, the up-
per bound of the expected generalization error in the
regression problem has also been proposed (Alquier
et al., 2016; Germain et al., 2016).

From the viewpoint of active learning, the greatest ad-
vantage of the PAC bound is its universality because
it is derived without assuming any specific loss func-
tion. Based on the PAC-Bayesian approach, not only
different learning models but also both classification
and regression problems can be addressed using the
unified framework.

3.1 Upper bound for difference between
generalization errors

Let q(f |S) be the posterior distribution of predic-
tor f ∈ F given a dataset S = (X,Y ). The pos-
terior is calculated by using Bayes’ theorem as fol-

lows: Assuming that the loss function is the nega-
tive log-likelihood (Banerjee, 2006), that is, l(f, x, y) =
− log p(y|f), we have p(y|f, x) = e−l(f,x,y). If a vector
of function value f for input X is denoted by fX , the
posterior can be obtained using

q(fX |S) = p(Y |fX , X)p(fX)/p(Y |X) (2)

= e−tLS(f)p(fX)/p(Y |X), (3)

where p(fX) is a prior. Let X∗ and fX∗ be
the test input and its corresponding vector of the
function value, respectively. Then, the predic-
tive distribution q(fX∗ |S) is given by q(fX∗ |S) =∫
p(fX∗ |fX)q(fX |S)dfX , where p(fX∗ |fX) is the con-

ditional probability w.r.t. the prior distribution
p(fX∗ , fX). The difference between the expected gen-
eralization error w.r.t q(f |S) and that w.r.t q(f |S′) is
denoted by R(q(f |S), q(f |S′)), that is,

R(q(f |S), q(f |S′)) = E
q(f |S)

[LD(f)]− E
q(f |S′)

[LD(f)].

Note that the sample sizes of S and S′ can be different.

The quantity R(q(f |St), q(f |St+1)) represents the re-
duction of the expected generalization error by the
data acquisition. Substituting p(f) to q(f |S0), we
have R(p(f), q(f |St)) =

∑t
i=1R(q(f |Si−1), q(f |Si)).

This represents the cumulative reduction of the ex-
pected generalization error by adding t samples.
Because Ep(f) [LD(f)] is constant for added sam-
ples, we can assume it is a constant d. Then,
R(p(f), q(f |St)) = d−Eq(f |St) [LD(f)]; hence, the con-
vergence of R(p(f), q(f |St)) is equivalent to the con-
vergence of Eq(f |St) [LD(f)], which is the rationale be-
hind the definition of R. We evaluate the convergence
of R(q(f |St), q(f |St+1)) in the framework of a statis-
tical test.

The KL divergence between p(f) and q(f) can be de-

fined as DKL [p(f)||q(f)] = Ep(f)

[
log dp(f)

dq(f)

]
. Then,

the following theorem holds:

Theorem 1. Let q(f |S) and q(f |S′) be the posteri-
ors w.r.t. predictor f ∈ F given S and S′. For any
measurable function LD(f)

1, the following inequality
holds:

R(q(f |S), q(f |S′)) ≤ DKL [q(f |S)||q(f |S′)] + C, (4)

where C = 2 log ea+eb

2 − a − b. We denote the upper

bound by R̃(q(f |S), q(f |S′)).

1With a probability space (F ,Σ, q(·|S)) and measur-
able space ([a, b], T ), suppose LD : F → [a, b] is a measur-
able function. Then, ∀E ∈ T , and we have L−1

D (E) ∈ Σ;
hence, there exists a probability distribution p such that
p(E) = q(L−1

D (E)|S), where L−1
D is the inverse correspon-

dence. Now, we have Eq(f |S)

[
eLD(f)

]
= Ep(L)

[
eL

]
, and

we can use Jensen’s inequality in the proofs of Lemma 1
and Theorem 1.
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If the two posterior probabilities q(f |S) and q(f |S′)
share a common prior distribution, the following corol-
lary holds:

Corollary 1. Let q(f |S) and q(f |S′) be the posteriors
of f given S and S′, respectively. We assume that a
prior of q(f |S) and that of q(f |S′) are the same proba-
bility distribution. Then, for any measurable function
LD(f), the following inequality holds:

R(q(f |S), q(f |S′)) ≤ DKL

[
q(fX+

|S))||q(fX+
|S′))

]
+C.
(5)

Here, fX+ is a random variable vector of the function
values for inputs X+ := X ∪ X ′, and the posterior
distributions of fX+

given S and S′ are denoted by
q(fX+

|S) and q(fX+
|S′), respectively.

Corollary 1 implies that R(q(f |S), q(f |S′)) can be
evaluated by the upper bound, which is computable
by using the observed data.

3.2 KL divergence between Gaussian
processes

As a specific example, we consider active learning with
the Gaussian process (GP) as the prediction function.
We note that the proposed method for stopping active
learning is applicable as long as we can estimate the
KL divergence between posterior distributions. In the
GP, the loss function is assumed to be the negative log
likelihood of the Gaussian distribution, and the prior
distribution can be obtained as[

y
f(x)

]
∼ N

([
µ

µ(x)

]
,

[
K+ β−1I k(x)
kT(x) k(x, x)

])
.

Let St = {(xi, yi)}ti=1 be the observed dataset of size
t. Then, the posterior can be defined as

f(x)|x, St ∼ N (µ(x), σ(x, x)), (6)

where µ(x) = kT(x)(K+β−1I)−1y, σ(x, x) = k(x, x)−
kT(x)(K+β−1I)−1k(x), and y = (y1, y2, · · · , yt) ∈ Rt.

Let q(f |St) and q(f |St+1) be the posteriors of f given
St = {(xi, yi)}ti=1 and St+1 = {(xi, yi)}t+1

i=1, respec-
tively. We assume that the prior of q(f |St) is the same
as that of q(f |St+1). Then, it is easy to calculate
R(q(f |St), q(f |St+1)) in the case of a GP posterior.
Let µt and σt be the mean and covariance functions
of q(f |St+1), respectively. Then, from Corollary 1, the
following equality holds:

R̃(q(f |St), q(f |St+1))

=DKL

[
N (fXt+1 |µt,Σt)||N (fXt+1 |µt+1,Σt+1)

]
+ C

=
1

2
βσt(xt+1, xt+1)−

1

2
log |1 + βσt(xt+1, xt+1)|

+
1

2

βσt(xt+1, xt+1)

σt(xt+1, xt+1) + β−1
(yt+1 − µt(xt+1))

2 + C.

(7)

Details of the derivation is described in the supplemen-
tary material.

3.3 Conventional PAC-Bayesian bounds

In this section, we present the typical PAC-Bayesian
bounds derived in the literature. The most fa-
mous bound is McAllester’s bound (McAllester, 1999),
which binds the expectation of the generalization error
by the training dataset S = {(xi, yi)}ti=1 as follows:

Pr
S∼D

(
∀q : E

q(f)
[LD(f)] ≤ E

q(f)
[LS(f)] (8)

+

√(
DKL [q(f)||p(f)] + log (2

√
t/δ)

)
/2t

)
≥ 1− δ,

where δ ∈ (0, 1] is the confidence parameter, and p(f)
and q(f) are the prior and posterior distributions, re-
spectively. McAllester’s bound is only applicable to
classification problems.

For regression problems, Alquier et al. (2016) derived
the following bound:

Pr
S∼D

(
∀q : E

q(f)
[LD(f)] ≤ E

q(f)
[LS(f)] (9)

+t−1 (DKL [q(f)||p(f)]− log δ) + 1/2(b− a)2
)
≥ 1− δ,

in which the range of loss function l is restricted to
[a, b]. Germain et al. (2016) proposed another bound
that does not have any restrictions on the range of l;
however, this bound is derived by assuming a specific
form of the loss function.

The most notable difference between the existing and
proposed bounds is that the proposed bound is a deter-
ministic bound. We can guarantee a gap between the
posterior distributions before and after adding a new
sample without any confidence parameter. This reli-
ability is a particularly important characteristic when
the bound is to be applied to a measure of the stopping
criterion.

We propose to determine whether to stop the learn-
ing or not by testing the convergence of sequence of
R(q(f |St), q(f |St+1)). Our aim is to develop a reliable
criterion for stopping active learning in the framework
of a statistical test. Ordinary PAC-Bayesian bounds
have parameters δ (similar to (α, 1 − β), the signifi-
cance level and power, for a statistical test). Since the
confidence parameter appears both inside and outside
of the probability function, it is not straightforward
to cast the PAC-Bayesian bound in a standard statis-
tical test framework. In contrast, using the proposed
novel deterministic bound makes it possible to develop
a tractable statistical test, as introduced in the next
section.
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4 Convergence test

4.1 Wald–Wolfowitz runs test

The Wald–Wolfowitz runs test (Wald and Wolfowitz,
1940) is a nonparametric test of the randomness hy-
pothesis of a given binary sequence. It was orig-
inally proposed as a one-sample test but has been
extended to two-sample tests by Barton and David
(1957). Usually, the null hypothesis is set to be
H0 : p(E1, E2, · · · , ET ) = ΠT

t=1p(Et), and under
this hypothesis, we assume that the data at time
t is Et ∈ {0, 1} and the probability that sequence
(E1, E2, · · · , ET ) is generated is p(E1, E2, · · · , ET ). It
is known that the power of the runs test is superior
to that of the Kolmogorov–Smirnov test when the dif-
ference in location between the two sequences is small
with a large difference in the variance (Magel and Wi-
bowo, 1997).

In the runs test, the sequence of the same number (zero
or one) is called the run, and the length of runs are
treated as random variables. We denote the random
variable for the total number of runs as U . Let t0 and
t1 be the numbers of zeros and ones, respectively, and
let T be the length of the sequence, that is, T = t0+t1.
We assume that t1 ≥ t0. Then, the probability distri-
bution of U under the null hypothesis is as follows:

p(U = 2t) = 2(t0−1Ct−1t1−1Ct−1)/TCt0 ,

p(U = 2t+ 1)

=(t0−1Ct−1t1−1Ct−2 + t0−1Ct−2t1−1Ct−1)/TCt0 ,

where t = 1, 2, · · · , t0. p(U) is shown to be a normal
distribution with average µ = 1 + (2t0t1)/T and vari-
ance σ2 = 2t0t1(2t0t1 − T )/(T 2(T − 1)). Then, the
randomness of the sequential data is tested by using
the test statistic Z = (U − µ)/σ.

Remark 1. It is known that the Wald–Wolfowitz test
is reasonably powerful when the alternative hypothesis
has a Markov property (David, 1947). Unfortunately,
in our setting, this is not the case. In future work,
we will investigate the condition in which the proposed
test is the most powerful.

4.2 Proposed method for stopping active
learning

We describe a specific algorithm for stopping active
learning with a GP. The proposed stopping criterion
is also applicable to other active learning frameworks;
however, here we simply select a new input datum
based on the uncertainty sampling strategy. Various
measures of uncertainty exist, and entropy is one of
the reasonable measures (Settles, 2009). Because we
consider the GP as a predictor, selecting a new input

Algorithm 1 Active learning with automatic termi-
nation by testing convergence of R

Sample S1 = {(x1, y1)} and initialize R = {}
Calculate GP posterior q1(f |S1)
for t = 1, 2, . . . do

Sample by maximum uncertainty AL
xt+1 = arg max

x
σ(x, x)

Update dataset
St+1 ← St ∪ {(xt+1, yt+1)}

Calculate GP posterior qt+1(f |St+1)
Update sequence of upper bounds

rt ← R̃(qt, qt+1), R = R ∪ {rt}
Calculate median of R

m = median(R)
Convert from upper bounds to binary
Initialize E = {}
for i = 1, 2, . . . , t do

ei ← sgn(ri −m)
E = E ∪ ei

end for
Convergence test E by using runs test
if runTest(E) then break end if

end for

datum with the maximum entropy is equivalent to se-
lecting the point with the maximum variance:

x∗ = arg max
x

σ(x, x), (10)

where σ(x, x) is the covariance function of q(f |St+1),
which serves as an acquisition function in Eq. (1).
Let R be the sequence of R̃(q(f |St), q(f |St+1)), i.e.,
R = {r1, r2, · · · , rT } and rt = R̃(q(f |St), q(f |St+1)).
Because R is a sequence of continuous values, we can-
not directly perform the runs test for R. In this work,
following the work by Jani (2014), each rt is converted
to 1 if rt ≥ median(R) and 0 if rt < median(R). Al-
gorithm 1 summarizes the procedure explained above.

Finally, we consider the computational aspect. The
proposed criterion requires computation of the mean
function and covariance function of the posterior
q(f |St) for evaluating R̃(qt, qt+1). However, the com-
putation cost for evaluating R̃(qt, qt+1) is O(1) since
the mean function and covariance function are already
calculated during exploration of new datum. There-
fore, the overall computational cost is equal to that of
the runs test.

5 Experimental results

This section describes the evaluation of the effective-
ness of the proposed stopping criterion via a set of
regression experiments with one artificial and five real-
world datasets. The real-world datasets are obtained
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from the UCI machine learning repository. Every fea-
ture of these datasets is normalized so that their means
are zero and their standard deviations are one2.

5.1 Evaluation measure

Let q(f |ST ) be the posterior distribution of f obtained
using the complete dataset ST = {(XT , YT )}, and let
q(f |St) be the distribution obtained using the dataset
St of size t. For quantitative evaluation of the de-
termined stopping time, we define the optimal stop-
ping time topt as the minimum data size t that satisfies

Eq(f |St) [LD(f)] ≤ η, where η is a predefined threshold.
For determining the threshold η for topt, we use the
complete dataset of interest and resampled 50 points
for training and 1950 points for test for the artificial
dataset, and 100 points for training and the remain-
ing points for test datasets for the real-world datasets
100 times. By using these 100 pairs of training and
test datasets, we calculate the empirical estimate of
the expected generalization errors, and η is set to be
the average + 2 sd of the generalization errors. There
are two possible approaches for active learning, aggres-
sive and conservative (Bloodgood and Vijay-Shanker,
2009). Since, basically, the aim of active learning is
to save the cost for annotation, in this work we adopt
aggressive approach and η is set to be average +2sd.

Because we consider GP regression, the loss function is
defined as l(f, x, y) = β

2 (y− f(x))2 + 1
2 log (β/2π). By

denoting the posterior of f by q(f |St) = N (µt, σt) and

the test dataset by ST̃ = {(xi, yi)}T̃i=1, the posterior
average of the expected loss can be approximated by

E
q(f |St)

[LD(f)] ≈ E
q(f |St)

[
LST̃

(f)
]

=
β

2T̃


T̃∑

i=1

(yi − µt(xi))
2 +Tr(Σt)

+
1

2
log

β

2π
,

With a stopping time of t∗ determined by a certain
criterion, we consider

estop := |t∗ − topt| (11)

as a measure of goodness for the stopping criterion.

5.2 Dataset and methods for comparison

We considered a simple one-dimensional model

yi =e−(xi−2)2/2 + e−(xi−6)2/10 + (x2
i + 1)−1 + ϵi

2Simple Python implementation for our proposed
method and competing methods have been submitted as
the supplementary material and will be made publicly
available after the review.

with the additive Gaussian observation noise p(ϵ) =
N (0, β−1). From this generative model, we sampled
1, 000 pairs of inputs and outputs (xi, yi), where xi are
uniform i.i.d. samples in [−5, 15]. Among the 1, 000
pairs, 950 pairs are retained as the test dataset and the
remaining 50 pairs are pooled for training the predic-
tion model via active learning. Independent sampling
of size 1, 000 is repeated 100 times, and the average
and standard deviation of estop defined in Eq. (11) are
reported.

In the experiments, we compare the proposed criterion
with the following four criteria:

(1) PAC-Bayesian criterion: The upper bound of the
generalization error is approximated by using the con-
ventional PAC-Bayesian result. By denoting the pos-
terior of GP used in the training dataset St by q(f |St),
the following upper bound can be derived (Alquier
et al., 2016):

Eq(f |St)[LD(f)]

≤Eq(f |St)[LSt(f)] + t−1DKL [q(f |St)||p(f)]
− t−1 log δ + (b− a)2/2 := at. (12)

To stabilize the KL divergence, κI is added to the co-
variance matrices of the prior and the posterior, where
κ = 0.01. When at is smaller than a prespecified
threshold, we terminate the active learning procedure.
The confidence parameter δ is set to 0.01. a and b are
set to a = 0 and b = maxy∈YT

y −miny∈YT
y.

(2) Ground truth: We consider the convergence of
R(p(f), q(f |St)), which is approximated by the test
set ST̃ and denoted by Rtest(p(f), q(f |St)). We stop
learning when Rtest(p(f), q(f |St)) is larger than a cer-
tain prespecified threshold.

(3) Cross-validation criterion: We divide the samples
collected in the active learning process into training
and test datasets and evaluate the expected gener-
alization error by 5-fold cross validation. When the
estimated generalization error is smaller than a prede-
termined threshold, the learning is stopped.

(4) Maximum variance criterion: For classification
problems, stopping criteria based on the uncertainty of
class assignment have been proposed (Zhu, 2007; Zhu
et al., 2008a). Herein, we consider a regression coun-
terpart. Because we use the GP as a predictor, the
posterior variance can be used as a measure of uncer-
tainty. When the variance of all the possible or pooled
data is smaller than a certain predefined threshold,
learning is stopped.
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5.3 Parameter settings

As a prior for the GP, we use a GP with a Gaus-
sian kernel k(x, x′) = exp

(
− 1

2h2 ‖x− x′‖2
)
. The com-

mon parameters for all the methods are scale pa-
rameter h for the kernel and variance of observation
noise β−1. These parameters are determined by using
the marginal likelihood maximization using training
datasets. The complete training dataset is not avail-
able in practice, but our aim is to set these parameter
values in an objective manner and enable fair compar-
ison.

In practical applications, it is better to update the hy-
perparameter at every update of the GP model, but
the assumption in Corollary 1 does not hold when we
change the hyperparameter. Marginalizing w.r.t. the
hyperparameter is one of the reasonable approach, but
again whether the assumption in Corollary 1 holds for
the marginalized KL is uncertain. There are two pos-
sible practical approaches for this problem. (1) To
assume that the Corollary 1 approximately holds be-
tween different hyperparameters and calculate Eq. (7).
This would be reasonable because sample is added only
one by one. (2) To calculate the upper bound by us-
ing a new hyper parameter in each time. In this work,
we keep using the common parameters for the sake of
simplicity.

For the proposed method, we must specify the sig-
nificance level α for the statistical test. The level is
fixed such that the type-I error rate is 0.1%. The KL
divergence between GP posteriors and the range of
the cost function l are calculated in the same man-
ner as for the PAC-Bayesian criterion. For the ground
truth, for each dataset, we use the complete (training
and test) dataset to perform bootstrap resampling 100
times and evaluate Rtest(p(f), q(f |St)); the threshold
for Rtest(p(f), q(f |St)) is set to the average − 2×sd
of the bootstrap samples of Rtest(p(f), q(f |St)). The
other three methods also require thresholds for ter-
mination. Because there is no universally applicable
and objective method for setting the threshold, we
considered one dataset, “airfoil self-noise,” as the ref-
erence dataset. In particular, we select the thresh-
old minimizing Eq. (11) from a set of thresholds for
each method. The set of thresholds is generated
by sampling 10, 000 points at equal intervals within
a range; the ranges is set to [0.01, 100], [0.001, 10],
and [0.0001, 1] for the PAC-Bayesian criterion, cross-
validation criterion and maximum variance criterion,
respectively.

It should be emphasized that the method of setting
the threshold for the ground truth is not applicable in
actual situations, which is the reason the method is
called the ground truth. For the other three methods,

because there exist no standard and objective thresh-
old determination methods, we set the threshold values
by using the reference dataset. In other words, these
four criteria utilize the reference dataset, which is not
available in practice, and the experimental setting is
thus beneficial to them.

5.4 Results

The expected generalization error evaluated by the
test dataset over the number of training samples is
plotted in Fig. 1 for six datasets. From Fig. 1 (d), it
can be noted that the stopping time determined by us-
ing the proposed method can be considerably different
from topt in some cases, although the proposed method
tends to terminate active learning when the training
has been converged or is about to converge. The max
variance criterion and cross validation criterion also
offer stable and reasonable stopping times. The PAC-
Bayesian criterion tends to either stop learning too
early or overshoot the reasonable stopping time.

Table 1 summarizes the values of the average and stan-
dard error of estop calculated in 100 runs with inde-
pendent resampling of the training and test datasets.
Except for the ground truth, the proposed method
achieved the smallest average error in four cases over
the six datasets. The experimental results indicate
that the proposed criterion can accurately and stably
determine when to stop active learning without using
the test dataset for evaluating the stopping criterion
or determining the threshold.

We will add reasoning on the experimental perfor-
mance for each compared methods: ”PAC-Bayes” con-
tains the training errors, and implicitly assumes the
independence for training samples. Our bound does
not contain training error term and remains valid in
more general situation. We conjecture this is one of
the reason why our method outperforms conventional
PCA-Bayes. ”CV” splits dataset so it uses less data
for both training and validation. This would make the
accuracy of the estimated test error low. Our method
does not require a test data, leading to better perfor-
mance. ”Max variance” is directly connected to the ac-
quisition function used for AL, while proposed method
considers the divergence between posterior distribu-
tions of the predictive model. In certain ideal case, the
proposed method could be considered as solely based
on entropy, but before the convergence of the predic-
tive model, both variance and mean largely affect the
gap between before and after adding a new sample.
This would be one of the reason why the max vari-
ance approach is nice but in many cases our method
outperforms others.
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Figure 1: Averaged generalization error and training sample size. Vertical lines correspond to the optimal time
and the stopping times determined by various methods.

Table 1: Average and standard error of estop.
artificial airfoil self-noise power plant protein concrete yacht

# of samples/features 2000/1 1503/6 10721/8 45730/9 1030/9 308/7
Ground truth 0.25± 0.05 1.81± 0.25 2.11± 0.39 0.06± 0.03 4.29± 0.58 15.5± 1.52
Proposed 2.38± 0.58 13.52± 1.05 27.89± 2.34 17.26± 1.5 15.83± 1.28 16.33± 1.28
PAC-Bayesian 10.16± 0.59 30.35± 1.8 37.5± 1.93 54.17± 1.44 54.06± 1.19 44.7± 1.18
Cross validation 32.84± 0.59 13.84± 1.39 29.2± 1.92 14.35± 1.21 17.09± 1.35 17.69± 1.42
Maximum variance 5.57± 0.61 10.52± 1.12 37.5± 1.93 14.26± 1.39 29.15± 1.25 24.82± 1.2

6 Conclusion

We proposed a criterion for stopping active learning
based on the PAC-Bayesian theory and a runs test.
A noteworthy fact regarding the proposed criterion is
that the gap between the expected generalization er-
rors w.r.t. the posterior distributions before and af-
ter adding a new sample is deterministically bounded.
The criterion does not require the test dataset for eval-
uating the generalization error and enables stopping
of active learning automatically in a statistically reli-
able manner. Moreover, although we concentrated on
GP regression in this study, the criterion can be used
for both classification and regression problems with an
arbitrary cost function. In the experiments, the effec-
tiveness of the criterion was demonstrated in the cases
of both an artificial dataset and real-world datasets.

Our newly derived upper bound does not assume inde-
pendence of observation, and applicable to any objec-
tive function or any posterior distribution of the pre-
dictor. Therefore, the proposed bound will be used for
other learning frameworks such as Bayesian optimiza-

tion and online learning besides AL. The applicability
of our new bound to other learning framework is one
of the important future works.
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