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Abstract

Conformal methods create prediction bands
that control average coverage assuming solely
i.i.d. data. Besides average coverage, one might
also desire to control conditional coverage, that
is, coverage for every new testing point. How-
ever, without strong assumptions, conditional
coverage is unachievable. Given this limitation,
the literature has focused on methods with
asymptotical conditional coverage. In order
to obtain this property, these methods require
strong conditions on the dependence between
the target variable and the features. We intro-
duce two conformal methods based on condi-
tional density estimators that do not depend
on this type of assumption to obtain asymp-
totic conditional coverage: Dist-split and CD-
split. While Dist-split asymptotically obtains
optimal intervals, which are easier to interpret
than general regions, CD-split obtains optimal
size regions, which are smaller than intervals.
CD-split also obtains local coverage by creat-
ing prediction bands locally on a partition of
the features space. This partition is data-driven
and scales to high-dimensional settings. In a
wide variety of simulated scenarios, our meth-
ods have a better control of conditional cov-
erage and have smaller length than previously
proposed methods.

1 Introduction

Supervised machine learning methods predict a re-
sponse variable, Y ∈ Y , based on features, X ∈ X , using
an i.i.d. sample, (X1,Y1), . . . , (Xn ,Yn). While most meth-
ods yield point estimates, it is often more informative to
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present prediction bands, that is, a subset of Y with plau-
sible values for Y (Neter et al., 1996).

A particular way of constructing prediction bands is
through conformal predictions (Vovk et al., 2005, 2009).
This methodology is appealing because it controls the
marginal coverage of the prediction bands assuming
solely i.i.d. data. Specifically, given a new instance,
(Xn+1,Yn+1), a conformal prediction, C (Xn+1), satisfies

P (Yn+1 ∈C (Xn+1)) ≥ 1−α,

where 0 < 1−α < 1 is a desired coverage level. Besides
marginal validity one might also wish for stronger guar-
antees. For instance, conditional validity holds when, for
every xn+1 ∈X ,

P(Yn+1 ∈C (Xn+1)|Xn+1 = xn+1) ≥ 1−α.

That is, conditional validity guarantees adequate cov-
erage for each new instance and not solely on average
across instances.

Unfortunately, conditional validity can be obtained only
under strong assumptions about the the distribution of
(X,Y ) (Vovk, 2012; Lei and Wasserman, 2014; Barber et al.,
2019). Given this result, effort has been focused on
obtaining intermediate conditions. For instance, many
conformal methods control local coverage:

P(Yn+1 ∈C (Xn+1)|Xn+1 ∈ A) ≥ 1−α,

where A is a subset of X (Lei and Wasserman, 2014; Bar-
ber et al., 2019; Guan, 2019). These methods are based
on computing conformal bands using only training in-
stances that fall in A. However, to date, these methods
do not scale to high-dimensional settings because it is
challenging to create A that is large enough so that many
training instances fall in A, and yet small enough so that

P(Yn+1 ∈C (Xn+1)|Xn+1 ∈ A) ≈P(Yn+1 ∈C (Xn+1)|Xn+1 = xn+1),

that is, local validity is close to conditional validity.

Another alternative to conditional validity is asymptotic
conditional coverage (Lei et al., 2018). Under this prop-
erty, conditional coverage converges to the specified level
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as the sample size increases. That is, there exist random
sets,Λn , such that P(Xn+1 ∈Λn |Λn) = 1−oP(1) and

sup
xn+1∈Λn

∣∣P(Yn+1 ∈C (Xn+1)|Xn+1 = xn+1)−1−α
∣∣= oP(1).

In a regression context in which Y = R, Lei et al. (2018)
obtains asymptotic conditional coverage under assump-
tions such as Y = µ(X)+ ε, where ε is independent of X
and has density symmetric around 0. Furthermore, the
proposed prediction band converges to the interval with
the smallest interval among the ones with adequate con-
ditional coverage.

Despite the success of these methods, there exists space
for improvement. In many problems the assumption
that ε is independent of X and has a density symmetric
around 0 is unrealistic. For instance, in heteroscedastic
settings (Neter et al., 1996) ε depends on X. It is also com-
mon for ε to have an asymmetric or even multimodal dis-
tribution (Freeman et al., 2017). Furthermore, in these
general settings, the smallest region with adequate con-
ditional coverage might not be an interval, which is the
outcome of most current methods.

1.1 Contribution

We propose new methods and show that they obtain
asymptotic conditional coverage without assuming a
particular type of dependence between the target and
the features. Specifically, we propose two methods:
Dist-split and CD-split. While Dist-split pro-
duces prediction bands that are intervals and easier to in-
terpret, CD-split yields arbitrary regions, which are gen-
erally smaller and appealing for multimodal data. While
Dist-split converges to an oracle interval, CD-split
converges to an oracle region. Furthermore, since
CD-split is based on a novel data-driven way of parti-
tioning the feature space, it also controls local coverage
even in high-dimensional settings. Table 1 summarizes
the properties of these methods.

The proposed methods also have desirable computa-
tional properties. They are based on fast-to-compute
split (inductive)-conformal bands (Papadopoulos, 2008;
Vovk, 2012; Lei et al., 2018) and on novel conditional den-
sity estimation methods that scale to high-dimensional
datasets (Lueckmann et al., 2017; Papamakarios et al.,
2017; Izbicki and Lee, 2016, 2017; Dalmasso et al., 2019;
Pospisil and Lee, 2019) Both methods are easy to com-
pute and scale to large sample sizes as long as the condi-
tional density estimator also does.

In a wide variety of simulation studies, we show that
our proposed methods obtain better conditional cov-
erage and smaller band length than alternatives in the
literature. For example, Figure 1 illustrates CD-split,
Dist-split and the reg-split method from Lei et al.

Figure 1: Comparison between CD-split, Dist-split
and the reg-split method from Lei et al. (2018).

(2018) on the toy example from Lei and Wasserman
(2014). The bottom right plot shows that both CD-split
and Dist-split get close to controlling conditional
coverage. Since Dist-split can yield only intervals,
CD-split obtains smaller bands in the region in which
Y is bimodal. In this region CD-split yields a collection
of intervals around each of the modes.

This paper is organized as follows: Section 2 and Section
3 introduce, respectively, Dist-splitand CD-split. Ex-
periments are shown in Section 4. All proofs can be found
in the Appendix.

Notation. Unless stated otherwise, we study a univariate
regression setting such that Y =R. Data from an i.i.d. se-
quence is split into two parts, D = {(X1,Y1), . . . , (Xn ,Yn)}
and D′ = {(X′

1,Y ′
1), . . . , (X′

n ,Y ′
n)}. Both datasets have the

same size solely to simplify notation. Also, the new in-
stance, (Xn+1,Yn+1), has the same distribution as the
other sample units. Finally, q(α; {t1, . . . , tm}) is the α em-
pirical quantile of {t1, . . . , tm}.

2 Dist-split

The Dist-split method is based on the fact that, if
F (y |x) is the conditional distribution of Yn+1 given Xn+1,
then F (Yn+1|Xn+1) has uniform distribution. Therefore,
if F̂ is close to F , then F̂ (Yn+1|Xn+1) approximately uni-
form, and does not depend on Xn+1. That is, obtaining
marginal coverage for F̂ (Yn+1|Xn+1) is close to obtaining
conditional coverage.

Definition 2.1 (Dist-split prediction band). Let
F̂ (y |xn+1) be an estimate based on D′ of the condi-
tional distribution of Yn+1 given xn+1. The Dist-split
prediction band, C (xn+1), is

C (xn+1) := {
y : q(.5α;T (D)) ≤ F̂ (y |xn+1) ≤ q(1− .5α;T (D))

}
= [

F̂−1 (
q(.5α;T (D))|xn+1

)
; F̂−1 (

q(1− .5α;T (D))|xn+1
)]
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Table 1: Properties of Dist-split and CD-split.

Method
Marginal
coverage

Asymptotic
conditional coverage

Local
coverage

Prediction bands
are intervals

Can be used
for classification?

Dist-split 3 3 7 3 7

CD-split 3 3 3 7 3

where T (D) = {
F̂ (Yi |Xi ), i = 1, . . . ,n

}
and F̂−1 is the gen-

eralized inverse of a cdf.

Algorithm 1 shows an implementation of Dist-split.

Algorithm 1 Dist-split
Input: Data (Xi ,Yi ), i = 1, ...,n, miscoverage level α ∈ (0,1), al-

gorithm B for fitting conditional cumulative distribution func-

tion

Output: Prediction band for xn+1 ∈Rd

1: Randomly split {1,2, ...,n} into two subsets D e D′
2: Fit F̂ = B({(Xi ,Yi ) : i ∈ D′}) // Estimate cumulative

distribution function
3: Let T (D) = {F̂ (yi |xi ), i ∈D}
4: Let t1 = q(α/2;T (D)) and t2 = q(1 −α/2;T (D)) //

Compute the quantiles of the set T (D)
5: return

{
y : t2 ≥ F̂ (y |xn+1) ≥ t1

}
Dist-split adequately controls the marginal coverage.
Furthermore, it exceeds the specified 1−α coverage by
at most (n + 1)−1. These results are presented in Theo-
rem 2.2.

Theorem 2.2 (Marginal coverage). Let C (Xn+1) be such as
in Definition 2.1. If both F (y |x) and F̂ (y |x) are continuous
for every x ∈X , then

1−α≤P(Yn+1 ∈C (Xn+1)) ≤ 1−α+ 1

n +1
.

Under additional assumptions Dist-split also obtains
asymptotic conditional coverage and converges to an op-
timal oracle band. Two types of assumptions are re-
quired. First, that the conditional density estimator, F̂ is
consistent. This assumption is an adaptation to density
estimators of the consistency assumption for regression
estimators in Lei et al. (2018). Also, we require that F (y |x)
is differentiable and F−1(α∗|x) is uniformly smooth in a
neighborhood of .5α and 1− .5α. These assumptions are
formalized below.

Assumption 2.3 (Consistency of density estimator).
There exist ηn = o(1) and ρn = o(1) such that

P

(
E

[
sup
y∈Y

(
F̂ (y |X)−F (y |X)

)2 ∣∣F̂]
≥ ηn

)
≤ ρn

Assumption 2.4. For every x ∈ X , F (y |x) is differen-
tiable. Also, if qα = F−1(α), then there exists M−1 > 0 such

that infx
dF (y |x)

d y ≥ M−1 in a neighborhood of q0.5α and of
q1−0.5α.

Given the above assumptions, Dist-split satisfies de-
sirable theoretical properties. First, it obtains asymp-
totic conditional coverage. Also, Dist-split converges
to the optimal interval according to the commonly used
(Parmigiani and Inoue, 2009) loss function

L((a,b),Yn+1) =α(b −a)+ (a −Yn+1)++ (Yn+1 −b)+,

that is, Dist-split satisfies

C (Xn+1) ≈ [
F−1(.5α|Xn+1);F−1(1− .5α|Xn+1)

]
These results are formalized in Theorem 2.5.

Theorem 2.5. Let Cn(Xn+1) be the prediction band in Def-
inition 2.1 and C∗(Xn+1) be the optimal prediction inter-
val according to

L((a,b),Yn+1) =α(b −a)+ (a −Yn+1)++ (Yn+1 −b)+.

Under Assumptions 2.3 and 2.4,

λ(Cn(Xn+1)∆C∗(Xn+1)) = oP(1),

where λ is the Lebesgue measure.

Corollary 2.6. Dist-split achieves asymptotic condi-
tional coverage under Assumptions 2.3 and 2.4.

Dist-split converges to the same oracle as recently
proposed conformal quantile regression methods (Ro-
mano et al., 2019; Sesia and Candès, 2019). However, the
experiments in Section 4 show that Dist-split usually
outperforms these methods.

If the distribution of Y |x is not symmetric and unimodal,
Dist-split may obtain larger regions than necessary.
For example, a union of two intervals better represents
a bimodal distribution than a single interval. The next
section introduces CD-split which obtains prediction
bands that are more general than intervals.

3 CD-split

The intervals output by Dist-split are wider than
necessary when the target distribution is multimodal,
such as in fig. 1. In order to overcome this issue,
CD-split yields prediction bands that approximate{

y : f (y |xn+1) > t
}
, the highest posterior region.
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A possible candidate for this approximation is{
y : f̂ (y |xn+1) > t

}
, where f̂ is a conditional density

estimator. However, the value of t that guarantees con-
ditional coverage varies according to x. Thus, in order
to obtain conditional validity, it is necessary to choose
t adaptively. This adaptive choice for t is obtained by
making C (xn+1) depend only on samples close to xn+1,
similarly as in Lei and Wasserman (2014); Barber et al.
(2019); Guan (2019).

Definition 3.1 (CD-split prediction band). Let
f̂ (y |xn+1) be a conditional density estimate obtained
from data D′ and 0 < 1−α < 1 be a coverage level. Let
d be a distance on the feature space and xc

1, . . . ,xc
J ∈ X

be centroids chosen so that d(xc
i ,xc

j ) > 0. Consider

the partition of the feature space that associates each
x ∈ X to the closest xc

j , i.e., A = {A j : j = 1, . . . , J }, where

A j =
{

x ∈X : d(x,xc
j ) < d(x,xc

k ) for every k 6= j
}

. The

CD-split prediction band for Yn+1 is:

C (xn+1) = {
y : f̂ (y |xn+1) ≥ q(α;T (xn+1,D))

}
,

where T (xn+1,D) = { f̂ (yi |xi ) : xi ∈ A(xn+1)}, where
A(xn+1) is the element of A to which xn+1 belongs to.

Remark 1 (Multivariate responses). Although we focus on
univariate targets, CD-split can be extended to the case
in which Y ∈ Rp . As long as an estimate of f (y|x) is avail-
able, the same construction can be applied.

The bands given by CD-split control local coverage in
the sense proposed by Lei and Wasserman (2014).

Definition 3.2 (Local validity; Definition 1 of Lei and
Wasserman (2014)). Let A = {A j : j ≥ 1} be a partition
of X . A prediction band C is locally valid with respect to
A if, for every j and P,

P(Yn+1 ∈C (Xn+1)|Xn+1 ∈ A j ) ≥ 1−α

Theorem 3.3 (Local and marginal validity). The
CD-split band is locally valid with respect to A .
It follows from Lei and Wasserman (2014) that the
CD-split band is also marginally valid.

Although CD-split controls local coverage, its perfor-
mance drastically depends on the chosen partition of
the feature space. If the partition is not chosen well,
local coverage may be far from conditional coverage.
For instance, if the partition is defined according to the
Euclidean distance (Lei and Wasserman, 2014; Barber
et al., 2019), then the method will not scale to high-
dimensional feature spaces. In these settings small Eu-
clidean neighborhoods have few data points and, there-
fore, large neighborhoods must be taken. As a result, lo-
cal coverage is far from conditional coverage. We over-
come this drawback by using a specific data-driven par-
tition. In order to build this metric, we start by defining
the profile of a density, which is illustrated in fig. 2.

Figure 2: Illustration of the profile distance, which is used
in CD-split for partitioning the feature space.

Definition 3.4 (Profile of a density). For every x ∈Rd and
t ≥ 0, the profile of f̂ (y |x), gx(t ), is

gx(t ) :=
∫

{y : f̂ (y |x)≥t }
f̂ (y |x)d y.

The profile of a density is the cumulative distribution
function associated to its level sets. It is used to define
the profile distance in the feature space.

Definition 3.5 (Profile distance). The profile distance1

between xa ,xb ∈X is

d 2
g (xa ,xb) :=

∫ ∞

0

(
gxa (t )− gxb (t )

)2 d t ,

Contrary to the Euclidean distance, the profile distance
is appropriate even for high-dimensional data. For in-
stance, two points might be far in Euclidean distance and
still have similar conditional densities. In this case one
would like these points to be on the same partition el-
ement. The profile obtains this result by measuring the
distance between instances based on the distance be-
tween their conditional densities. By grouping points
with similar conditional densities, the profile distance al-
lows partition elements to be larger without compromis-
ing too much the approximation of local validity to con-
ditional validity. This property is illustrated in the follow-
ing examples.

Example 3.6. [Location family] Let h(y) be a density,
µ(x) a function, and Y |x ∼ h(y − µ(x)). In this case,
dg (xa ,xb) = 0, for every xa ,xb ∈ Rd . For instance, if Y |x ∼
N (βt x,σ2), then all instances have the same profile. In-
deed, in this special scenario, if CD-split uses a unitary
partition, then conditional validity is obtained.

Example 3.7. [Irrelevant features] If xS is a subset of the
features such that f (y |x) = f (y |xS ), then dg (xa ,xb) does
not depend on the irrelevant features, Sc . While irrele-
vant features do not affect the profile distance, they can

1The profile distance is a metric on the quotient space X / ∼,
where ∼ is the equivalence relation xa ∼ xb ⇐⇒ gxa = gxb a.e.
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have a large impact in the Euclidean distance in high-
dimensional settings.

Also, if all samples that fall into the same partition as
xn+1 have the same profile as xn+1 according to f , then
the statistics used in CD-split , T (xn+1,D) are i.i.d.
data. Thus, the quantile used in CD-split will be the
α quantile of f (Yn+1|xn+1). This in turn makes C (xn+1)
the smallest prediction band with conditional validity of
1−α. Theorem 3.8, below, formalizes this statement.

Theorem 3.8. Assume that all samples that fall into the
same partition as xn+1, say (X1,Y1), . . . , (Xm ,Ym), are such
that gxi = gxn+1 , and that f̂ (y |x) = f (y |x) is continuous as
a function of y for every x ∈X . Let Tm := q(α;T (xn+1,D))
be the cutoff used in CD-split. For every α ∈ (0,1)

Tm
m−→∞−−−−−→

a.s.
t∗

where t∗ = t∗(xn+1,α) is the cutoff associated to the oracle
band, the smallest predictive region with coverage 1−α.

Given the above reasons, the profile density captures
what is needed of a meaningful neighborhood that con-
tains many samples even in high dimensions. Indeed,
consider a partition of the feature space, A , that has the
property that all samples that belong to the same element
of A have the same oracle cutoff t∗. Theorem 3.9 shows
that the coarsest partition that has this property is the
one induced by the profile distance.

Theorem 3.9. Assume that f̂ (y |x) = f (y |x) is continuous
as a function of y for every x ∈ X . For each sample x ∈ X

and miscoverage level α ∈ (0,1), let t∗(x,α) be the cutoff of
the oracle band for f (y |x) with coverage 1−α. Consider
the equivalence relation xa ∼ xb ⇐⇒ dg (xa ,xb) = 0.

(i) If xa ∼ xb , then t∗(xa ,α) = t∗(xb ,α) for every α ∈
(0,1)

(ii) If ∼′ is any other equivalence relation such that
xa ∼′ xb implies that t∗(xa ,α) = t∗(xb ,α) for every
α ∈ (0,1), then xa ∼′ xb ⇒ xa ∼ xb .

Based on the above motivation, we use CD-split with
the profile distance. In order to compute the prediction
bands, we need to define the centroids xc

i . Ideally, the
partitions should be such that: (i) all sample points inside
a given element of the partition have similar profile, and
(ii) sample points that belong to different elements of the
partition have profiles that are very different from each
other. We accomplish this by choosing the partitions by
applying a k-means++ clustering algorithm (Arthur and
Vassilvitskii, 2007) using the profile distance. This is done
by applying the standard (Euclidean) k-means++ algo-
rithm to the data points wi := g̃ (xi ), where g̃ (xi ) is a dis-
cretization of the function g (xi ), obtained by evaluating
g (xi ) on a grid of values. The points, wc

1,. . . ,wc
J , are the

Figure 3: Scatter plot of data generated according to
Y |x ∼ N (5x,1+ |x|). Colors indicate partitions that were
obtained using the profile of the estimated densities.
Note that points that are far from each other on the x-
axis can have similar densities and belong to the same
element of the partition. This allows larger partition ele-
ments while preserving the optimal cutoff (Theorem 3.9).

centroids of such clusters. Figure 3 illustrates the parti-
tions that are obtained in one dataset. The profile dis-
tance allows samples that are far from each other in the
Euclidean sense to fall into the same element of the par-
tition. This is the key reason why our method scales to
high-dimensional datasets. Algorithm 2 shows pseudo-
code for implementing CD-split.

Algorithm 2 CD-split
Input: Data (xi ,Yi ), i = 1, ...,n, miscoverage level α ∈ (0,1), al-

gorithm B for fitting conditional density function, number of

elements of the partition J .

Output: Prediction band for xn+1 ∈Rd

1: Randomly split {1,2, ...,n} into two subsets D and D′
2: Fit f̂ = B({(xi ,Yi ) : i ∈ D′}) // Estimate cumulative

density function
3: Compute A , the partition of X , by applying k-

means++ on the profiles of the samples in D’
4: Compute gxn+1 (t ) = ∫

{y : f̂ (y |x)≥t } f̂ (y |x)d y , for all t > 0
// Profile of the density (Definition 3.4)

5: Find A(xn+1) ∈ A , the element of A such that xn+1 ∈
A

6: Compute gxi (t ) = ∫
{y : f̂ (y |x)≥t } f̂ (y |x)d y , for all t > 0

and i ∈D // Profile of the densities (Definition 3.4)
7: Let T (xn+1,D) = { f̂ (yi |xi ), i ∈D : xi ∈ A(xn+1)}
8: Let t = q(α;T (xn+1,D)) // Compute the α- quantile

of the set T (xn+1,D)
9: return

{
y : f̂ (y |x∗) ≥ t

}

3.1 Multiclass classification

If the sample space Y is discrete, we use a similar con-
struction to that of Definition 3.1. More precisely, the
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CD-split prediction band is given by

C (xn+1) = {
y : P̂(Y = y |xn+1) ≥ q(α;T (xn+1,D))

}
, where

T (xn+1,D) = {
P̂(Yi = yi |xi ), i = 1, . . . ,n : xi ∈ A(xn+1)

}
,

A(xn+1) is the element of A to which xn+1 belongs to, and

d 2
g (xa ,xb) = ∑

y∈Y

(
P̂(Y = y |xa)− P̂(Y = y |xb)

)2
.

Theorems analogous to those presented in the last sec-
tion hold in the classification setting as well.

Remark 2. While CD-split controls the coverage of C
conditional on the value xn+1, in a classification setting
some methods control class-specific coverage (Sadinle
et al., 2019), defined as

P(Yn+1 ∈C (Xn+1)|Yn+1 = y) ≥ 1−αy .

4 Experiments

We consider the following settings with d = 20 covariates:

• [Asymmetric] X = (X1, . . . , Xd ), with Xi
iid∼ Unif(−5,5),

and Y |x = 5x1 +ε, where ε∼ Gamma(1+2|x1|,1+2|x1|).

• [Bimodal] X = (X1, . . . , Xd ), with Xi
iid∼ Unif(−1.5,1.5),

and Y |x ∼ 0.5N( f (x) − g (x),σ2(x)) + 0.5N( f (x) +
g (x),σ2(x)), with f (x) = (x1 − 1)2(x1 + 1), g (x) = 2I(x1 ≥
−0.5)

p
x1 +0.5, andσ2(x) = 1/4+|x1|. This is the example

from Lei and Wasserman (2014) with d − 1 additional
irrelevant variables.

• [Heteroscedastic] X = (X1, . . . , Xd ), with Xi
iid∼

Unif(−5,5), and Y |x ∼ N(x1,1+|x1|).

• [Homoscedastic] X = (X1, . . . , Xd ), with Xi
iid∼

Unif(−5,5), and Y |x ∼ N(x1,1)

We compare the performance of the following methods:

• [Reg-split] The regression-split method (Lei et al.,
2018), based on the conformal score |Yi − r̂ (xi )|, where
r̂ is an estimate of the regression function.

• [Local Reg-split] The local regression-split method (Lei
et al., 2018), based on the conformal score |Yi−r̂ (xi )|

ρ̂(xi ) ,
where ρ̂(xi ) is an estimate of the conditional mean ab-
solute deviation of |Yi − r (xi )|xi .

• [Quantile-split] The conformal quantile regression
method (Romano et al., 2019; Sesia and Candès, 2019),
based on conformalized quantile regression.

• [Dist-split] From section 2.

• [CD-split] From section 3 with partitions of size d n
100 e.

Each experiment is performed with comparable settings.
Each experiment uses a coverage level of 1 −α = 90%
and is run 5,000 times. Also, random forests (Breiman,
2001) are used to estimate all quantities needed in
each method, namely: the regression function in Reg-
split, the conditional mean absolute deviation in Local
Reg-split, the conditional quantiles via quantile forests
(Meinshausen, 2006) in Quantile-split, and the condi-
tional density via FlexCode (Izbicki and Lee, 2017) in
Dist-split and CD-split. A conditional cumulative
distribution estimate, F̂ (y |x) is obtained by integrating
the conditional density estimate: F̂ (y |x) = ∫ y

−∞ f̂ (y |x)d y .
The tuning parameters of all methods were set to be the
default values of the packages that were used.

Figure 4 shows the performance of each method as a
function of the sample size. While the left side figures
display how well each method controls conditional cov-
erage, the right side displays the average size of the re-
gions that are obtained. The control of the conditional
coverage is measured through the conditional coverage
absolute deviation, that is, E[|P(Y ∗ ∈C (X∗)|X∗)−(1−α)|].
Since all of the methods obtain marginal coverage very
close to the nominal 90% level, this information is not
displayed in the figure. Figure 4 shows that, in all settings,
CD-split is the method which best controls conditional
coverage. Also, in most cases its prediction bands also
have the smallest size. Similarly, Dist-split frequently
is the second method with both highest control of condi-
tional coverage and also smallest prediction bands.

We also apply CD-split to a classification setting. We

consider X = (X1, . . . , Xd ), with Xi
iid∼ N (0,1) and Y |X fol-

lows the logistic model, P(Y = i |x) ∝ exp
{
β ·x

}
, where

β = (−6,−5,−1.5,0,1.5,5,6). We compare CD-split to
Probability-split, the method described in Sadinle et al.
(2019, Sec. 4.3), which has the goal of controlling
global coverage. Probability-split is a particular case of
CD-split: it corresponds to applying CD-split with
J = 1 partitions. Figure 5 shows the results. CD-split
better controls conditional coverage. On the other hand,
its prediction bands are, on average, larger than those of
Probability-split.

5 Final remarks

We introduce Dist-split and CD-split, which ob-
tain asymptotic conditional coverage and converge to
optimal oracle bands, even in high-dimensional feature
spaces. These results do not require assumptions about
the dependence between the target variable and the fea-
tures. Both methods are based on estimating conditional
densities. While Dist-split necessarily leads to inter-
vals, which are easier to interpret, CD-split leads to
smaller prediction regions. A simulation study shows
that both methods yield smaller prediction bands and
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Figure 4: Performance of each conformal method as a function of the sample size. Left panels show how much the conditional
coverage varies with x; right panels display the average size of the prediction bands.
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Figure 5: Performance of each conformal method as a function of the sample size. Left panel shows how much the conditional
coverage vary with x; right panel displays the average size of the prediction bands.

better control of conditional coverage than other meth-
ods in the literature under a variety of settings. We also
show that CD-split leads to good results in classification
problems.

CD-split is based on a novel data-driven metric on
the feature space that is appropriate for defining neigh-
borhoods for conformal methods, in particular in high-
dimensional settings. It might be possible to use this
metric with other conformal methods to obtain asymp-
totic conditional coverage.

R code for implementing Dist-split and CD-split
is available at https://github.com/rizbicki/
predictionBands.
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