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Abstract

We consider non-stochastic bandit convex opti-
mization with strongly-convex and smooth loss
functions. For this problem, Hazan and Levy
have proposed an algorithm with a regret bound
of Õ(d3/2

√
T ) given access to an O(d)-self-

concordant barrier over the feasible region,
where d and T stand for the dimensionality of
the feasible region and the number of rounds, re-
spectively. However, there are no known efficient
ways for constructing self-concordant barriers
for general convex sets, and a Õ(

√
d) gap has re-

mained between the upper and lower bounds, as
the known regret lower bound is Ω(d

√
T ). Our

study resolves these two issues by introducing an
algorithm that achieves an optimal regret bound
of Õ(d

√
T ) under a mild assumption, without

self-concordant barriers. More precisely, the al-
gorithm requires only a membership oracle for
the feasible region, and it achieves an optimal re-
gret bound of Õ(d

√
T ) under the assumption that

the optimal solution is an interior of the feasible
region. Even without this assumption, our algo-
rithm achieves Õ(d3/2

√
T )-regret.

1 Introduction

Bandit convex optimization (BCO) is a framework for on-
line decision-making with limited feedback. In this frame-
work, a player is given a convex feasible region K and
the number T of rounds. In each round t = 1, 2, . . . , T ,
the player chooses an action at ∈ K, and the environ-
ment independently chooses convex loss function ft :
K → [−1, 1]. Not all information about the loss func-
tion is revealed to the player then, but only the bandit
feedback is available, i.e., the player can observe ft(xt)
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alone. The goal of the player is to minimize cumulative
loss

∑T
t=1 ft(xt), and performance is evaluated in terms of

the regret RT (x∗) defined by

RT (x∗) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) (1)

for x∗ ∈ K.

This paper focuses on a non-stochastic or adversarial set-
ting. In this setting, we do not assume any generative model
for the loss functions ft, and ft can change arbitrarily. An
alternative setting, a stochastic setting in which ft indepen-
dently follows an unknown probabilistic distribution, can
be regarded as a special case of the non-stochastic setting.
Indeed, algorithms for the non-stochastic setting work even
for this stochastic setting, and regret upper bounds for the
former setting apply even to the latter.

Work on non-stochastic BCO was initiated by Flaxman
et al. [2005] and Kleinberg [2005], in which algorithms
with regret bounds of O(T 3/4) were proposed. Note that
there has been a lower bound of Ω(

√
T ), i.e., it is known

that no algorithm can achieve a better regret bound than
O(
√
T ). A gap of O(T 1/4) between the upper and the

lower bounds remained for a long time, until Bubeck et al.
[2015], Bubeck and Eldan [2016] and Bubeck et al. [2017]
proposed algorithms with Õ(

√
T )-regret bounds, where

Õ(·) notation ignores factors of poly-logarithmic terms.
There has still been a large gap, however, w.r.t. the di-
mension d of the feasible region K; the best known upper
and lower bounds are of Õ(d9.5

√
T ) and Ω(d

√
T ), respec-

tively. Bubeck et al. [2017] have conjectured that the opti-
mal regret bound is of Θ̃(d3/2

√
T ), but there have been no

significant improvements since their study.

This paper focuses on an important special case of BCO in
which the loss functions are strongly-convex and smooth.
Work on such special cases is summarized in Table 1.
Agarwal et al. [2010] showed that a modified version of
the algorithm by Flaxman et al. [2005] can achieve a re-
gret of Õ(d

√
T ) for unconstrained problems, i.e., for prob-

lems with K = Rd. This result can be said to be minimax
optimal because Shamir [2013] proved a lower bound of
Ω(d
√
T ) that holds even for strongly-convex and smooth
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Table 1: Regret bound for bandit convex optimization with strongly-convex and smooth objective functions.
Reference Regret bound Notes

Flaxman et al. [2005], Õ(d2/3T 2/3) No additional assumptions.
Agarwal et al. [2010] Õ(d

√
T ) Assume that the optimization is unconstrained, i.e., K = Rd.

Hazan and Levy [2014] Õ(d
√
νT ) Require a ν-self-concordant barrier for K. Parameter ν is at least d.

Corollary 1 [This work] Õ(d
√
T ) Assume that the optimal solution is an interior of K.

Corollary 2 [This work] Õ(d3/2
√
T ) No additional assumptions.

Shamir [2013] Ω(d
√
T ) A lower bound that implies O(d

√
T )-bounds are minimax optimal.

losses. On the other hand, for general constrained prob-
lems, the minimax optimal rate remains to be determined.

An important sign of progress in strongly-convex and
smooth BCO has been shown by Hazan and Levy [2014].
They proposed an algorithm that can be applied to con-
strained problems and has a better regret bound. However,
this algorithm does not directly apply to general problems
because it requires a ν-self-concordant barrier1 for the fea-
sible region K, where a self-concordant barrier is a convex
function with certain properties and ν > 0 is a parame-
ter of it. For some special cases of convex sets, we have
explicit forms of self-concordant barriers; for example, if
K can be expressed by m linear inequalities, one has an
m-self-concordant barrier for K. For a general convex set,
however, there are no known efficient ways for construct-
ing a self-concordant barrier. Further, even if we were to
have a ν-self-concordant barrier, the regret bound would
be O(d

√
νT ), which implies that there would still be a

√
ν

gap between the upper and the lower bounds. Because ν is
in general at least d for a compact convex set K (see, e.g.,
Nesterov and Nemirovskii [1994]), there is a gap of Ω(

√
d)

from the lower bound of O(d
√
T ), and if we were to have

only self-concordant barriers with a large ν, e.g., if K were
expressed by m(� d) linear inequalities, the gap would be
even worse.

Our contribution is to overcome the above issues by devel-
oping a novel algorithm with the following two strengths.
(i) Under a mild assumption, our algorithm achieves
Õ(d
√
T )-regret, which is minimax optimal up to logarith-

mic factors. This represents the first tight bound for bandit
convex optimization that applies even to constrained prob-
lems. More precisely, under the assumption that the opti-
mal solution is an r-interior,2 our algorithm enjoys a regret
bound of Õ(d

√
T + d2/r2), as given in Corollary 1. Also,

even without the assumption of interiors, the algorithm has
a regret bound of Õ(d3/2

√
T ), which is, at least, not worse

than existing algorithms. (ii) Our algorithm does not re-
quire self-concordant barriers. Indeed, we only assume that

1Self-concordant barriers are special cases of convex functions
that were introduced in order to develop interior-point methods for
convex optimization. For details on self-concordant barriers, see,
e.g., [Nesterov and Nemirovskii, 1994].

2The definition of r-interior is given in Section 3 and Figure 1.

we have access to a membership oracle for the feasible re-
gion. This means that our algorithm works well even if
K is expressed by an exponentially large number of linear
inequalities, or if we are not given explicit forms of K.

A key ingredient in our algorithm is the multiplicative
weight update (MWU) method [Arora et al., 2012], in
which we update probabilistic distributions over K on the
basis of estimators of objective functions. To estimate ob-
jective functions from bandit feedback, we use techniques
of smoothing and ellipsoidal sampling [Flaxman et al.,
2005]. Our analyses for regret bounds rely on theories
for log-concave distributions [Lovász and Vempala, 2007],
which is a class of continuous distributions that includes
normal distributions, exponential distributions, and distri-
butions in our algorithm. Further, this algorithm can be im-
plemented so that it runs in polynomial time, thanks to ef-
ficient algorithms for sampling from log-concave distribu-
tions [Lovász and Vempala, 2007, Narayanan and Rakhlin,
2017].

2 Related Work

For bandit linear optimization, an important special case of
BCO in which objectives are linear functions, there have
been many signs of progress. Bubeck et al. [2012] and
Cesa-Bianchi and Lugosi [2012] provided algorithms that
achieve regret of Õ(d

√
T ). These algorithms can be ap-

plied to combinatorial bandits, bandit linear optimization
problems in which the feasible region K is a discrete fi-
nite set. The regret bounds of Õ(d

√
T ) can be said to be

non-improvable because Dani et al. [2008] showed a regret
lower bound of Ω(d

√
T ). The computational complexity

for combinatorial bandits depends on the feasible regionK,
as mentioned in [Cesa-Bianchi and Lugosi, 2012]. Hazan
and Karnin [2016] have proposed a computationally effi-
cient algorithm that achieves Õ(d

√
T )-regret if K is a con-

vex set. For general K including discrete sets, Ito et al.
[2019] have proposed an algorithm with a regret bound of
Õ(d3/2

√
T ), which runs efficiently given an algorithm for

linear optimization over K.

Online convex optimization [Shalev-Shwartz, 2012, Hazan,
2016, Cesa-Bianchi and Lugosi, 2006] is a variant of BCO
in which a player can get feedback on complete infor-
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mation about objective functions, rather than bandit feed-
back. For general convex objectives, it has been known
that online gradient descent methods [Zinkevich, 2003] can
achieve O(

√
dT ) regret, and this bound is minimax opti-

mal. For a special case called exp-concave functions, which
involves a milder assumption than strong-convexity, Hazan
et al. [2007] provided efficient algorithms with a regret
bound of O(d log T ), which is minimax optimal as well
because there is a lower bound of Ω(d log T ) [Ordentlich
and Cover, 1998].

It has been shown that one can achieve better regret for
BCO if multi-point feedback is available, i.e., if the player
can observe the values of objective functions on k ≥ 2 dif-
ferent points in each round [Agarwal et al., 2010, Nesterov
and Spokoiny, 2017, Duchi et al., 2015]. For general con-
vex functions, it is known that one can achieve O(d2

√
T )

regret in a two-point feedback setting. Further, Agarwal
et al. [2010] have shown that, under the assumption of
strong-convexity and two-point feedback, one can achieve
O(d2 log T ) regret. Agarwal et al. [2010] have performed
a detailed analysis on the one-point gradient estimator with
spherical perturbations [Flaxman et al., 2005] as well. On
the basis of their analysis, we can see that spherical per-
turbations of radius O(min{r, d/T 1/4}) provide a similar
regret bound as Corollary 1 (log T instead of log d). This
approach, however, requires algorithms for projection onto
K and does not work well for the case of small r, in contrast
to our algorithm.

After the study by Hazan and Levy [2014], many works
regarding BCO have followed. Bubeck and Eldan [2015]
found the entropic barrier, which is a nearly d-self-
concordant barrier for general convex sets. The algorithm
by Hazan and Levy [2014] with the entropic barrier (with
ν = d) achieves an Õ(d3/2

√
T )-regret bounds, as Table 1

shows. In terms of computational complexity, however,
the entropic barrier and corresponding optimization prob-
lems have not been proven to be efficiently computable.
Hu et al. [2016] have considered a more general problem
setting in which biased noisy gradient is available. Mohri
and Yang [2016] provided a BCO algorithm that does not
require a priori assumptions of strong convexity or smooth-
ness. These two studies capture more general scenarios
than ours, but their regret bounds achieved in our setting
are not superior to those by Hazan and Levy [2014]. Ku-
magai [2017] considered a dueling bandit problem with
strongly-convex and smooth costs, in which an algorithm
based on self-concordant functions was proposed. Chen
et al. [2019] focused on computationally efficient meth-
ods for BCO, and provided a projection-free algorithm that
achieves sublinear regret for general convex losses.

Our proposed algorithm is based on the multiplicative
weight update (MWU) method [Arora et al., 2012, Ho-
even et al., 2018]. Algorithms similar to MWU can be
found in the literature in the early 1950s in the context

of game theory [Brown and Von Neumann, 1950, Brown,
1951, Robinson, 1951], and MWU has been independently
rediscovered in other fields including computational geom-
etry, and machine learning. Our approach is to use con-
tinuous MWU, multiplicative weight update over contin-
uous domains, which has been applied to various online
optimization problems, including Cover’s universal portfo-
lios [Cover, 1991], bandit linear optimization [Hazan and
Karnin, 2016], and online improper learning [Hazan et al.,
2018].

3 Problem Setting and Assumption

A player is given a convex feasible region K ⊆ Rd and
a number T of rounds of decision making, where d is a
positive integer standing for the dimensionality of the fea-
sible region. For each t = 1, 2, . . . , T , the player chooses
an action at ∈ K, and an environment chooses a convex
function ft : K → [−1, 1] at the same time. The player
observes feedback of ft(at) before choosing the next ac-
tion at+1. We assume that K has a positive volume, i.e.,∫
x∈K 1dx > 0. We assume that ft is σ-strongly convex

and β-smooth, i.e., that the following hold for all x, y ∈ K:

ft(y) ≥ ft(x) +∇ft(x)>(y − x) +
σ

2
‖y − x‖22, (2)

ft(y) ≤ ft(x) +∇ft(x)>(y − x) +
β

2
‖y − x‖22, (3)

where∇ft(x) ∈ Rd stands for the gradient of ft at x.

The performance of the player is evaluated in terms of the
regret RT (x∗), which is defined as

RT (x∗) =

T∑
t=1

ft(at)−
T∑
t=1

ft(x
∗). (4)

In this paper, we suppose that a player arbitrarily chooses
a convex benchmark set K′ ⊆ K. We consider regret
RT (x∗) for x∗ ∈ K′, i.e., we care about the value of
supx∗∈K′ E[RT (x∗)], the expected gap between the cu-
mulative losses for the algorithm’s outputs and for the
optimal single action x∗ belonging to K′. The value
supx∗∈K′ E[RT (x∗)] is equal to the standard worst-case
regret supx∗∈KE[RT (x∗)], if the optimal single action
x∗ ∈ arg min

x∈K

∑T
t=1 ft(x) belongs to K′.

A point x ∈ Rd is called a γ-interior of K if ‖y− x‖2 ≤ γ
implies y ∈ K. For example, if K is expressed by m linear
inequalities, i.e., K can be expressed as K = {x ∈ Rd |
a>j x ≤ bj (j ∈ [m])} with aj ∈ Rd, bj ∈ R such that
‖aj‖2 = 1, then the convex set K′ defined by K′ = {x ∈
Rd | a>j x ≤ bj − r (j ∈ [m])} consists of r-interiors
of K. For general benchmark set K′ ⊆ K, let r ≥ 0 be a
non-negative real value for which all members of K′ are r-
interiors. Figure 1 shows a geometric interpretation of how
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Figure 1: Geometric interpretation of K′ that consists of
r-interiors of K.

r is determined for K and K′ ⊆ K. For the special case in
which K′ = K, r is equal to zero.

We assume that we have access to a membership oracle for
K′. This means that, given x ∈ Rd, we can determine if
x ∈ K′ or not, by calling on the membership oracle. If K′
is expressed by m inequalities (K′ = {x ∈ Rd | gj(x) ≤
0 (j ∈ [m])}), then we have access to the membership
oracle forK′ because one can check if x ∈ K by evaluating
gi(x) for i ∈ [m]. Further, it is known that we will have a
polynomial-time membership oracle for K′ if we can solve
linear optimization problems over K′ in polynomial time
[Schrijver, 1998].

4 Algorithm

4.1 Preliminary

Notation For a vector x = (x1, . . . , xd)
> ∈ Rd, let

‖x‖2 denote the `2 norm of x, i.e., ‖x‖2 =
√
x>x =√∑d

i=1 x
2
i . For a matrix X ∈ Rd×d, ‖X‖2 denotes

the `2-operator norm, i.e., ‖X‖2 = max{‖Xy‖2 | y ∈
Rd, ‖y‖2 = 1}. If X is a symmetric matrix, ‖X‖2 is equal
to the maximum absolute value of eigenvalues ofX . Given
a positive semidefinite matrix A ∈ Rd×d and a vector x ∈
Rd, define ‖x‖A by ‖x‖A =

√
x>Ax = ‖A1/2x‖2. Sim-

ilarly, for a matrix X ∈ Rd, let ‖X‖A = ‖A1/2XA1/2‖2.
Given two symmetric matrices A,B ∈ Rd×d, denote
A •B = tr(AB).

Smoothed convex function Let v and u be random vari-
ables that follow uniform distributions over Bd = {v ∈
Rd | ‖v‖2 ≤ 1} and Sd = {u ∈ Rd | ‖u‖2 = 1}, re-
spectively. For a convex function f over Rd and a positive-
definite matrix B ∈ Rd×d, define the smoothed function f̂
by

f̂B(x) = E[f(x+Bv)]. (5)

Then we have the following:

Lemma 1 (Hazan and Levy [2014]). The gradient of f̂B

can be expressed as

∇f̂B(x) = E[d · f(x+Bu)B−1u]. (6)

If f is β-smooth, it holds that

0 ≤ f̂B(x)− f(x) ≤ β

2
‖B>B‖2 =

β

2
λ1(B>B). (7)

If f is σ-strongly convex then so is f̂B .

Equation (6) can be shown using Stokes’ theorem, and (7)
follows from the definition of β-smoothness. In the bandit
feedback setting, though unbiased estimators of the gradi-
ent of ft are unavailable, those for the smoothed ones f̂t can
be constructed through (6). Differences between ft and f̂t
will be bounded by means of (7).

Log-concave distribution A probability distribution
over a convex set K ⊆ Rd is called a log-concave distri-
bution if its probability density function p : K → R can
be expressed as p(x) = exp(−g(x)) with a convex func-
tion g : K → R, i.e., the logarithmic of p(x) is a concave
function. Our algorithm maintains log-concave distribu-
tions. Random samples from log-concave distributions can
be efficiently generated under mild assumptions. Indeed,
as shown in [Lovász and Vempala, 2007], there are compu-
tationally efficient MCMC algorithms for sampling from p
that work given a membership oracle for K and an eval-
uation oracle for g. Accordingly, we can efficiently com-
pute estimators of the mean µ(p) and the covariance matrix
Cov(p) for p. The following lemma is useful for bounding
the variance of log-concave distributions:

Lemma 2 (Prop. 10.1. in [Saumard and Wellner, 2014]).
Suppose that a log-concave distribution overK has a prob-
ability density function p(x) = exp(−g(x)), where g is a
σ-strongly convex function. Then, the covariance matrix Σ
of p satisfies ‖Σ‖2 ≤ 1/σ.

The following lemma is used to prove a regret bound for
our algorithm.

Lemma 3 (Lemma 5.7 in [Lovász and Vempala, 2007]).
Let X be a random point drawn from a log-concave dis-
tribution on R. Assume that E[X2] ≤ 1. Then for every
t > 1, Prob[|X| > t] ≤ exp(−t+ 1).

We use the following lemma to guarantee that the outputs
at of our algorithm are included in K.

Lemma 4 (Lemma 5.5 (a) and Lemma 5.12 in [Lovász and
Vempala, 2007]). Let p be a log-concave distribution over
K. The ellipsoid {x ∈ Rd | ‖x − µ(p)‖Cov(p)−1 ≤ 1/e}
will then be included in K.

4.2 Continuous Multiplicative Weight Update

In our algorithm, we maintain a function zt over K′ us-
ing the multiplicative weight update method [Arora et al.,



Shinji Ito

2012]. We initialize zt by z1(x) = σ‖x‖22/2. In each
round, let pt be a probability distribution over K′ with den-
sity proportional to exp(−ηzt(x)), i.e., pt is defined by

Zt :=

∫
x∈K′

exp(−ηzt(x))dz, pt(x) =
exp(−ηzt(x))

Zt
.

(8)

Let µt and Σt denote the mean and the covariance matrix
for pt. We then compute estimators µ̂t and Σ̂t for them
such that

‖µ̂t − µt‖Σ−1
t
≤ 1/9, ‖Σ̂t − Σt‖Σ−1

t
≤ 1/9,

E[µ̂t|µt] = µt. (9)

Specific methods for computing such µ̂t and Σ̂t will be dis-
cussed in the next subsection. LetBt ∈ Rd×d be a positive-
definite matrix for which BtBt = Σ̂t. Such a matrix can
be computed, e.g., via eigenvalue decomposition. Consider
smoothing ft as (5) with B = αtBt:

f̂t(x) := E[ft(x+ αtBtv)], (10)

where αt is the exploration parameter that we will ad-
just later, and v follows a uniform distribution over Bd.
An unbiased estimator of the gradient of f̂t can then be
constructed as follows. Choose ut from a unit sphere
Sd = {u ∈ Rd | ‖u‖2 = 1}, uniformly at random. Play an
action of at = µt + αtBtut, and then observe ft(at). On
the basis of this observation, define ĝt ∈ Rd by

ĝt = d · ft(at)(αtBt)−1ut. (11)

This is an unbiased estimator of the gradient ∇f̂t(µ̂t), i.e.,
given µ̂t and Bt, the conditional expectation of ĝt satisfies

E[ĝt] = E[d · ft(µ̂t + αtBtut)(αtBt)
−1ut] = ∇f̂t(µ̂t),

(12)

where the second inequality follows from (6). By means of
this unbiased estimator ĝt, we update zt as

zt+1(x) = zt(x) + ĝ>t (x− µ̂t) +
σ

2
‖x− µ̂t‖22. (13)

4.3 Computation of µ̂t and Σ̂t

Estimators µ̂t and Σ̂t satisfying (9) can be computed from
samples x(1)

t , . . . , x
(M)
t generated by pt as follows:

µ̂t =
1

M

M∑
j=1

x
(j)
t , Σ̂t =

1

M

M∑
j=1

(x
(j)
t − µ̂t)(x

(j)
t − µ̂

(j)
t ).

If we set M sufficiently large, (9) holds with high proba-
bility.

The remaining problem is how to get samples from pt. A
simple way for this is to use normal distributions; since pt

Algorithm 1 Continuous multiplicative weight update
method for bandit convex optimization
Require: Time horizon T ∈ N, learning rate η > 0,

membership oracleM for K′, exploration parameters
{αt}Tt=1 ⊆ R>0, strong-convexity parameter σ > 0.

1: Set z1 : K′ → R by z1(x) = σ‖x‖22/2.
2: for t = 1, 2, . . . , T do
3: Compute µ̂t and Σ̂t for which (9) holds.
4: Compute a positive-definite matrix Bt ∈ Rd×d such

that BtBt = Σ̂t.
5: Pick ut from Sd uniformly at random.
6: Play at = µ̂t + αtBtut and observe ft(at).
7: Set ĝt by (11) and update zt by (13).
8: end for

is defined by z1(x) = σ‖x‖22/2, (8) and (13), the distribu-
tion pt is a multidimensional truncated normal distribution
over K expressed as

pt(x) ∝ exp(−σηt‖x− θt‖22/2) (x ∈ K′),
pt(x) = 0 (x ∈ Rd \ K′),

where θt = 1
t

∑t−1
j=1(µ̂j − 1

σ ĝj). Hence, by sampling x
from a normal distribution N (θt,

1
σηtI) until x ∈ K′, we

can get x following pt. Note that this procedure cannot,
however, always terminate in polynomial time, though it
will be practical enough in many cases. Even if the sim-
ple procedure does not work well, we can apply an alter-
native polynomial-time sampling method based on MCMC
[Lovász and Vempala, 2007], since pt is a log-concave dis-
tribution. For more efficient ways of computing µ̂ and
Σ̂ and sampling from pt, see, e.g., [Belloni et al., 2015,
Narayanan and Rakhlin, 2017].

4.4 Choice of Exploration Parameter αt

It is necessary to choose αt so that at = µ̂t + αtBtut is a
feasible solution, i.e., at ∈ K. The following proposition
provides a sufficient condition for this.

Proposition 1. If αt is bounded as 0 < αt ≤ 1/9 +
r
√
tησ/2 then at = µ̂t + αtBtut is in K.

Proof. Let αt1 and αt2 be positive numbers such that
αt1 ≤ 1/9, αt2 ≤ r

√
tησ/2 and αt = αt1 + αt2. Since

at can be expressed as at = µ̂t + αt1Btut + αt2Btut and
since all points of K′ are r-interior of K, it suffices to show
that (i) µ̂t + αt1Btut ∈ K′ and (ii) ‖αt2Btut‖2 ≤ r.

From Lemma 4, ‖µ̂t + αt1Btut − µt‖Σ−1
t
≤ 1/e implies

µ̂t + αt1Btut ∈ K′. From the triangle inequality, we have

‖µ̂t + αt1Btut − µt‖Σ−1
t
≤ ‖µ̂t − µt‖Σ−1

t
+ αt1‖Btut‖Σ−1

t

≤ 1

9
+

1

9
‖Σ−1/2

t Btut‖2 ≤
1

9
(1 + ‖Σ−1/2

t Bt‖2). (14)
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From (9), we have ‖Σ−1/2
t Bt‖2 ≤ 2. Combining this and

(14), we have ‖µ̂t + αt1Btut − µt‖Σ−1
t
≤ 1/3 ≤ 1/e,

which implies that (i) holds.

Since ηzt(x) is a (tησ)-strongly convex function, from
Lemma 2, the covariance matrix Σt = Cov(pt) is bounded
as ‖Σt‖2 ≤ 1/(tησ). From this and (9), we have ‖Σ̂t‖2 ≤
2/(tησ). Accordingly, we have

‖Bt‖2 ≤
√
‖Σ̂t‖2 ≤

√
2/(tησ). (15)

From this, ‖ut‖ = 1, and αt ≤ r
√
tησ/2, we have (ii).

Proposition 1 implies that, under the assumption of 0 <
αt ≤ 1/9 + r

√
tησ/2, for arbitrary x ∈ K′, the value of

f̂t(x) can be defined by (10). In addition, we have f̂t(x) ∈
[−1, 1] for x ∈ K′ since f̂t(x) is defined to be a convex
combination of values of ft(y) for y ∈ K. Hereafter, we
suppose that 0 < αt ≤ 1/9 + r

√
tησ/2 holds.

5 Regret Analysis

This section shows regret upper bounds for Algorithm 1.

5.1 Main Results

We analyze the expected regret for the case in which αt is
defined by

αt = min

{
1

9
+ r

√
tησ

2
,
√
d

}
. (16)

We also assume that the learning rate η is bounded as

η ≤ αt
2d log(50T )

. (17)

We then have the following regret bound:
Theorem 1. Suppose that αt is chosen as (16) and that η
satisfies (17). Then, for the output of Algorithm 1 and for
arbitrary x∗ ∈ K′, the regret is bounded as

E[RT (x∗)] = O

(
dβ log T

ση
+ ηdT +

d2 log d

r2σ

)
and

E[RT (x∗)] = O

(
dβ log T

ση
+ ηd2T

)
,

where the expectation is taken w.r.t. the randomness of the
algorithm.

From this theorem, by setting η = Θ(T−1/2) (ignoring fac-
tors in d, β, σ, r), we obtain regret bound of Õ(

√
T ).3 More

precisely, if r > 0, we have the following regret bound:
3Note that, if the number T of rounds is sufficiently large and

if the parameter η is of order O(T−1/2), then the condition (17)
is automatically satisfied.

Corollary 1. If we set η =
√

(β log T )/(σT ), and if (16),
(17), and r > 0 hold, for all x∗ ∈ K′, we have

E[RT (x∗)] = O

(
d

√
βT log T

σ
+
d2 log d

r2σ

)
.

In addition, even if r = 0, e.g., even when K′ = K, we
have the following regret bound:
Corollary 2. If we set η =

√
(β log T )/(dσT ), and if (16)

and (17) hold, for all x∗ ∈ K′, we have

E[RT (x∗)] = O

(
d3/2

√
βT log T

σ

)
.

5.2 Proof of Theorem 1

To prove Theorem 1, we start by bounding the regret
RT (x∗) by means of the smoothed objectives f̂t defined
by (10), on the basis of Lemmas 1 and 2.
Lemma 5. For arbitrary x∗ ∈ K′, the regret for Algo-
rithm 1 is bounded as

E[RT (x∗)] ≤
T∑
t=1

(
E[f̂t(µ̂t)− f̂t(x∗)] +

β(α2
t + 1)

ησt

)
.

Proof. Since ft is a β-smooth function, we have

E[ft(at)] = E[ft(µ̂t + αtBtut)]

≤ E

[
ft(µ̂t) + αt∇ft(µ̂t)>Btut +

β

2
‖αtBtut‖22

]
≤ E [ft(µ̂t)] +

βα2
t ‖Bt‖22

2
≤ E

[
f̂t(µ̂t)

]
+
βα2

t

tησ
,

where the first inequality comes from (3), the second in-
equality follows from that E[ut] = 0 and that ‖ut‖2 = 1,
and the last inequality comes from (7) and (15). Similarly,
from (7) and (15), we have

−E[ft(x
∗)] ≤ −E[f̂t(x

∗) + β‖Bt‖22/2]

≤ −E[f̂t(x
∗) + β/(tησ)].

By combining the above two inequalities and taking the
sum for t ∈ [T ], we obtain the bound for E[RT (x∗)].

We can provide a bound for the value
∑T
t=1(f̂t(x

∗) −
f̂t(µ̂t)) by combining an analysis for continuous multi-
plicative weight update methods [Arora et al., 2012, Hazan
and Karnin, 2016], (12), Lemma 2, and assumption of (9).
Lemma 6. Suppose that η satisfies (17). For arbitrary
x∗ ∈ K′ and arbitrary γ > 0, we have

T∑
t=1

E[f̂t(µ̂t)− f̂t(x∗)]

≤ 4d

η
log

1

γ
+ 4γT +

T∑
t=1

(
4ηd2

α2
t

+
2β

ησt

)
+ 8.
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A proof of this lemma is given in Section 8 in the supple-
mentary material. We here give a rough sketch of the proof.

Proof sketch of Lemma 6. From a standard analysis of
MWU [Arora et al., 2012], we have

T∑
t=1

E[f̂t(µ̂t)− f̂t(x∗)] = O

(
d

η
log

1

γ
+ γT

+
1

η

T∑
t=1

E

[
log

∫
x∈K′

pt(x) exp(−ηĝ>t (x− µ̂t))dx
])

.

We provide a bound for the integral above, via separat-
ing the domain K′ of integration into two sets {x ∈ K′ |
−ηĝ>t (x − µ̂t) ≤ 1} and {x ∈ K′ | −ηĝ>t (x − µ̂t) >
1}. The integral over the latter set can be bounded us-
ing Lemma 3 and the fact that the log-concavity of distri-
butions is preserved under any linear transformation (see,
e.g., [Saumard and Wellner, 2014]). The integral over
the former set can be bounded by means of the inequal-
ity exp(y) ≤ 1 + y + y2 that holds for y ≤ 1, and (9), (5).
Further, by applying log(1 + w) ≤ w, we have

E

[
log

∫
x∈K′

pt(x) exp(−ηĝ>t (x− µ̂t))dx
]

. E

[∫
x∈K′

pt(x)(−ηĝ>t (x− µ̂t) + (ηĝ>t (x− µ̂t))2)dx

]
,

ignoring O(1/T ) terms. Each term of the above can be
bounded as follows:

E

[∫
x∈K′

pt(x)(−ηĝ>t (x− µ̂t))
]

= ηE[ĝ>t (µ̂t − µt)] = ηE[∇f̂t(µ̂t)>(µ̂t − µt)]

≤ ηE[∇f̂t(µt)>(µ̂t − µt)] + ηβ‖µ̂t − µt‖22

= ηβ‖µ̂t − µt‖22 ≤ ηβ‖µ̂t − µt‖2Σ−1
t
‖Σt‖2 ≤

β

σt
,

where the second equality comes from (12), the first in-
equality follows from (3) for β-smooth convex functions,
the third equality follows from E[µ̂t|µt] = µt in (9), and
the last inequality follows from (9) and Lemma 2 and the
(ησt)-strong convexity of zt. Similarly, we have

E

[∫
x∈K′

pt(x)(ηĝ>t (x− µ̂t))2

]
= η2

E
[
ĝ>t
(
Σt + (µt − µ̂t)(µt − µ̂t)>

)
ĝt
]

≤ η2d2

α2
t

(Σt + (µt − µ̂t)(µt − µ̂t)>) • (E[B−1
t utu

>
t B
−1
t ])

≤ η2d

α2
t

(Σt + (µt − µ̂t)(µt − µ̂t)>) • Σ̂−1
t ≤

2η2d2

α2
t

,

where the first inequality follows from (11) and the as-
sumption that |ft(at)| ≤ 1, and the last inequality follows
from (9). Combining the above four displayed inequalities,

we obtain Lemma 6. For the details on the proof, see Sec-
tion 8 in the supplementary material.

We shall complete the proof of Theorem 1 by means of
Lemmas 5 and 6.

Proof of Theorem 1. By combining the above and Lemmas
5 and 6, and by setting γ = 1

T , we obtain

E[RT (x∗)] ≤ 12 +
4d

η
log T +

T∑
t=1

(
4ηd2

α2
t

+
β(α2

t + 3)

ησt

)
.

If we set αt by (16), since α2
t ≤ d holds, we have

T∑
t=1

β(α2
t + 3)

ησt
≤ 4dβ

η

T∑
t=1

1

t
≤ 4dβ log(eT )

η
.

Combining the above two displayed inequalities and the
fact that 1 ≤ β/σ, we have

E[RT (x∗)] ≤ 12 +
8dβ log(eT )

ησ
+ 4ηd2

T∑
t=1

1

α2
t

. (18)

Let us consider bounding
∑T
t=1 1/α2

t . From (16), we have

T∑
t=1

1

α2
t

=

T∑
t=1

max

{
2

(
√

2/9 + r
√
tησ)2

,
1

d

}
≤ 81T,

(19)

where the inequality holds for arbitrary r ≥ 0 (even if
r = 0) since we have 1/α2

t ≤ 81. Assuming r > 0, we
obtain a tiger bound for it; Denote T ′ := b 2d

r2ησ c. Since
2/(
√

2/9 + r
√
tησ)2 ≤ 1/d holds for t > T ′, we have

T∑
t=1

1

α2
t

≤
T ′∑
t=1

2

(
√

2/9 + r
√
tησ)2

+
max{T − T ′, 0}

d

≤ 2

r2ησ

T ′∑
t=1

1

t+ 2/(81r2ησ)
+
T

d

≤ 2

r2ησ
log(1 + 81r2ησT ′/2) +

T

d

≤ 2

r2ησ
log(1 + 81d) +

T

d
, (20)

where the third inequality follows from the fact that∑T ′

t=1 1/(t + y) ≤ log(1 + T ′/y) holds for any y > 0,
and the last inequality follows from T ′ ≤ 2d

r2ησ . Combin-
ing (18), (19) and (20), we obtain

E[RT (x∗)] ≤ 12 +
8dβ log(eT )

ησ

+ 4ηd2 min

{
81T,

2

r2ησ
log(1 + 81d) +

T

d

}
= O

(
dβ log T

ησ
+ ηdT + min

{
ηd2T,

d2 log d

r2σ

})
.
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6 Discussion

We discuss the possibility of removing the assumption of
r > 0, i.e., the assumption that the optimal solutions (or
the benchmark set) are interiors, in Corollary 1.

From Lemmas 5 and 6, if we can set αt = Θ̃(
√
d), we have

E[RT (x∗)] = Õ

(
dβ

ση
+ ηdT

)
= Õ

(
d

√
βT

σ

)
(21)

by setting η = Θ̃(
√

β
σT ). Setting αt = Θ̃(

√
d), however,

may cause an infeasible action at = µ̂t + αtBtut /∈ K
in Algorithm 1 without the assumption on r, and conse-
quently, may make it impossible to bound the regret. The
possibility of at /∈ K seems to be, on the other hand, quite
small if we set αt = c

√
d with a small constant c > 0, even

when K′ = K. Under the assumption that the possibility
of at /∈ K is sufficiently small, our analysis in Section 5
works similarly and leads to a regret bound of Õ(d

√
T ). A

sufficient condition for this assumption of small possibili-
ties can be formulated as follows:

Conjecture 1. Let K ⊆ Rd be a d-dimensional convex set.
Let p be a multidimensional truncated normal distribution
over K, i.e., p(x) ∝ exp(−‖x‖22/2) for x ∈ K and p(x) =
0 for x ∈ Rd \ K. Let µ ∈ Rd and Σ ∈ Rd×d be the mean
and the covariance matrix of p, respectively. Then, for a
random variable u following a uniform distribution U(Sd)
over the unit sphere Sd, the probability of that µ+αΣ1/2u
is not in K is bounded as

Prob
u∼U(Sd)

[
µ+ αΣ1/2u /∈ K

]
≤ exp

(
(1 + log d)O(1) −

√
d

α · (1 + log d)O(1)

)
for all α > 0.

If this conjecture holds, we have a regret bound of
E[RT (x∗)] = Õ(d

√
T ) for arbitrary x∗ ∈ K, without

the assumption of interior optimal solutions, i.e., the bound
holds even for the case of K′ = K.

Since a truncated normal distribution is a log-concave dis-
tribution, in Conjecture 1, the probability of µ+αΣ1/2u /∈
K is equal to zero for α < 1/e, from Lemma 4. This fact
is used to prove Proposition 1. The question is if we can
obtain a bound of the probability for α = Ω̃(

√
d).

7 Conclusion

This paper considered bandit convex optimization prob-
lems with strongly-convex and smooth objectives. We pro-
vided an algorithm with tight regret bounds, w.r.t. the num-
ber T of rounds as well as the dimension d of the feasi-
ble region, under milder assumptions than existing works.

More precisely, we gave a regret bound of Õ(d
√
T+d2/r2)

under the assumption that the optimal solutions (or the
benchmark set) are r-interiors, and without this assump-
tion, our algorithm achieves a regret of Õ(d3/2

√
T ). Our

algorithm, further, works given only a membership oracle
for the feasible region, without self-concordant barriers.

The assumption of interior optimal solutions, however,
might be abundant, and the tight regret bounds might apply
to more general problem settings. To prove that our algo-
rithm achieves Õ(d

√
T )-regret without the assumption, we

introduced an approach based on the inequality for proba-
bility regarding log-concave distributions (more precisely,
multi-dimensional truncated normal distributions) in Con-
jecture 1. We leave it as a feature work to prove this con-
jecture.

Another future direction is to pursue tighter regret bounds
for general BCO without assumptions of strong convexity
and smoothness of objective functions. For this more gen-
eral problem, there is a larger gap w.r.t. d between the upper
bound of Õ(d9.5

√
T ) and the lower bound of Ω(d

√
T ). If

a lower bound of Ω(d3/2
√
T ) would hold as conjectured

in [Bubeck et al., 2017], it would, together with our re-
sults, imply a Ω̃(

√
d) gap between minimax regrets for

BCO with strongly-convex and smooth losses and that for
general BCO.
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