
M. Jahani, X. He, C. Ma, A. Mokhtari, D. Mudigere, A. Ribeiro, and M. Takáč

A Technical Proofs

Before talking about the main results, the following lemma is used in our analysis.

Lemma 2. (Proposition 5 in [Mokhtari et al., 2016]) Consider the sample sets Sm with size m and Sn with size
n such that Sm ⊂ Sn. Let wm is Vm-suboptimal solution of the risk Rm. If assumptions 1 and 2 hold, then the
following is true:

Rn(wm)−Rn(w∗n) ≤ Vm + 2(n−m)
n (Vn−m + Vm)+

2(Vm − Vn) + c(Vm−Vn)
2 ‖w∗‖2, w.h.p. (17)

If we consider Vn = O(1
nγ) where γ ∈ [0.5, 1], and assume that n = 2m (or α = 2), then (17) can be written as

(w.h.p):

Rn(wm)−Rn(w∗n) ≤
[
3 +

(
1− 1

2γ

)(
2 + c

2‖w
∗‖2
)]
Vm. (18)

A.1 Practical stopping criterion

Here we discuss two stopping criteria to fulfill the 10th line of Algorithm 1. At first, considering w∗n is unknown
in practice, we can use strong convexity inequality as Rn(w̃k)−Rn(w∗n) ≤ 1

2cVn
‖∇Rn(w̃k)‖2 to find a stopping

criterion for the inner loop, which satisfies ‖∇Rn(w̃k)‖ < (
√

2c)Vn. Another stopping criterion is discussed
by [Zhang and Lin, 2015], using the fact that the risk Rn is self-concordant. This criterion can be written as
δn(w̃k) ≤ (1− β)

√
Vn , where β ≤ 1

20 . The later stopping criterion implies that Rn(w̃k)−Rn(w∗n) ≤ Vn whenever
Vn ≤ 0.682. For the risk Rn, the same as [Zhang and Lin, 2015] we can define the following auxiliary function
and vectors:

ω∗(t) = −t− log(1− t), 0 ≤ t < 1. (19)

ũn(w̃k) = [∇2Rn(w̃k)]−1/2∇Rn(w̃k), (20)

ṽn(w̃k) = [∇2Rn(w̃k)]1/2vn. (21)

We can note that ‖ũn(w̃k)‖ =
√
∇Rn(w̃k)[∇2Rn(w̃k)]−1∇Rn(w̃k), which is the exact Newton decrement, and,

the norm ‖ṽn(w̃k)‖ = δn(w̃k) which is the approximation of Newton decrement (and ũn(w̃k) = ṽn(w̃k) in the case
when εk = 0). As a result of Theorem 1 in the study of [Zhang and Lin, 2015], we have:

(1− β)‖ũn(w̃k)‖ ≤ ‖ṽn(w̃k)‖ ≤ (1 + β)‖ũn(w̃k)‖, (22)

where β ≤ 1
20 . Also, by the equation in (21), we know that ‖ṽn(w̃k)‖ = δn(w̃k).

As it is discussed in the section 9.6.3. of the study of [Boyd and Vandenberghe, 2004], we have ω∗(t) ≤ t2 for
0 ≤ t ≤ 0.68.

According to Theorem 4.1.13 in the study of [Nesterov, 2013], if ‖ũn(w̃k)‖ < 1 we have:

ω(‖ũn(w̃k)‖) ≤ Rn(w̃k)−Rn(w∗n) ≤ ω∗(‖ũn(w̃k)‖). (23)

Therefore, if ‖ũn(w̃k)‖ ≤ 0.68, we have:

Rn(w̃k)−Rn(w∗n) ≤ ω∗(‖ũn(w̃k)‖) ≤ ‖ũn(w̃k)‖2

(22)

≤ 1
(1−β)2 ‖ṽn(w̃k)‖2 = 1

(1−β)2 δ
2
n(w̃k) (24)

Thus, we can note that δn(w̃k) ≤ (1− β)
√
Vn concludes that Rn(w̃k)−Rn(w∗n) ≤ Vn when Vn ≤ 0.682.

A.2 Proof of Theorem 1

According to the Theorem 1 in [Zhang and Lin, 2015]1, we can derive the iteration complexity by starting from
wm as a good warm start, to reach wn which is Vn-suboptimal solution for the risk Rn. By Corollary 1 in

Efficient Distributed Hessian Free Algorithm for Large-scale ERM via Accumulating Sample Strategy

[Zhang and Lin, 2015], we can note that if we set εk the same as (12), after Kn iterations we reach the solution
wn such that Rn(wn)−Rn(w∗n) ≤ Vn where

Kn =
⌈
Rn(wm)−Rn(w∗n)

1
2ω(1/6)

⌉
+
⌈

log2(2ω(1/6)
Vn

)
⌉
. (25)

Also, in Algorithm 2, before the main loop, 1 communication round is needed, and in every iteration of the main
loop in this algorithm, 1 round of communication happens. According to Lemma 1, we can note that the number
of PCG steps needed to reach the approximation of Newton direction with precision εk is as following:

Cn(εk) =
⌈√

1 + 2µn
cVn

) log2

(2

√
cVn+M
cVn

‖∇Rn(w̃k)‖

εk

)⌉
(12)
=
⌈√

1 + 2µn
cVn

) log2

(
2(cVn+M)
βcVn

)⌉
. (26)

Therefore, in every call of Algorithm 2, the number of communication rounds is not larger than 1 +Cn(εk). Thus,
we can note that when we start from wm, which is Vm-suboptimal solution for the risk Rm, Tn communication
rounds are needed, where Tn ≤ Kn(1 + Cn(εk)), to reach the point wn which is Vn-suboptimal solution of the
risk Rn, which follows (13).
Suppose the initial sample set contains m0 samples, and consider the set P = {m0, αm0, α

2m0, . . . , N}, then
with high probability with T rounds of communication, we reach VN -suboptimal solution for the whole data set:

T ≤
|P|∑
i=2

(⌈
RP[i](wP[i−1])−RP[i](w

∗
P[i])

1
2ω(1/6)

⌉
+
⌈

log2(2ω(1/6)
VP[i]

)
⌉)(

1 +
⌈√

1 +
2µP[i]

cVP[i]
) log2

(
2(cVP[i]+M)

βcVP[i]

)⌉)
. (27)

A.3 Proof of Corollary 1

The proof of the first part is trivial. According to Lemma 2, we can find the upper bound for Rn(wm)−Rn(w∗n),
and when α = 2, by utilizing the bound (18) we have:

Kn =
⌈
Rn(wm)−Rn(w∗n)

1
2ω(1/6)

⌉
+
⌈

log2(2ω(1/6)
Vn

)
⌉

(18)

≤
⌈(3+(1− 1

2γ

)(
2+

c
2‖w

∗‖2
))
Vm

1
2ω(1/6)

⌉
+
⌈

log2(2ω(1/6)
Vn

)
⌉

︸ ︷︷ ︸
:=K̃n

. (28)

Therefore, we can notice that when we start from wm, which is Vm-suboptimal solution for the risk Rm, with
high probability with T̃n communication rounds, where T̃n ≤ K̃(1 + Cn(εk)), and Cn(εk) is defined in (26), we
reach the point wn which is Vn-suboptimal solution of the risk Rn, which follows (14).
Suppose the initial sample set contains m0 samples, and consider the set P = {m0, 2m0, 4m0, . . . , N}, then the
total rounds of communication, T̃ , to reach VN -suboptimal solution for the whole data set is bounded as following:

T̃ ≤
|P|∑
i=2

(⌈(3+(1− 1
2γ

)(
2+

c
2‖w

∗‖2
))
VP[i−1]

1
2ω(1/6)

⌉
+
⌈

log2(2ω(1/6)
VP[i]

)
⌉)⌉)

(⌈√
1 + 2µ

cVP[i]
) log2

(
2(cVP[i]+M)

βcVP[i]

)⌉)
≤

(
log2

N
m0

+
((3+(1− 1

2γ

)(
2+

c
2‖w

∗‖2
))

1
2ω(1/6)

1−(1
2γ)

log2
N
m0

1− 1
2γ

Vm0

)

+

|P|∑
i=2

⌈
log2(2ω(1/6)

VP[i]
)
⌉)(⌈√

1 + 2µ
cVN

) log2

(
2
β + 2M

βc .
1
VN

)⌉)

≤

(
2 log2

N
m0

+
((3+(1− 1

2γ

)(
2+

c
2‖w

∗‖2
))

1
2ω(1/6)

1−(1
2γ)

log2
N
m0

1− 1
2γ

Vm0

)
+ log2

N
m0

log2(2ω(1/6)
VN

)

)(⌈√
1 + 2µ

cVN
) log2

(
2
β + 2M

βc .
1
VN

)⌉)
, w.h.p.

M. Jahani, X. He, C. Ma, A. Mokhtari, D. Mudigere, A. Ribeiro, and M. Takáč

where µ = max{µm0 , µαm0 , . . . , µN}.

A.4 Proof of Corollary 2

By Corollary 1, it is shown that. after T̃ rounds of communication we reach a point with the statistical accuracy
of VN of the full training set, where with high probability T̃ is bounded above by

T̃ ≤

(
2 log2

N
m0

+ log2
N
m0

log2(2ω(1/6)
VN

)

+
((3+(1− 1

2γ

)(
2+

c
2‖w

∗‖2
))

1
2ω(1/6)

1−(1
2γ)

log2
N
m0

1− 1
2γ

Vm0

))
(

1 +
⌈√

(1 + 2µ
cVN

) log2

(
2
β + 2M

βc .
1
VN

)⌉)
, (29)

where m0 is the size of the initial training set. Note that the result in (29) implies that the overall rounds
of communication to obtain the statistical accuracy of the full training set is T̃ = Õ(γ(log2N)2

√
Nγ log2N

γ).

Hence, when γ = 1, we have T̃ = Õ((log2N)3
√
N), and for γ = 0.5, the result is Õ = O((log2N)3N

1
4).

A.5 Proof of Theorem 2

By using Woodbury Formula [Ma and Takáč, 2016, Press et al., 2007], every PCG iteration has the cost of O(d2).
The reason comes from the fact that the total computations needed for applying Woodbury Formula are O(Λ3),
where Λ = max{|Am0

|, |Aαm0
|, . . . , |AN |}, and Λ ≤ 100. The complexity of every iteration of PCG is O(d2 + Λ3)

or equivalently O(d2), and by using the results in the proof of Corrolary 2, the total complexity of DANCE is
Õ((log2(N))3N1/4d2).

B Details Concerning Experimental Section

In this section, we describe our datasets and implementation details. Along this work, we select four datasets to
demonstrate the efficiency of our Algorithm 1. Two of them are for convex loss case for a binary classification task
using logistic model and the other two are non-convex loss for a multi-labels classification task using convolutional
neural networks. The details of the dataset are summarized in Table 2.

Table 2: Summary of two binary classification datasets and two multi-labels classification datasets
Dataset # of samples # of features # of categories
rcv1 20,242 47,326 2
gisette 7,242 5,000 2
Mnist 60,000 28*28 10
Cifar10 60,000 28*28*3 10

In terms of non-convex cases, we select two convolutional structure for the demonstration. NaiveCNet is a simple
two convolutional layer network for Mnist dataset, and Vgg11 is a relative larger model with 8 convolutional layers.
The details of the network architecture is summarized in Table 3. Note that for vgg11, a batch normalization
layer is applied right after each convolutional layer.

C Additional Plots

Besides the plots in Section 5, we also experimented different data sets, and the other corresponding settings are
described in the main body.

Efficient Distributed Hessian Free Algorithm for Large-scale ERM via Accumulating Sample Strategy

Table 3: Summary of two convolutional neural network architecture
Architecture NaiveCNet Vgg11

conv-1 (5× 5× 16), stride=1 (3× 3× 64), stride=1
max-pool-1 (2× 2), stride=2 (2× 2),stride=2

conv- 2 (5× 5× 32), stride=1 (3× 3× 128), stride=1
max-pool-2 (2× 2), stride=2 (2× 2), stride=2

conv- 3 (3× 3× 256), stride=1
max-pool-3 (2× 2), stride=2

conv- 4 (3× 3× 256)
max-pool-4 (2× 2), stride=2

conv- 5 (3× 3× 512), stride = 1
max-pool-5 (2× 2), stride=2

conv- 6 (3× 3× 512), stride = 1
max-pool-6 (2× 2), stride=2

conv- 7 (3× 3× 512), stride = 1
max-pool-7 (2× 2), stride=2

conv- 8 (3× 3× 512), stride = 1
max-pool-8 (2× 2), stride=2

fc 512
output 10 10

C.1 Sensitivity Analysis of DANCE’s Parameters

In this section, we consider different possible values of hyper-parameters for DANCE, and as it is clear from
Figures 6, 7, 8 and 9, DANCE behaves in a robust way when changes in the hyper-parameters happen. In other
words, DANCE is not that much sensitive to the choice of hyper-parameters.

M. Jahani, X. He, C. Ma, A. Mokhtari, D. Mudigere, A. Ribeiro, and M. Takáč

Figure 5: Performance of different algorithms on a logistic regression problem with rcv1, ijcnn1 and gissete
datasets. In the left two figures, the plot DANCE* is the training accuracy based on the entire training set, while
the plot DANCE represents the training accuracy based on the current sample size.

Figure 6: DANCE performance with respect to fixed α and different values of initial samples. The first row shows

the results of DANCE for “rcv1” dataset when Vn =
1√
n

. The second row shows the results of DANCE for “rcv1”

dataset when when Vn =
1

n
.

Efficient Distributed Hessian Free Algorithm for Large-scale ERM via Accumulating Sample Strategy

Figure 7: DANCE performance with respect to different values of α and fixed number of initial sample. The

first row shows the results of DANCE for “rcv1” dataset when Vn =
1√
n

. The second row shows the results of

DANCE for “rcv1” dataset when when Vn =
1

n
.

Figure 8: DANCE performance with respect to fixed α and different values of initial samples. The first row shows

the results of DANCE for “gisette” dataset when Vn =
1√
n

. The second row shows the results of DANCE for

“gisette” dataset when when Vn =
1

n
.

M. Jahani, X. He, C. Ma, A. Mokhtari, D. Mudigere, A. Ribeiro, and M. Takáč

Figure 9: DANCE performance with respect to different values of α and fixed number of initial sample. The

first row shows the results of DANCE for “gisette” dataset when Vn =
1√
n

. The second row shows the results of

DANCE for “gisette” dataset when when Vn =
1

n
.

Figure 10: Comparison between DANCE and SGD with various hyper-parameters on Mnist dataset and NaiveCNet.
NaiveCNet is a basic CNN with 2 convolution layers and 2 max-pool layers (see details at Appendix B). Figures on
the top and bottom show how loss values, training accuracy and test accuracy are changing with respect to epochs
and running time. We force two algorithms to restart (double training sample size) after achieving the following
number of epochs: 0.075, 0.2, 0.6.1.6, 4.8, 9.6, 18, 36, 72. For SGD, we varies learning rate from 0.01, 0.001, 0.0001
and batchsize from 128, 512. One can observe that SGD is sensitive to hyper-parameter settings, while DANCE
has few parameters to tune but still shows competitive performance.

Efficient Distributed Hessian Free Algorithm for Large-scale ERM via Accumulating Sample Strategy

Figure 11: Comparison between DANCE and with momentum for various hyper-parameters on Cifar10 dataset
and vgg11 network. Figures on the top and bottom show how loss values, training accuracy and test accuracy are
changing regarding epochs and running time, respectively. We force two algorithms to restart (double training
sample size) after running the following number of epochs: 0.2, 0.8, 1.6.3.2, 6.4, 12, 24, 48, 96. For SGD with
momentum, we fix the batchsize to be 256 and varies learning rate from 0.01, 0.001, 0.0001 and momentum
parameter from 0.7, 0.9. One can observe that SGD with momentum is sensitive to hyper-parameter settings,
while DANCE has few hyper-parameters to tune but still shows competitive performance.

Figure 12: Comparison between DANCE and SGD with momentum for various hyper-parameters on Mnist
dataset and NaiveCNet. Figures on the top and bottom show how loss values, training accuracy and test accuracy
are changing regarding epochs and running time, respectively. We force two algorithms to restart (double training
sample size) after running the following number of epochs: 0.075, 0.2, 0.6.1.6, 4.8, 9.6, 18, 36, 72. For SGD with
momentum, we fix the batchsize to be 128 and set learning rate to be 0.01, 0.001, 0.0001 and momentum parameter
to be 0.8, 0.9. One could observe that SGD with momentum is sensitive to hyper-parameter settings, while
DANCE has few hyper-parameters to tune but still shows competitive performance.

