
Supplementary Notes

1 Preliminaries

The notations in this supplementary notes are same with main text if not defined particularly.

Definition 1 Throughout our proof, we consider the parameter space

Us,m,M =

{
Θ ∈ Rp×p|Θ � 0, λ1(Θ) > m, ‖Θ‖2 ≤ ρ,max

j∈[p]
‖Θj‖0 ≤ s,max

j∈[p]
‖Θj‖1 ≤M

}
,

where 0 < λ1(Θ) ≤ λ2(Θ) ≤ . . . ≤ λp(Θ) is the eigenvalues of Θ. A similar class of matrices
were considered in the literature on inverse covariance matrix estimation[3][12]. We allow s to
increase with n and p.

Proposition 1 The right Epanechnikov kernel function K+ = 1.5 · (1− u2) · 1{0≤u≤1} satisfies∫
K+(u)du = 1,

∫
ulK+(u)du <∞,

∫
K+ldu <∞,

for l = 1, 2, 3, 4. Moreover, ‖K+‖2
2 =

∫
K+2(u)du = 6/5, ‖K+‖∞ = supu |K+(u)| = 3.2 and

‖K+‖TV = 1.5
∫ 1

0
2udu = 3/2. The definition of left Epanechnikov kernel function is defined in

the same way.

Assumption 1 Assume that there exists a constant f
T

such that inft∈[0,1] fT (t) ≥ f
T
> 0.

Furthermore, assume that fT is twice continuously differentiable and that there exists a constant
fT <∞ such that max{‖fT‖∞, ‖ḟT‖∞, ‖f̈T‖∞} ≤ fT .

Now, we give assumption 2. Different from assumption 2 in [12], to detect graph change, we
only assume Σjk(t) is right continuous in [0, 1].

Assumption 2 Assume Σjk(t) is right continuous and Σ±jk(t), Σ̇±jk(t) and Σ̈±jk(t) exist for ∀t ∈
(0, 1), j, k ∈ [p]. Σ+

jk(0) = Σjk(0), Σ−jk(1) = Σjk(1) and there are finite number of discontinuities
of Σ(t) for t ∈ [0, 1]. There exists a constant Mσ such that

sup
t∈[0,1]

max
j,k∈[p]

max{Σ+
jk(t), Σ̇

+
jk(t), Σ̈

+
jk(t),Σ

−
jk(t), Σ̇

−
jk(t), Σ̈

−
jk(t)} ≤Mσ.
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2 Notation

We define some notations. Let

Pn[f ] =
1

n

∑
i∈[n]

f(Xi)

and
Gn[f ] =

√
n · (Pn[f ]− E[f(Xi)]).

For notational convenience, for fixed j, k ∈ [p], let

g±t,jk(Ti, Xij, Xik) = K±h (Ti − t)XijXik, (1)

ω±t (Ti) = K±h (Ti − t),

q±t,jk(Ti, Xij, Xik) = g±t,jk(Ti, Xij, Xik)− E[g±t,jk(T,Xj, Xk)],

and let
k±t (Ti) = ω±t (Ti)− E[ω±t (T )].

By the definition of Σ̂(t)±, we have

Σ̂±jk(t) =

∑
i∈[n] g

±
t,jk(Ti, Xij, Xik)∑
i∈[n] ω

±
t (Ti)

=
Pn[g±t,jk]

Pn[ω±t ]
.

Denote Θ̂±(t) as the CLIME estimator for Θ±(t), we define

l±t,jk(Ti, Xi) = K±h (Ti − t)
(
XT
i Θ̂±j (t)

)2 (
XT
i Θ̂±k (t)

)2

and

Ω̂±jk(t) =

∑
i∈[n] l

±
t,jk(Ti, Xi)∑

i∈[n] ω
±
t (Ti)

=
Pn[l±t,jk]

Pn[ω±t ]
.

In addition, let

J
±(1)
t,jk (Ti, Xi) =

√
h ·
(
Θ±j (t)

)T · [K±h (Ti − t)XiX
T
i − E

[
K±h (T − t)XXT

]]
·Θ±k (t), (2)

J
±(2)
t,jk (Ti) =

√
h ·
(
Θ±j (t)

)T · [K±h (Ti − t)− E
[
K±h (T − t)

]]
· Σ±(t) ·Θ±k (t), (3)

J±t,jk(Ti, Xi) = J
±(1)
t,jk (Ti, Xi)− J±(2)

t,jk (Ti) , (4)

and let
W±
t,jk(Ti, Xij, Xik) =

√
h ·
[
K±h (Ti − t)XijXik −K±h (Ti − t)Σ±jk(t)

]
. (5)
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3 Theorem 1

Theorem 1 Assume that h = o(1) and that log2 np · log(np/
√
h)/nh = o(1). For any 0 < a <

b < 1, under assumptons 1-2, there exists a positive constant C such that

sup
t∈[a,b]

‖Σ̂±(t)− Σ±(t)‖max ≤ C ·

h+

√
log(np/

√
h)

nh


with probability at least 1− 3/np, for sufficiently large n.

The proof of theorem 1 is inspired by the proof of theorem 1 in [12]. In [12], they upper bounded
the quantity supt∈[a,b] ‖Σ̂±(t)− Σ±(t)‖max by the summation of two terms:

supt∈[a,b] maxj,k∈[p]

∣∣∣Σ̂+
jk(t)− E

[
Σ̂+
jk(t)

]∣∣∣ and supt∈[a,b] maxj,k∈[p]

∣∣∣E [Σ̂+
jk(t)

]
− Σ+

jk(t)
∣∣∣, which are

known as the variance and bias terms, respectively. To upper bound the variance term, they
applied Talagrand’s inequality[11] as well as the results of [9]. The bound they obtained

for their estimator is h2 +
√

log(d/h)
nh

. We generate their proof to fit in our model. To de-

tect the change-point, we use right and left Epanechnikov kernel to estimate the covariance
matrices so that the result in [12] is sharper due to the absence of first order term in 21
and the difference of the covering number of the function class. In corollary 2, we establish
the consistency of Ω±(t) with the same procedure to proof theorem 1. The upper bound of

supt∈[a,b] maxj,k∈[p]

∣∣∣Ω̂±jk(t)− (Θ±jj(t)Θ
±
kk(t) + 2 ·

(
Θ±jk(t)

)2
)∣∣∣ is applied in lemma 5.1 to establish

the consistency of nomalization term σ̃2
jk(t).

3.1 Thechnical Lemmas

Lemma 3.1 Under the following conditions∣∣∣∣ Gn[ω±t ]√
n · E[Pn[ω±t ]]

∣∣∣∣ < 1 (6)

and
E[Pn[ω±t ]] 6= 0, (7)

we have

E[Σ̂±jk(t)] =
E[Pn[g±t,jk]]

E[Pn[ω±t ]]
+

1

n
O
(
E[Gn[ω±t ] ·Gn[g±t,jk]] + E[G2

n[g±t,jk]]
)
.

Lemma 3.2 Assume that h = o(1). Under Assumptions 1-2, for any 0 < a < b < 1, we have

sup
t∈[a,b]

max
j,k∈[p]

∣∣E[Pn[g±t,jk]]− fT (t)Σ±jk(t)
∣∣ = O(h), (8)
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sup
t∈[a,b]

∣∣E[Pn[ω±t ]]− fT (t)
∣∣ = O(h), (9)

sup
t∈[a,b]

max
j,k∈[p]

1

n

∣∣E [Gn[g±t,jk] ·Gn[ω±t ]
]∣∣ = O

(
1

nh

)
, (10)

sup
t∈[a,b]

1

n
E[G2

n[ω±t ]] = O
(

1

nh

)
. (11)

and

sup
t∈[a,b]

max
j,k∈[p]

1

n
E[G2

n[g±t,jk]] = O
(

1

nh

)
. (12)

Lemma 3.3 Assume that h = o(1) and log(np/
√
h)/(nh) = o(1). Under Assumptions 1-2, for

sufficiently large n and 0 < a < b < 1, there exists a universal constant C > 0 such that

sup
t∈[a,b]

∣∣Gn[ω±t ]
∣∣ ≤ C ·

√
log(np/

√
h)

h
,

with probabiity at least 1− 1/np.

Lemma 3.4 Assume that h = o(1) and log2 np · log(np/
√
h)/nh = o(1). Under Assumptions

1-2, for sufficiently large n and 0 < a < b < 1, there exists a universal constant C > 0 such
that

sup
t∈[a,b]

max
j,k∈[p]

∣∣Gn[g±t,jk]
∣∣ ≤ C ·

√
log(np/

√
h)

h
,

with probabiity at least 1− 2/np.

3.2 Proof of Theorem 1

For any a and b satisfying 0 < a < b < 1, We have

sup
t∈[a,b]

‖Σ̂+(t)− Σ+(t)‖max ≤ sup
t∈[a,b]

max
j,k∈[p]

∣∣∣Σ̂+
jk(t)− E

[
Σ̂+
jk(t)

]∣∣∣+ sup
t∈[a,b]

max
j,k∈[p]

∣∣∣E [Σ̂+
jk(t)

]
− Σ+

jk(t)
∣∣∣

= I1 + I2.

It suffices to obtain upper bound for I1 and I2.
We first verify that the two conditions in 6 and 7 hold. By Lemma 3.2, we have∣∣E [Pn[ω+

t ]
]∣∣ = O(h) + fT (t) ≥ f

T
(t) > 0,
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where the last inequality follows from Assumption 1. Moreover,∣∣∣∣∣ Gn[ω+
t ]

√
n · E

[
Pn[ω+

t ]
]∣∣∣∣∣ ≤ C · 1√

n
|Gn[ω+

t ]| · 1

f
T

+O(h)

≤ C1 ·

√
log(np/

√
h)

nh
· 1

f
T

+O(h)

< 1,

for sufficiently lareg n, where the first inequality is obtained by an application of Lemma 3.2,
the second inequality is obtained by an application of Lemma 3.3, and the last inequality is
obtained by the scaling assumptions h = o(1) and log(np/

√
h)/(nh) = o(1).

Upper bound for I1: By the proof of Lemma 3.1 in [12], we have

Σ̂+
jk(t) =

Gn[g+
t,jk]√

n · E[Pn[ω+
t ]]

+
E[Pn[g+

t,jk]]

E[Pn[ω+
t ]]
−
Gn[ω+

t ] · E[Pn[g+
t,jk]]√

n · E2[Pn[ω+
t ]]

+O
([
Gn[ω+

t ] ·Gn[g+
t,jk]
]

+ G2
n[g+

t,jk]
)
.

Thus, by Lemma 3.1, we have

I1 = sup
t∈[a,b]

max
j,k∈[p]

∣∣∣∣∣ Gn[g+
t,jk]√

n · E[Pn[ω+
t ]]
−

Gn[ω+
t ] · E[Pn[g+

t,jk]]√
n · E2[Pn[ω+

t ]]
+ I13

∣∣∣∣∣
≤ sup

t∈[a,b]

max
j,k∈[p]

{|I11|+ |I12|+ |I13|},

where I13 = O
([
Gn[ω+

t ] ·Gn[g+
t,jk]
]

+ G2
n[g+

t,jk] + E[Gn[ω+
t ] ·Gn[g+

t,jk]] + E[G2
n[g+

t,jk]]
)
/n.

We now provide upper bounds for I11, I12, and I13. By an application of Lemmas 3.2, 3.3
and 3.4, we obtain

sup
t∈[a,b]

max
j,k∈[p]

|I11| ≤ n−1/2 · sup
t∈[a,b]

max
j,k∈[p]

∣∣∣∣∣ Gn[g+
t,jk]

f
T

+O(h)

∣∣∣∣∣ ≤ C ·

√
log(np/

√
h)

nh
. (13)

Similarly, we have

sup
t∈[a,b]

max
j,k∈[p]

|I12| ≤ n−1/2 · sup
t∈[a,b]

max
j,k∈[p]

∣∣∣∣∣Gn[g+
t,jk](fTΣ+

jk(t) +O(h))

(f
T

+O(h))2

∣∣∣∣∣ ≤ C ·

√
log(np/

√
h)

nh
. (14)

For I13, we have

sup
t∈[a,b]

max
j,k∈[p]

|I13| ≤ sup
t∈[a,b]

max
j,k∈[p]

∣∣∣∣ 1nO ([Gn[ω+
t ] ·Gn[g+

t,jk]
]

+ G2
n[g+

t,jk]
)∣∣∣∣+O

(
1

nh

)
≤ C · log(np/

√
h)

nh
+O

(
1

nh

)
≤ C · log(np/

√
h)

nh
. (15)
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Combining 13,14 and 15, we have

I1 ≤ C ·

√
log(np/

√
h)

nh
, (16)

with probability at least 1− 3/np.
Upper bound for I2: By Lemmas 3.1 and 3.2, we have

I2 = sup
t∈[a,b]

max
j,k∈[p]

∣∣∣∣∣E[Pn[g+
t,jk]]

E[Pn[ω+
t ]]
− Σ+

jk(t) +
1

n
O
(
E[Gn[ω+

t ] ·Gn[g+
t,jk]] + E[G2

n[g+
t,jk]]

)∣∣∣∣∣
≤ sup

t∈[a,b]

max
j,k∈[p]

∣∣∣∣∣fT (t)Σ+
jk(t) +O(h)

fT (t) +O(h)
− Σ+

jk(t) +
1

n
O
(
E[Gn[ω+

t ] ·Gn[g+
t,jk]] + E[G2

n[g+
t,jk]]

)∣∣∣∣∣
= sup

t∈[a,b]

max
j,k∈[p]

∣∣∣∣∣fT (t)Σ+
jk(t) +O(h)

fT (t) +O(h)
− Σ+

jk(t) +O(
1

nh
)

∣∣∣∣∣
= sup

t∈[a,b]

max
j,k∈[p]

∣∣∣∣∣O(h)(1− Σ+
jk(t))

fT (t) +O(h)
+O

(
1

nh

)∣∣∣∣∣
≤ C ·

(
h+

1

nh

)
, (17)

where the first inequality follows from 8 and 9, the second equality follows from 10 and 11, and
the last inequality follows from the assumption that h = o(1).

Combining the upper bounds 16 and 17, we obtain

sup
t∈[a,b]

‖Σ̂+(t)− Σ+(t)‖max ≤ C ·

h+

√
log(np/

√
h)

nh


with probability at least 1− 3/np.

3.3 Corollary of Theorem 1

Given Theorem 1, the following corollary establishes the uniform rates of convergence for Θ̂±(t)
using the CLIME estimator as defined in [2]. It follows directly from the proof of Theorem 6
in [2].

Corollary 1 For any 0 < a < b < 1, suppose that Θ±(t) ∈ Us,m,M for all t ∈ [a, b]. Under
the same conditions in Theorem 1, there exists a constant C > 0 such that if λ ≥ C ·M · (h+√

log(np/
√
h)/nh), we have

sup
t∈[a,b]

‖Θ̂±(t)−Θ±(t)‖max ≤ C ·M2 ·

h+

√
log(np/

√
h)

nh

 ;
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sup
t∈[a,b]

max
j∈[p]
‖Θ̂±j (t)−Θ±j (t)‖1 ≤ C ·M · s ·

h+

√
log(np/

√
h)

nh

 ;

sup
t∈[a,b]

max
j∈[p]
‖Σ̂±(t)Θ̂±j (t)− ej‖∞ ≤ C ·M ·

h+

√
log(np/

√
h)

nh


with probability at least 1- 3/np for sufficiently large n. Please notice that λ here is the parameter
of CLIME rather not the eigenvalues of Θ.

Following directly from the proof of Theorem 1, corollary 1 establishes the uniform rate of
convergence for Ω̂±(t) under the maximum norm.

Corollary 2 Assume that h = o(1) and log4 np · log(np/
√
h)/nh = o(1). Under the same

conditions in Corollary 1, there exists a constant C > 0 such that

sup
t∈[a,b]

max
j,k∈[p]

∣∣∣Ω̂±jk(t)− (Θ±jj(t)Θ
±
kk(t) + 2 ·

(
Θ±jk(t)

)2
)∣∣∣ ≤ C ·

h+

√
log(np/

√
h)

nh


with probability at least 1− 4/np for sufficiently large n.

4 Proof of Technical Lemmas in Theorem 1

4.1 Proof of Lemma 3.1

The proof of Lemma 3.1 directly follows from the proof of Lemma 1 in [12].

4.2 Proof of Lemma 3.2

Proof of 8: Here, we only give the proof of the results for right Epanechnikov kernel function.
The results for left Epanechnikov kernel function can be proved in the same way. We have

E[Pn[g+
t,jk]] = E

[
1

h
K+

(
T − t
h

)
XjXk

]
= E

[
1

h
K+

(
T − t
h

)
E[XjXk|T ]

]
= E

[
1

h
K+

(
T − t
h

)
Σjk(T )

]
=

∫
1

h
K+

(
T − t
h

)
Σjk(T )fT (T )dT

=

∫
K+(u)Σjk(uh+ t)fT (uh+ t)du. (18)
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For ∀t ∈ [a, b] and sufficiently small h, Σjk(uh + t) is twice differentiable for u ∈ (0, 1]. So, we
can apply Taylor expansions to Σjk(uh+ t) and fT (uh+ t). We have

Σjk(uh+ t) = Σ+
jk(t) + uh · Σ̇+

jk(t) +
1

2
u2h2 · Σ̈+

jk(t
′) (19)

and

fT (uh+ t) = fT (t) + uh · ḟT (t) +
1

2
u2h2 · f̈T (t′′), (20)

where t′ and t′′ are between t and uh+ t. Substituting 19 and 20 into 18, we have∫
K+(u)

(
Σ+
jk(t) + uh · Σ̇+

jk(t) +
1

2
u2h2 · Σ̈+

jk(t
′)

)(
fT (t) + uh · ḟT (t) +

1

2
u2h2 · f̈T (t′′)

)
du

(21)
By assumptions 1 and 2, we have

hΣ+
jk(t)ḟT (t)

∫
uK+(u)du ≤ hCMσfT = O(h) (22)

hΣ̇+
jk(t)fT (t)

∫
uK+(u)du ≤ hCMσfT = O(h) (23)

Substituting 22 and 23 into 21 and bounding the other higher-order terms by O(h), we obtain

E[Pn[g+
t,jk]] = fT (t)Σ+

jk(t) +O(h),

for all t ∈ [a, b] and j, k ∈ [p]. This implies that

sup
t∈[a,b]

max
j,k∈[p]

∣∣E[Pn[g+
t,jk]]− fT (t)Σ+

jk(t)
∣∣ = O(h).

The proof of 9 follows from the same set of argument.
Proof of 10: We have

1

n
E
[
Gn[g+

t,jk] ·Gn[ω+
t ]
]

= E
[
Pn[g+

t,jk] · Pn[ω+
t ]
]
− E

[
Pn[g+

t,jk]
]
· E
[
Pn[ω+

t ]
]

= E

 1

n

∑
i∈[n]

K+
h (Ti − t)XijXik

 ·
 1

n

∑
i∈[n]

K+
h (Ti − t)

− E
[
Pn[g+

t,jk]
]
· E
[
Pn[ω+

t ]
]

=
1

n
E[K+2

h (T − t)XjXk] +
1

n2
E

∑
i∈[n]

∑
i′ 6=i

K+
h (Ti − t)K+

h (Ti′ − t)XijXik

− E
[
Pn[g+

t,jk]
]
· E
[
Pn[ω+

t ]
]

=
1

n
E[K+2

h (T − t)Σjk(T )] +
n− 1

n

(
E
[
K+
h (T − t)

]
· E
[
K+
h (T − t)Σjk(T )

])
− E

[
Pn[g+

t,jk]
]
· E
[
Pn[ω+

t ]
]

=
1

n
E[K+2

h (T − t)Σjk(T )]− 1

n
E
[
Pn[g+

t,jk]
]
· E
[
Pn[ω+

t ]
]
,
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where the second to the last equality follows from the fact that Ti and Ti′ are independent. By
proposition 1 and Assumptions 1-2, we have

1

n
E[K+2

h (T − t)Σjk(T )] =
1

nh

∫
1

h
K+2

(
T − t
h

)
Σjk(T )fT (t)dT

≤ 1

nh
MσfT

∫
1

h
K+2

(
T − t
h

)
dT = O

(
1

nh

)
,

where the last equality holds by a change of variable. Moreover, by 8 and 9, we have

1

n
E
[
Pn[g+

t,jk]
]
· E
[
Pn[ω+

t ]
]

=
1

n

(
fT (t)Σ+

jk(t) +O(h)
)
· (fT (t) +O(h)) = O

(
1

n

)
.

Taking the supreme over t ∈ [a, b] and j, k ∈ [p] on both sides of the eqution, we obtain

sup
t∈[a,b]

max
j,k∈[p]

∣∣E [Gn[g+
t,jk] ·Gn[ω+

t ]
]∣∣ = O

(
1

nh

)
+O

(
1

n

)
= O

(
1

nh

)
,

where the last equality holds by the scaling assumption of h = o(1). The proof of 11 and 12
follows from the same set of argument.

4.3 Proof of Lemma 3.3

Lemma 3.3 and 3.4 provide upper bounds for the supreme of the empirical processes Gn[ω±t ]
and Gn[g±t,jk], respectively. To this end, we apply the Talagrand’s inequality [11] in Lemma 8.1.
Let F be a function class. In order to apply Talagrand’s inequality, we need to evaluate the
quantities η and τ 2 such that

sup
f∈F
‖f‖∞ ≤ η

and
sup
f∈F

V ar(f(X)) ≤ τ 2.

Talagrand’s inequality in Lemma 8.1 provides an upper bound for the supreme of an empirical
process in terms of its expectation. By Lemma 8.2, the expectation can then be upper bounded
as a function of the covering number of the function class F , denoted as N(F , L2(Q), ε).

The proof of Lemma 3.3 uses the set of arguments as detailed in appendix E.3.1 of [12].
Recall the definition that ω+

t (Ti) = K+
h (Ti − t) and k+

t (Ti) = ω+
t (Ti)− E[ω+

t (T )], respectively.
We consider the class of functions

K+ = {k+
t |t ∈ [a, b]}.
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First, note that

sup
t∈[a,b]

‖k+
t ‖∞ = sup

t∈[a,b]

‖ω+
t (Ti)− E[ω+

t (T )]‖∞

≤ 1

h
‖K+‖∞ + fT +O(h)

≤ 2

h
‖K+‖∞ (24)

where the first inequality holds by Proposition 1 and Lemma 3.2, and the last inequality holds
by the scaling assumption h = o(1) for sufficiently large n.

Next, we obtain an upper bound for the variance of kt(Ti). Note that

sup
t∈[a,b]

V ar(k+
t (T )) = sup

t∈[a,b]

E
[
(ω+

t (T )− E[ω+
t (T )])2

]
≤ sup

t∈[a,b]

2E
[
ω+2
t (T )

]
+ sup

t∈[a,b]

2E2
[
ω+
t (T )

]
,

where we apply the inequality (x − y)2 ≤ 2x2 + 2y2 for two scalars x, y. By Lemma 3.2, we
have supt∈[a,b] 2E2

[
ω+
t (T )

]
≤ 2(fT + O(h))2. Also, by a change of variable and second-order

Taylor expansion on the marginal density fT (·), we have

sup
t∈[a,b]

2E
[
ω+2
t (T )

]
= 2 sup

t∈[a,b]

∫
1

h2
K+2

(
T − t
h

)
fT (T )dT

= 2 sup
t∈[a,b]

1

h

∫
K+2(u)fT (uh+ t)du (25)

= 2 sup
t∈[a,b]

1

h

∫
K+2(u)

(
fT (t) + uhḟT (t) +

1

2
u2h2f̈T (t′)

)
(26)

≤ 2

h
fT‖K+‖2

2 +O(1) +O(h), (27)

where t′ ∈ (t, t+ uh). Thus for sufficiently large n and the assumption that h = o(1), we have

sup
t∈[a,b]

V ar(k+
t (T )) ≤ 3

h
· fT · ‖K+‖2

2. (28)

By Lemma 7.4, the covering number for the function class K+ satisfies

sup
Q
N(K+, L2(Q), ε) ≤

(
4 · ‖K+‖TV · C4/5

K+ · f
1/5

T

hε

)5

.

We are now ready to obtain an upper bound for the supreme of the empirial process, supt∈[a,b] |Gn[ω+
t ]|.

By Lemma 8.2 with A = 2 ·‖K+‖TV ·C4/5

K+ ·f
1/5

T /‖K+‖∞, U = ‖F‖L2(Pn) = 2 ·‖K+‖∞/h, V = 5,

10



supt∈[a,b] Ek+2
t = supt∈[a,b] V ar(k

+
t (T )) ≤ σ2

P = 3 · fT · ‖K+‖2
2/h ≤ (2 · ‖K+‖∞/h)

2
= ‖F‖2

L2(Pn),
for sufficiently large n, we obtain

E

[
sup
t∈[a,b]

1√
n
· |Gn[ω+

t |

]
= E

 sup
t∈[a,b]

1

n

∣∣∣∣∣∣
∑
i∈[n]

(ω+
t (Ti)− E[ω+

t (T )])

∣∣∣∣∣∣


-

√
log(

√
1/h)

nh
+

log(
√

1/h)

nh

∼

√
log(

√
1/h)

nh
,

where x - y means there exists a constant C > 0 such that x ≤ C · y and x ∼ y means there
exist C1, C2 > 0 such that C1 · y ≥ x ≥ C2 · y. The last expression holds by the assumption
that log(p/

√
h)/(nh) = o(1). By Lemma 8.1 with τ 2 = 3fT · ‖K+‖2

2/h, η = 2 · ‖K+‖∞/h,

E[Y ] ≤ C ·
√

log(
√

1/h)/nh and picking t =
√

log(np)/n, for sufficiently large n, we have

sup
t∈[a,b]

1√
n
· |Gn[ω+

t ]| = sup
t∈[a,b]

1

n

∣∣∣∣∣∣
∑
i∈[n]

(ω+
t (Ti)− E[ω+

t (T )])

∣∣∣∣∣∣
-


√

log(
√

1/h)

nh
+

√
log(np)

nh
·

√√√√
1 +

√
log(

√
1/h)

nh
+

log(np)

nh


∼

√
log(np/

√
h)

nh

with probability 1−1/np, where the last expression holds by the assumption that log(np/
√
h)/(nh) =

o(1) and h = o(1). Multiplying both sides of the above equation by
√
n completes the proof of

Lemma 3.3.

4.4 Proof of Lemma 3.4

For convenince, we prove Lemma 3.4 by conditioning on the event

A = {max
i∈[n]

max
j∈[p]
|Xij| ≤MX ·

√
log np}.

Since Xij conditioned on T is a Gaussian random variable, the event A occurs with prob-
ability at least 1 − 1/np for sufficiently large constant MX > 0. Recall the definition that

11



g+
t,jk(Ti, Xij, Xik) = K+

h (Ti−t)XijXik and q+
t,jk(Ti, Xij, Xik) = g+

t,jk(Ti, Xij, Xik)−E[g+
t,jk(T,Xj, Xk)],

respectively. We consider the function class

Q+ = {q+
t,jk|t ∈ [a, b], j, k ∈ [p]}.

We first obtain an upper bound for the function class

sup
t∈[a,b]

max
j,k∈[p]

‖q+
t,jk‖∞ = sup

t∈[a,b]

max
j,k∈[p]

‖g+
t,jk(Ti, Xij, Xik)− E[g+

t,jk(T,Xj, Xk)]‖∞

≤ sup
t∈[a,b]

max
j,k∈[p]

‖g+
t,jk(Ti, Xij, Xik)‖∞ + sup

t∈[a,b]

max
j,k∈[p]

‖E[g+
t,jk(T,Xj, Xk)]‖∞

≤ sup
t∈[a,b]

max
j,k∈[p]

‖K+
h (Ti − t)XijXik‖∞ + fT ·Mσ +O(h)

≤ 1

h
·M2

X · ‖K+‖∞ · log np+ fT ·Mσ +O(h)

≤ 2

h
·M2

X · ‖K+‖∞ · log np, (29)

where the second inequality holds by Assumptions 1-2 and Lemma 3.2, the third inequality
holds by Proposition 1 and by conditioning on the event A, and the last inequality holds by
the scaling assumption h = o(1) for sufficiently large n.

Next, we obtain an upper bound for the variance of q+
t,jk(Ti, Xij, Xik). Note that

sup
t∈[a,b]

max
j,k∈[p]

V ar(q+
t,jk(T,Xj, Xk)) = sup

t∈[a,b]

max
j,k∈[p]

E
[
(g+
t,jk(Ti, Xij, Xik)− E[g+

t,jk(T,Xj, Xk)])
2
]

≤ sup
t∈[a,b]

max
j,k∈[p]

2E
[
g+2
t,jk(T,Xj, Xk)

]
+ sup

t∈[a,b]

max
j,k∈[p]

2E2
[
g+
t,jk(T,Xj, Xk)

]
,

where we apply the inequality (x−y)2 ≤ 2x2 +2y2 for two scalars x, y. By Lemma 3.2, we have

supt∈[a,b] maxj,k∈[p] 2E2
[
g+
t,jk(T,Xj, Xk)

]
≤ 2

(
fT ·Mσ +O(h)

)2
. Also, by a change of variable

and second-order Taylor expansion on the marginal density fT (·) as in 25-26, we have

sup
t∈[a,b]

max
j,k∈[p]

2E
[
g+2
t,jk(T,Xj, Xk)

]
= 2 sup

t∈[a,b]

max
j,k∈[p]

E
[
K+2
h (T − t) · E[X2

jX
2
k |T ]

]
≤ 2κ sup

t∈[a,b]

E[K+2
h (T − t)]

≤ 2κ

h
· fT · ‖K+‖2

2 +O(1) +O(h),

where the first inequality follows form the fact that |E[X2
jX

2
k |T ]| ≤ κ for some κ <∞, and the

second inequality follows from 25-26. Thus, for sufficiently large n and the assumption that
h = o(1), we have

sup
t∈[a,b]

max
j,k∈[p]

V ar(q+
t,jk(T,Xj, Xk)) ≤

3κ

h
· fT · ‖K+‖2

2.
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By Lemma 7.5, the covering number for the function class Q satisfies

sup
Q
N(Q+, L2(Q), ε) ≤ p2 ·

(
4 · ‖K+‖TV · C4/5

K+ · f
1/5

T ·M
1/5
σ ·M8/5

X · log4/5 np

hε

)5

,

where we multiply p2 on the right hand side since the function class Q is taken over all j, k ∈
[p].We now obtain an upper bound for the supreme of the empirical process, supt∈[a,b] maxj,k∈[p] |Gn[g+

t,jk]|.
By lemma 8.2 with A = 2 · ‖K+‖TV · C4/5

K+ · f
1/5

T · M1/5
σ · M−2/5

X · p2/5 · log−1/5 np/‖K+‖∞,
U = ‖F‖L2(Pn) = 2 · ‖K+‖∞ · M2

X · log np/h, V = 5, supt∈[a,b] maxj,k∈[p] Eq+2
t,jk ≤ σ2

P =

(3κ/h) · fT · ‖K+‖2
2 ≤ (2/h ·M2

X · ‖K+‖∞ · log np)
2

= ‖F‖2
L2(Pn), for sufficiently large n, we

obtain

E

[
sup
t∈[a,b]

max
j,k∈[p]

1√
n
· |Gn[g+

t,jk]|

]
= E

 sup
t∈[a,b]

max
j,k∈[p]

1

n
·

∣∣∣∣∣∣
∑
i∈[n]

(g+
t,jk(Ti, Xij, Xik − E[g+

t,jk(T,Xj, Xk)]))

∣∣∣∣∣∣


-

√
log(p2/5 · log4/5 np/

√
h)

nh
+

log np · log(p2/5 · log4/5 np/
√
h)

nh

∼

√
log(p2/5 · log4/5 np/

√
h)

nh
,

where the last inequality holds by the assumption log np ·
√

log(p2/5 · log4/5 np/
√
h)/nh = o(1).

By Lemma 8.1 with τ 2 = (3κ/h) · fT · ‖K+‖2
2, η = 2/h ·M2

X · ‖K+‖∞ · log np, E[Y ] ≤ C ·√
log(p2/5 · log4/5 np/

√
h)/nh, and picking t =

√
log np/n, for sufficiently large n, we have

sup
t∈[a,b]

max
j,k∈[p]

1√
n
· |Gn[g+

t,jk]| = sup
t∈[a,b]

max
j,k∈[p]

1

n
·

∣∣∣∣∣∣
∑
i∈[n]

(g+
t,jk(Ti, Xij, Xik − E[g+

t,jk(T,Xj, Xk)]))

∣∣∣∣∣∣
-

√
log(p2/5 · log4/5 np/

√
h)

nh
+

√
log np

nh

·

√√√√
1 + log np ·

√
log(p2/5 · log4/5 np/

√
h)

nh
+

log2 np

nh

-

√
log(np/

√
h)

nh

with probability at least 1−2/np. The second inequality holds by the assumption that log2 np ·
log(np/

√
h)/nh = o(1). Multiplying both sides of the equation by

√
n, we complete the proof

of 3.4.
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5 Theorem 2

Theorem 2 Assume that
√
nh3 = o(1). In addition, assume that poly(s)·

√
log4(np/

√
h)/nh2+

poly(s) · log8(p/h) · log2(ns)/(nh) = o(1), where poly(s) is a polynomial of s. Under the same
conditions in Corollary 2, we have

lim
n→∞

sup
Θ(·)∈Us,m,M

PΘ(·) (UE ≥ c (1− α,E)) ≤ α,

where c (1− α,E) follows the definition that

c (1− α,E) = inf{q ∈ R|P
(
UB
E ≤ q|{(ti, Xi)}i∈[n]

)
≥ 1− α}.

To prove Theorem 2, we use a similar set of arguments in the series of work on Gaussian
multiplier bootstrap of the supreme of empirical [6][5][4] and generate the proof of theorem 2
in [12]. Recall the definition that, for any 0 < a < b < 1

UE = sup
t∈[a,b]

max
(j,k)∈E(t)

√
nh ·

∣∣∣(Θ̂d+
jk (t)−Θ+

jk(t)
)
−
(

Θ̂d−
jk (t)−Θ−jk(t)

)∣∣∣ /σ̃jk(t),
where σ̃jk(t) is the normalization term. We also have the bootstrap statistic

MB+
ijk (t) =

(
Θ̂+
j (t)

)T
K+
h (ti − t)

(
XiX

T
i Θ̂+

k (t)− ek
)
,

MB−
ijk (t) =

(
Θ̂−j (t)

)T
K−h (ti − t)

(
XiX

T
i Θ̂−k (t)− ek

)
,

and

UB
E = sup

t∈[a,b]

max
(j,k)∈E(t)

√
nh ·

∣∣∣∣∣
∑

i∈[n] M
B+
ijk (t)ξi∑

i∈[n] K
+
h (ti − t)

−
∑

i∈[n] M
B−
ijk (t)ξi∑

i∈[n]K
−
h (ti − t)

∣∣∣∣∣ /σ̃jk(t)
in which ξ1, . . . , ξn

i.i.d.∼ N(0, 1).
We aim to show that UB

E is a good approximation of UE. However, UE and UB
E are not

exact averages. To apply the results in [5], we define four intermediate processes:

U0 = sup
t∈[a,b]

max
(j,k)∈E(t)

√
nh ·

∣∣∣∣∣
∑

i∈[n] M
+
ijk(t)∑

i∈[n] K
+
h (ti − t)

−
∑

i∈[n] M
−
ijk(t)∑

i∈[n] K
−
h (ti − t)

∣∣∣∣∣ /σ̃jk(t);
U00 = sup

t∈[a,b]

max
(j,k)∈E(t)

√
nh·∣∣∣∣∣

( ∑
i∈[n] M

+
ijk(t)∑

i∈[n] K
+
h (ti − t)

−
∑

i∈[n] M
−
ijk(t)∑

i∈[n] K
−
h (ti − t)

)
−

(
n · Λ+

jk(t)∑
i∈[n]K

+
h (ti − t)

−
n · Λ−jk(t)∑

i∈[n] K
−
h (ti − t)

)∣∣∣∣∣ /σ̃jk(t);
(30)
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UB
0 = sup

t∈[a,b]

max
(j,k)∈E(t)

√
nh ·

∣∣∣∣∣
∑

i∈[n] M
+
ijk(t)ξi∑

i∈[n] K
+
h (ti − t)

−
∑

i∈[n] M
−
ijk(t)ξi∑

i∈[n] K
−
h (ti − t)

∣∣∣∣∣ /σ̃jk(t);
UB

00 = sup
t∈[a,b]

max
(j,k)∈E(t)

√
nh·∣∣∣∣∣

( ∑
i∈[n] M

+
ijk(t)ξi∑

i∈[n] K
+
h (ti − t)

−
∑

i∈[n] M
−
ijk(t)ξi∑

i∈[n] K
−
h (ti − t)

)
−

( ∑
i∈[n] Λ+

jk(t)ξi∑
i∈[n]K

+
h (ti − t)

−
∑

i∈[n] Λ−jk(t)ξi∑
i∈[n] K

−
h (ti − t)

)∣∣∣∣∣ /σ̃jk(t),
where

M+
ijk(t) =

(
Θ+
j (t)

)T
K+
h (ti − t)

(
XiX

T
i − Σ+(t)

)
Θ+
k (t),

M−
ijk(t) =

(
Θ−j (t)

)T
K−h (ti − t)

(
XiX

T
i − Σ−(t)

)
Θ−k (t),

Λ+
jk(t) =

(
Θ+
j (t)

)T (E [K+
h (T − t)XXT

]
− E

[
K+
h (T − t)

]
Σ+(t)

)
Θ+
k (t),

Λ−jk(t) =
(
Θ−j (t)

)T (E [K−h (T − t)XXT
]
− E

[
K−h (T − t)

]
Σ−(t)

)
Θ−k (t)

ξi
i.i.d.∼ N(0, 1).

Similar to the proof of theorem 2 in [12], we show that U00 is a good approximation of
UE and that UB

00 is a good approximation of UB
E . We then show that there exists a Gaussian

process W such that both UB
00 and U00 can be accurately approximated by W . This is done by

applications of Theorems A.1 and A.2 in [5]. The following summarizes the chain of empirical
and Gaussian processes that we are going to study

UE ←→ U0 ←→ U00 ←→ W ←→ UB
00 ←→ UB

0 ←→ UB
E .

5.1 Thechnical Lemmas

We first give the uniform rates of convergence for the normalization term σ̃jk(t) in lemma 5.1.

Lemma 5.1 Under the same conditions in corollary 2, there exists a positive constant C such
that

sup
t∈[a,b]

max
j,k∈[p]

∣∣∣σ̃2
jk(t)−

(
Θ+
jj(t)Θ

+
kk(t) +

(
Θ+
jk(t)

)2
+ Θ−jj(t)Θ

−
kk(t) +

(
Θ−jk(t)

)2
)∣∣∣ ≤ C·

h+

√
log(np/

√
h)

nh


with probability at least 1− 8/np for sufficiently large n.
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Lemma 5.2 Assume that h+
√

log(np/
√
h)/nh = o(1) and

√
nh3 + s · log

(
np/
√
h
)
/
√
nh =

o(1). Under Assumption 1-2, for sufficiently large n, there exists a universal constant C > 0
such that

|UE − U00| ≤ C ·

(
√
nh3 + s · log(np/

√
h)√

nh

)
,

with probability at least 1− 8/np.

We now apply Theorems A.1 and A.2 in [5] to show that there exists a Gaussian process W
such that the quantities |U00 −W | and

∣∣TB00 −W
∣∣ can be controled, respectively. The results

are stated in the following Lemmas.

Lemma 5.3 Assume that log2(ns) log4(s) log4(p/h)/(nh) = o(1).Under Assumptions 1-2, for
sufficiently large n, there exist universal constants C,C ′ > 0 such that

P

(
|U00 −W | ≥ C ·

(
log2(ns) log4(s) log4(p/h)

nh

)1/8
)
≤ C ′ ·

(
log2(ns) log4(s) log4(p/h)

nh

)1/8

.

Lemma 5.4 Assume that log2(ns) · log2(s) · log3(p/h)/ (nh) = o(1).Under Assumptions 1-2,
for sufficiently large n, there exist universal constants C,C ′′ > 0 such that

P

(∣∣UB
00 −W

∣∣ > C ·
(

log2(ns) · log2(s) · log3(p/h)

nh

)1/8 ∣∣∣∣{(Ti, Xi)}i∈[n]

)

≤ C ′′ ·
(

log2(ns) · log2(s) · log3(p/h)

nh

)1/8

,

with probability at least 1− 3/n.

Finally, the following lemma provides an upper bound on the difference between UB
E and

UB
00, conditioned on the data {(Ti, Xi)}i∈[n].

Lemma 5.5 Assume that s ·
√

log4(np/
√
h)/nh2 = o(1) and nh3 = o(1). Under Assumptions

1-2, for sufficiently large n, there exist universal constants C,C ′′ > 0 such that, with probability
at least 1− 10/np,

P

|UB
E − UB

00| ≥ C · s ·

√
log4(np/

√
h)

nh2

∣∣∣∣{(Ti, Xi)}i∈[n]

 ≤ 2

n
.
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5.2 Proof of Theorem 2

With Lemma 5.1 - 5.5, we are now ready to prove Theorem 2.
Now we show that UE can be well-approximated by the (1−α) conditional quantile of UB

E ,
i.e. P (UE ≥ c(1− α)) ≤ α. For notation convenience, we let r = r1 + r2 + r3 + r4, where

r1 =
√
nh3 + s · log(np/

√
h)√

nh

r2 =

(
log2(ns) log4(s) log4(p/h)

nh

)1/8

r3 =

(
log2(ns) · log2(s) · log3(p/h)

nh

)1/8

r4 = s ·

√
log4(np/

√
h)

nh2
.

These are the scaling that appears in Lemmas 5.2-5.5. By Lemmas 5.2 and 5.3, it can be shown
that

P (|UE −W | ≥ r1 + r2) ≤ P (|UE − U00|+ |U00 −W | ≥ r1 + r2) ≤ 2r2 (31)

since r2 ≥ 1/np. With some abuse of notation, throughout the proof, we write Pξ(U
B
E ≥ t) to

indicate P (UB
E ≥ t|{(Ti, Xi)}i∈[n]). By Lemmas 5.4 and 5.5, we have

Pξ(|UB
E −W | ≥ r2 + r4) ≤ Pξ(|UB

E − UB
00|+ |UB

00 −W | ≥ r2 + r4) ≤ 2r2 (32)

since r2 ≥ r3 and r2 ≥ 1/n. Define the event

E = {Pξ(|UB
E −W | ≥ r2 + r4) ≤ r2},

and note that P (E) ≥ 1− 3/n by Lemma 5.4 and 5.5. Throughout the proof, we condition on
the event E .

By the triangle inequality, we obtain

P (UE ≤ c(1− α)) ≥ 1− P (UE −W +W + r ≥ c(1− α) + r)

≥ 1− P (|UE −W | ≥ r)− P (W ≥ c(1− α)− r)
≥ P (|W | ≤ c(1− α)− r)− 2r2, (33)

where the last inequality follows from 31. By a similar argument and by 32, we have

P (|W | ≤ c(1− α)− r) ≥ Pξ
(
UB
E ≤ c(1− α)− 2r

)
− 2r2

≥ Pξ
(
UB
E ≤ c(1− α)

)
− 2r2 − Pξ

(
|UB

E − c(1− α)| ≤ r
)
, (34)
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where the last inequality follows from the fact that P (X ≤ t−ε)−P (X ≤ t) ≥ −P (|X−t| ≤ ε)
for any ε > 0. Thus, combining 33 and 34, we obtain

P (UE ≤ c(1− α)) ≥ 1− α− 4r2 − Pξ
(
|UB

E − c(1− α)| ≤ r
)
. (35)

It remains to show that the quantity Pξ
(
|UB

E − c(1− α)| ≤ r
)

converges to zero as we increase
n.

By the defintion of Ũ00 and ŨB
00, we have

Ũ00 =
supt∈[a,b] max(j,k)∈E(t)

∣∣∣∑i∈[n] J
+
t,jk(Ti, Xi)−

∑
i∈[n] J

−
t,jk(Ti, Xi)

∣∣∣
√
n · fT (t) · σ̄jk(t)

and

ŨB
00 =

supt∈[a,b] max(j,k)∈E(t)

∣∣∣(∑i∈[n] J
+
t,jk(Ti, Xi)−

∑
i∈[n] J

−
t,jk(Ti, Xi)

)
· ξi
∣∣∣

√
n · fT (t) · σ̄jk(t)

.

Let σ̂2
t,jk =

∑n
i=1

(∑
i∈[n] J

+
t,jk(Ti, Xi)−

∑
i∈[n] J

−
t,jk(Ti, Xi)

)2

/
(
n · f 2

T (t) · σ̄2
jk(t)

)
be the condi-

tional variance, and let σ = inft,jk σ̂t,jk and σ = supt,jk σ̂t,jk. By Lemma A.1 of [6] and Theorem
3 of [4], we obtain

Pξ
(
|TBE − c(1− α)| ≤ r

)
≤ C · σ/σ · r ·

(
E
[
UB
E |{(Ti, Xi)}i∈[n]

]
+
√

1 ∨ log(σ/r)
)

≤ C · σ/σ · r ·
(
E
[
ŨB

00|{(Ti, Xi)}i∈[n]

]
+ E

[
|UB

E − ŨB
00||{(Ti, Xi)}i∈[n]

]
+
√

1 ∨ log(σ/r)
)
.

(36)

We first calculate the quantity σ. By 47, we have

sup
t∈[a,b]

max
j,k∈[p]

‖
(
J+
t,jk(Ti, Xi)− J−t,jk(Ti, Xi)

)2
/(

f 2
T (t) · σ̄2

jk(t)
)
‖∞ ≤ C · log2(2ns)

h

Moreover, by 47, we have

sup
t∈[a,b]

max
j,k∈[p]

E
[(
J+
t,jk(Ti, Xi)− J−t,jk(Ti, Xi)

)4
/(

f 4
T (t) · σ̄4

jk(t)
)]
≤ C · log4(2ns)

h2
.

Define the function class

J ∗ =

{(
J+
t,jk(Ti, Xi)− J−t,jk(Ti, Xi)

)2
/(

f 2
T (t) · σ̄2

jk(t)
) ∣∣∣∣z ∈ [0, 1], j, k ∈ [p]

}
.
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By Lemma 7.3, 7.6 and 7.7, we have

sup
Q
N(J ∗, L2(Q), ε) ≤ C · p2 ·

(
p11/6 log5/6 np

h11/12ε

)48

.

Thus, applying Lemma 8.2 with σ2
P = C · log4(2ns)/h2, V = 48, ‖F‖L2(Pn) ≤ C ·p2 · log2(2ns)/h

and A‖F‖L2(Pn) ≤ p15/8 log5/6(np)/h11/12, we have

E

 sup
t∈[a,b]

max
j,k∈[p]

∣∣∣∣∣∣ 1n
∑
i∈[n]

φt,jk(Ti, Xi)− E [φt,jk(T,X)]

∣∣∣∣∣∣


≤ C ·

√
log5(2np)

nh2
,

where we denote

φt,jk(Ti, Xi) =

(
J+
t,jk(Ti, Xi)− J−t,jk(Ti, Xi)

)2

f 2
T (t) · σ̄2

jk(t)

for notation simplicity.
By an application of the Marknov’s inequality, we obtain

P

 sup
t∈[a,b]

max
j,k∈[p]

∣∣∣∣∣∣ 1n
∑
i∈[n]

φt,jk(Ti, Xi)− E [φt,jk(T,X)]

∣∣∣∣∣∣ ≥ C ·
(

log5(2np)

nh2

)1/4


≤ C ·
(

log5(2np)

nh2

)1/4

.

Thus, we have with probability at least 1− C ·
(
log5(2np)/ (nh2)

)1/4
,

σ2 = sup
t∈[a,b]

max
j,k∈[p]

1

n

n∑
i=1

φt,jk(Ti, Xi) ≤ sup
t∈[a,b]

max
j,k∈[p]

E [φt,jk(T,X)] + C ·
(

log5(2np)

nh2

)1/4

≤ C log2 s (37)

where the last inequality follows from 49 for sufficiently large n. By Lemma 10 in [12], we have
inft,jk E [φt,jk(T,X)] ≥ c > 0. Therefore, we have

σ2 = inf
t,jk

1

n

n∑
i=1

φt,jk(Ti, Xi) ≥ c− sup
t∈[a,b]

max
j,k∈[p]

∣∣∣∣∣∣ 1n
∑
i∈[n]

φt,jk(Ti, Xi)− E [φt,jk(T,X)]

∣∣∣∣∣∣ ≥ c/2 > 0

with probability at least 1− C ·
(
log5(2np)/ (nh2)

)1/4
.
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Next, we calculate the quantity E
[
ŨB

00|{(Ti, Xi)}i∈[n]

]
. By Dudley’s inequality (Corollary

2.2.8 in [14]), 50 and 37, we obtain

E
[
ŨB

00|{(Ti, Xi)}i∈[n]

]
≤ C · log s ·

√
log(p/h). (38)

Moreover, by Lemma 5.5 and 5.4, we have

E
[
|UB

E − ŨB
00||{(Ti, Xi)}i∈[n]

]
≤ C · s ·

√
log4(np/

√
h)

nh2
+ C ·

√
log(np/

√
h) ·

√h+

(
log(np/

√
h)

nh

)1/4


≤ C · s ·

√
log4(np/

√
h)

nh2
≤ r, (39)

with probability at least 1- 3/n. Substituting 37, 38 and 39 into 36, we obtain

Pξ
(
|TBE − c(1− α)| ≤ r

)
≤ C ·

(
log20(s) · log8(p/h) · log2(np)

nh

)1/8

. (40)

Thus, substituting 40 into 35, we have

P (UE ≤ c(1− α)) ≥ 1− α− 4r2 −
(

log20(s) · log8(p/h) · log2(np)

nh

)1/8

.

By the scaling assumptions, r2 = o(1) and log20(s) · log8(p/h) · log2(np)/(nh) = o(1). Thus,
this implies that

lim
n→∞

P (UE ≤ c(1− α)) ≥ 1− α,

which implies that
lim
n→∞

P (UE ≥ c(1− α)) ≤ α,

as desired

6 Proof of Technical Lemmas in Theorem 2

6.1 Proof of Lemma 5.1

Recall the definition that

σ̃2
(

Θ̂d+
jk (t)

)
=
∑
i∈[n]

K+
h (ti − t)

((
Θ̂+
j (t)

)T (
XiX

T
i Θ̂+

k (t)− ek
))2

/
∑
i∈[n]

K+
h (ti − t),
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we have

σ̃2
(

Θ̂d+
jk (t)

)
=

∑
i∈[n] K

+
h (ti − t)

((
Θ̂+
j (t)

)T
Xi

)2((
Θ̂+
k (t)

)T
Xi

)2

∑
i∈[n] K

+
h (ti − t)

−
2 ·
∑

i∈[n] K
+
h (ti − t)Θ̂+

jk(t)

((
Θ̂+
j (t)

)T
Xi

)((
Θ̂+
k (t)

)T
Xi

)
∑

i∈[n] K
+
h (ti − t)

+

∑
i∈[n] K

+
h (ti − t)

(
Θ̂+
jk(t)

)2

∑
i∈[n] K

+
h (ti − t)

= Ω̂+
jk(t)− 2 · Θ̂+

jk(t)
(

Θ̂+
j (t)

)T
Σ̂+(t)Θ̂+

k (t) +
(

Θ̂+
jk(t)

)2

.

So,

sup
t∈[a,b]

max
j,k∈[p]

∣∣∣σ̃2
(

Θ̂d+
jk (t)

)
−
(

Θ+
jj(t)Θ

+
kk(t) +

(
Θ+
jk(t)

)2
)∣∣∣

≤ sup
t∈[a,b]

max
j,k∈[p]

∣∣∣Ω̂±jk(t)− (Θ±jj(t)Θ
±
kk(t) + 2 ·

(
Θ+
jk(t)

)2
)∣∣∣

+ 2 · sup
t∈[a,b]

max
j,k∈[p]

∣∣∣∣Θ̂+
jk(t)

(
Θ̂+
j (t)

)T
Σ̂+(t)Θ̂+

k (t)−
(
Θ+
jk(t)

)2

∣∣∣∣
+ sup

t∈[a,b]

max
j,k∈[p]

∣∣∣∣(Θ̂+
jk(t)

)2

−
(
Θ+
jk(t)

)2

∣∣∣∣ .
By Corollary 1-2,

sup
t∈[a,b]

max
j,k∈[p]

∣∣∣σ̃2
(

Θ̂d+
jk (t)

)
−
(

Θ+
jj(t)Θ

+
kk(t) +

(
Θ+
jk(t)

)2
)∣∣∣ ≤ C ·

h+

√
log(np/

√
h)

nh

 (41)

with probability at least 1− 4/np. Similarly,

sup
t∈[a,b]

max
j,k∈[p]

∣∣∣σ̃2
(

Θ̂d−
jk (t)

)
−
(

Θ−jj(t)Θ
−
kk(t) +

(
Θ−jk(t)

)2
)∣∣∣ ≤ C ·

h+

√
log(np/

√
h)

nh

 (42)

with probability at least 1 − 4/np. Finally, combining 41 and 42, we complete the proof of
Lemma 5.1.
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6.2 Proof of Lemma 5.2

Lemmas 5.2-5.5 can be proved by the same set of argument of the proof of Lemma 6-9 in [12].
Lemma 5.2 provides an approximation error between the statistic UE and the intermediate
empirical process U00.

By the triangle inequality, we have |UE − U00| ≤ |UE − U0|+ |U0 − U00|. Thus, it is suffices
to obtain upper bounds for the terms |UE − U0| and |U0 − U00|. With the fact that for any

j 6= k ∈ [p], t ∈ [a, b], Θ±jj(t)Θ
±
kk(t) +

(
Θ±jk(t)

)2 ≥ m2 given λ1(Θ±(t)) ≥ m, we have

‖Θ±j (t)‖1‖Θ±k (t)‖1/σ̃jk(t) ≤M2/(
√

2m) (43)

with probability at least 1 − 8/np. Following the results of 43 and the proof of Lemma 6 in
[12], we give the uppper bounds for |UE − U0| and |U0 − U00| directly.

Upper Bound for |UE − U0|:

|UE − U0| ≤ C ·
√
nh · s ·

h+

√
log(np/

√
h)

nh

2

= C ·

(
s ·
√
nh5 +

s · log(np/
√
h)√

nh
+ s · h

√
log(np/

√
h)

)
(44)

with probability at least 1− 8/np, for sufficiently large n.
Upper Bound for |U0 − U00|:

|U0 − U00| ≤ C ·
√
nh3 (45)

Thus, combining 44 and 45, there exists a constant C > 0 such that

|UE − U00| ≤ C ·

(
√
nh3 + s ·

√
nh5 + s · log(np/

√
h)√

nh
+ s · h

√
log(np/

√
h)

)
,

with probability at least 1− 8/np. By the assumption that nh3 = o(1), we obtain

|UE − U00| ≤ C ·

(
√
nh3 + s · log(np/

√
h)√

nh

)
.

6.3 Proof of Lemma 5.3

Recall from 30 the definition

U00 = sup
t∈[a,b]

max
(j,k)∈E(t)

√
nh·∣∣∣∣∣

( ∑
i∈[n] M

+
ijk(t)∑

i∈[n] K
+
h (ti − t)

−
∑

i∈[n] M
−
ijk(t)∑

i∈[n] K
−
h (ti − t)

)
−

(
n · Λ+

jk(t)∑
i∈[n]K

+
h (ti − t)

−
n · Λ−jk(t)∑

i∈[n] K
−
h (ti − t)

)∣∣∣∣∣ /σ̃jk(t).
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Recall from 4 that J±t,jk(Ti, Xi) = J
±(1)
t,jk (Ti, Xi) − J±(2)

t,jk (Ti), where J
±(1)
t,jk (Ti, Xi) and J

±(2)
t,jk (Ti)

are as defined in 2 and 3, respectively. Let J = {J+
t,jk − J

−
t,jk|t ∈ [0, 1], j, k ∈ [p]} and J ± =

{J±t,jk|t ∈ [0, 1], j, k ∈ [p]}. Then the intermediate empirical average U00 can be written as

U00 = sup
t∈[a,b]

max
(j,k)∈E(t)

√
n

∣∣∣∣∣
(∑

i∈[n] J
+
t,jk(Ti, Xi)∑

i∈[n] K
+
h (ti − t)

−
∑

i∈[n] J
−
t,jk(Ti, Xi)∑

i∈[n] K
−
h (ti − t)

)∣∣∣∣∣ /σ̃jk(t).
By Lemma 3.2 and Lemma 3.3, with probability 1− 1/np, we have

Pn
[
K+
h (Ti − t)

]
= fT (t) +O(h) +O

(
log(np/

√
h)

nh

)
,

for sufficiently large n.

By Lemma 5.1, denote σ̄jk(t) =
√

Θ+
jj(t)Θ

+
kk(t) +

(
Θ+
jk(t)

)2
+ Θ−jj(t)Θ

−
kk(t) +

(
Θ−jk(t)

)2
, with

probability at least 1− 8/np, we have

σ̃jk(t) = σ̄jk(t) +O


√√√√
h+

√
log(np/

√
h)

nh

 .

Denote Ũ00 = supt∈[a,b] max(j,k)∈E(t)

∣∣∣∑i∈[n] J
+
t,jk(Ti, Xi)−

∑
i∈[n] J

−
t,jk(Ti, Xi)

∣∣∣ / (
√
nfT (t) · σ̄jk(t)).

Thus, with probability at least 1-10/np, there exists a positive constant C, such that

∣∣∣U00 − Ũ00

∣∣∣ ≤ C ·
√

log(np/
√
h) ·

√h+

(
log(np/

√
h)

nh

)1/4
 . (46)

We will show that there exists a Gaussian process W such that

∣∣∣Ũ00 −W
∣∣∣ ≤ C ·

(
log2(ns) log4(s) log4(p/h)

nh

)1/8

with high probability. To this end, we apply Theorem A.1 in [5], which involves the following
quantiites

• upper bound for supt∈[a,b] maxj,k∈[p] ‖
∣∣J+
t,jk (Ti, Xi)− J−t,jk(Ti, Xi)

∣∣ / (fT (t) · σ̄jk(t)) ‖∞;

• upper bound for supt∈[a,b] maxj,k∈[p] E
[(
J+
t,jk (T,X)− J−t,jk(T,X)

)2
/ (fT (t) · σ̄jk(t))2

]
;

• covering number for the function class J .
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Let Sj(t) and Sk(t) be the support of Θj(t) and Θk(t), respectively. Note that the cardinality
for each set is less than s. We now obtain the above quantities.

Upper bound for supt∈[a,b] maxj,k∈[p] ‖
∣∣J+
t,jk (Ti, Xi)− J−t,jk(Ti, Xi)

∣∣ / (fT (t) · σ̄jk(t)) ‖∞: We
have, with probability at least 1− 1/(2ns),

sup
t∈[a,b]

max
j,k∈[p]

‖J+
t,jk(Ti, Xi)‖∞/ (fT (t) · σ̄jk(t))

≤
√
h · sup

t∈[a,b]

max
j,k∈[p]

‖Θ+
j (t)‖1‖Θ+

k (t)‖1 ·
(

max
j∈Sj(t),k∈Sk(t)

‖q+
t,jk‖∞ +Mσ · ‖k+

t ‖∞
)
/ (fT (t) · σ̄jk(t))

≤
√
h ·M · 1

f
T

(
2

h
·M2

X · ‖K+‖∞ log(2ns) +Mσ ·
2

h
· ‖K+‖∞

)
≤ 4√

h
·M · 1

f
T

·M2
X ·Mσ · ‖K+‖∞ · log(2ns)

= C1 ·
log(2ns)√

h
,

where the first inequality follows by Holder’s inequality and definition of q+
t,jk and k+

t and the
second inequality follows from 24 and 29. Note that since we are only taking max over the set
Sj(t) and Sk(t), instead of a log np factor from 29, we obtain a log(2ns) factor. Thus,

sup
t∈[a,b]

max
j,k∈[p]

‖J+
t,jk (Ti, Xi)− J−t,jk(Ti, Xi)‖∞/ (fT (t) · σ̄jk(t))

≤ sup
t∈[a,b]

max
j,k∈[p]

‖J+
t,jk(Ti, Xi)‖∞/ (fT (t) · σ̄jk(t)) + sup

t∈[a,b]

max
j,k∈[p]

‖J−t,jk(Ti, Xi)‖∞/ (fT (t) · σ̄jk(t))

≤ 2C1 ·
log(2ns)√

h
. (47)

Upper bound for supt∈[a,b] maxj,k∈[p] E
[(
J+
t,jk (T,X)− J−t,jk(T,X)

)2
/ (fT (t) · σ̄jk(t))2

]
: By

an application of the inequality (x− y)2 ≤ 2x2 + 2y2, we have

sup
t∈[a,b]

max
j,k∈[p]

E
[
J+2
t,jk (T,X)

]
/ (fT (t) · σ̄jk(t))

= sup
t∈[a,b]

max
j,k∈[p]

E
[(
J

+(1)
t,jk (T,X)− J+(2)

t,jk (T )
)2
]
/ (fT (t) · σ̄jk(t))2

≤ 2 sup
t∈[a,b]

max
j,k∈[p]

E
[(
J

+(1)
t,jk (T,X)

)2
]
/ (fT (t) · σ̄jk(t))2

︸ ︷︷ ︸
I1

+ 2 sup
t∈[a,b]

max
j,k∈[p]

E
[(
J

+(2)
t,jk (T )

)2
]
/ (fT (t) · σ̄jk(t))2

︸ ︷︷ ︸
I2

.
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To obtain an upper bound for I1, we need an upper bound for supt∈[a,b] maxj,k∈[p] E
[
maxj∈Sj(t),k∈Sk(t) q

+2
z,jk

]
.

Recall from 1 the definition of g+
t,jk(Ti, Xij, Xik) = K+

h (Ti−t)XijXik and that q+
t,jk(Ti, Xij, Xik) =

g+
t,jk(Ti, Xij, Xik)− E[g+

t,jk(T,Xj, Xk)]. Thus, we have

sup
t∈[a,b]

max
j,k∈[p]

E
[

max
j∈Sj(t),k∈Sk(t)

q+2
z,jk

]
= sup

t∈[a,b]

max
j,k∈[p]

E
[

max
j∈Sj(t),k∈Sk(t)

(
g+
t,jk − E[g+

t,jk]
)2
]

≤ 2 sup
t∈[a,b]

max
j,k∈[p]

E
[

max
j∈Sj(t),k∈Sk(t)

g+2
t,jk

]
+ 2 sup

t∈[a,b]

max
j,k∈[p]

E2
[
g+
t,jk

]
,

where we apply the fact that (x− y)2 ≤ 2x2 + 2y2 to obtain the last inequality. By Lemma 3.2,

we have 2 supt∈[a,b] maxj,k∈[p] E2 [gt,jk] ≤ 2
(
fT ·Mσ +O(h)

)2
. Moreover, we have

2 sup
t∈[a,b]

max
j,k∈[p]

E
[

max
j∈Sj(t),k∈Sk(t)

g+2
t,jk

]
= 2 sup

t∈[a,b]

max
j,k∈[p]

E
[

max
j∈Sj(t),k∈Sk(t)

K+2
h (T − t)X2

jX
2
k

]
= 2 sup

t∈[a,b]

max
j,k∈[p]

E
[
K+2
h (T − t)E

[
max

j∈Sj(t),k∈Sk(t)
X2
jX

2
k |Z
]]

≤ 2 ·M4
X · log2(2s) sup

t∈[a,b]

max
j,k∈[p]

E
[
K+2
h (T − t)

]
≤ 2 ·M4

X · log2(2s)

(
1

h
fT‖K+‖2

2 +O(1) +O(h)

)
≤ 3 · fT · ‖K+‖2

2 ·M4
X ·

log2(2s)

h
,

where the second inequality follows from an application of 27.
Thus, by Holder’s inequality, we have

I1 ≤ 2 · h · sup
t∈[a,b]

max
j,k∈[p]

E

[(
‖Θj(t)‖1 · ‖Θk(t)‖1 · max

j∈Sj(t),k∈Sk(t)
|q+
t,jk|
)2
]
/ (fT (t) · σ̄jk(t))2

≤ 2 · h ·M2 · 1

f
T

·
(

3 · fT · ‖K+‖2
2 ·M4

X ·
log2(2s)

h
+ 2

(
fT ·Mσ +O(h)

)2
)

≤ 8 ·M2 · 1

f
T

· fT ·M4
X · ‖K+‖2

2 · log2(2s),

where the second inequality holds by the fact that Θ(t) ∈ Us,m,M .
Similarly, to obtain an upper bound for I2, we use the fact from 28 that

sup
t∈[a,b]

E
[
k+2
t

]
≤ 3

h
· fT · ‖K+‖2

2. (48)
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By Holder’s inequality, we have

I2 ≤ 2 · h sup
t∈[a,b]

max
j,k∈[p]

E

[(
‖Θj(t)‖1 · ‖Θk(t)‖1 · max

(j,k)∈E(t)
|Σ+

jk(t)| · |k
+
t |
)2
]
/ (fT (t) · σ̄jk(t))2

≤ 2 · h ·M2 · 1

f
T

·M2
σ sup
t∈[a,b]

E
[
k+2
t

]
≤ 6 ·M2

σ ·M2 · 1

f
T

· fT · ‖K+‖2
2,

where the second inequality holds by Assumption 2 and by the fact that Θ(t) ∈ Us,m,M , and
the last inequality holds by 48.

Combing the upper bounds for I1 and I2, we have

sup
t∈[a,b]

max
j,k∈[p]

E
[
J+2
t,jk (T,X)

]
≤ 8 ·M2 · 1

f
T

· fT‖K+‖2
2 ·
(
M2

σ +M4
X · log2(2s)

)
≤ C · log2 s,

for sufficiently large C > 0. Thus, we have

sup
t∈[a,b]

max
j,k∈[p]

E
[(
J+
t,jk (T,X)− J−t,jk(T,X)

)2
]
/ (fT (t) · σ̄jk(t))2

≤ 2 sup
t∈[a,b]

max
j,k∈[p]

E
[
J+2
t,jk (T,X)

]
/ (fT (t) · σ̄jk(t))2 + 2 sup

t∈[a,b]

max
j,k∈[p]

E
[
J−2
t,jk (T,X)

]
/ (fT (t) · σ̄jk(t))2

≤ 4C · log2 s = σ2
J (49)

Covering number for the function class J : First, we note that the function class J +

is generated from the addition of two function classes

J +(1)
jk = {J+(1)

t,jk |t ∈ [a, b]}

and
J +(2)
jk = {J+(2)

t,jk |t ∈ [a, b]}.
Thus, to obtain the covering number of J , we first obtain the covering numbers for the function
classes J +(1)

jk and J +(2)
jk . Then, we apply Lemma 7.3 to obtain the covering number of the

function class J . From Lemma 7.6, we have with probability at least 1− 1/np,

N
(
J +(1)
t,jk , L2(Q), ε

)
≤ C ·

(
p3/2 log5/3 np√

h · ε

)6

.

Moreover, from Lemma 7.7, we have

N
(
J +(2)
t,jk , L2(Q), ε

)
≤ C ·

(
p1/6

h4/3 · ε

)6

.
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Applying Lemma 7.3 with a1 = p3/2 log5/3 np/h1/2, v1 = 6, a2 = p1/6/h4/3, and v2 = 6, we have

N(J +, L2(Q), ε) ≤ C · p2 ·

(
p5/6 log5/6 np

h11/12ε

)12

,

where we multiply p2 on the right hand side since the function class J + is taken over all
j, k ∈ [p]. In the end, since J is generated by addition of J + and J −, we have

N(J , L2(Q), ε) ≤ C · p2 ·

(
p5/6 log5/6 np

h11/12ε

)24

.

Thus, for function class J ′ = {
(
J+
t,jk − J

−
t,jk

)
/ (fT (t) · σ̃jk(t)) |t ∈ [0, 1], j, k ∈ [p]}, we have

N(J ′, L2(Q), pε) ≤ C · p2 ·

(
p5/6 log5/6 np

h11/12ε

)24

.

So,

N(J ′, L2(Q), pε) ≤ C · p2 ·

(
p11/6 log5/6 np

h11/12ε

)24

. (50)

Application of Theorem A.1 in [5]: Applying Theorem A.1 in [5] with a = p11/12 ·
h−5/12 · log−1/6np, b = C · log(ns)/

√
h, σJ = C · log s, ν = 24, and

Kn = Aν · (log n ∨ log(ab/σJ)) = C · log(p/h).

For sufficiently large constant A,C > 0, there exists a random process W such that for any
γ ∈ (0, 1),

P

(
|Ũ00 −W | ≥ C ·

[
bKn

(γn)1/2
+

(bσJ)1/2K
3/4
n

γ1/2n1/4
+
b1/3σ

2/3
J K

2/3
n

γ1/3n1/6

])

≤ C ′ ·
(
γ +

log n

n

)
for some absolute constant C ′. Picking γ =

(
log2(ns) log4(s) log4(p/h)/(nh)

)1/8
, we have

P

(
|Ũ00 −W | ≥ C ·

(
log2(ns) log4(s) log4(p/h)

nh

)1/8
)

≤ C ′ ·
(

log2(ns) log4(s) log4(p/h)

nh

)1/8

. (51)
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Combine 46 and 51, we get

P

(
|U00 −W | ≥ C ·

(
log2(ns) log4(s) log4(p/h)

nh

)1/8
)

≤ C ′ ·
(

log2(ns) log4(s) log4(p/h)

nh

)1/8

.

6.4 Proof of Lemma 5.4

Recall from the proof of Lemma 5.3 that

U00 = sup
t∈[a,b]

max
(j,k)∈E(t)

√
n

∣∣∣∣∣
(∑

i∈[n] J
+
t,jk(Ti, Xi)∑

i∈[n] K
+
h (ti − t)

−
∑

i∈[n] J
−
t,jk(Ti, Xi)∑

i∈[n] K
−
h (ti − t)

)∣∣∣∣∣ /σ̃jk(t).
We note that

UB
00 = sup

t∈[a,b]

max
(j,k)∈E(t)

√
n

∣∣∣∣∣
(∑

i∈[n] J
+
t,jk(Ti, Xi) · ξi∑

i∈[n] K
+
h (ti − t)

−
∑

i∈[n] J
−
t,jk(Ti, Xi) · ξi∑

i∈[n] K
−
h (ti − t)

)∣∣∣∣∣ /σ̃jk(t),
where ξi

i.i.d.∼ N(0, 1). To show that the term |W − UB
00| can be controlled, similar to proof of

Lemma 5.3, we use

ŨB
00 = sup

t∈[a,b]

max
(j,k)∈E(t)

1√
n

∣∣∣∣∣∣
∑
i∈[n]

J+
t,jk(Ti, Xi)−

∑
i∈[n]

J−t,jk(Ti, Xi)

 · ξi
∣∣∣∣∣∣ / (fT (t)σ̄jk(t))

to approximate UB
00 and we apply Theorem A.2 in [5] to controll |ŨB

00 −W |.
Let

ψn =

√
σ2
JKn

n
+

(
b2σ2

JK
3
n

n

)1/4

and

γn(δ) =
1

δ

(
b2σ2

JK
3
n

n

)1/4

+
1

n
,

as defined in Theorem A.2 in [5]. From the proof of Lemma 5.3, we have b = C · log(ns)/
√
h,

σJ = C · log s, and Kn = C · log(p/h). Since b2Kn = C log2(ns) · log(p/h)/h ≤ nC2 · log2 s = nσ2
J

for sufficiently large n, there exists a constant C ′′ > 0 such that

P

(
|UB

00 −W | > ψn + δ

∣∣∣∣{(Ti, Xi)}i∈[n]

)
≤ C ′′ · γn(δ),
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with probability at least 1−3/n. Choosing δ =
(
log2(ns) · log2(s) · log3(p/h)/ (nh)

)1/8
, we have

P

(∣∣UB
00 −W

∣∣ > C ·
(

log2(ns) · log2(s) · log3(p/h)

nh

)1/8 ∣∣∣∣{(Ti, Xi)}i∈[n]

)

≤ C ′′ ·
(

log2(ns) · log2(s) · log3(p/h)

nh

)1/8

,

with probability at least 1− 3/n.

6.5 Proof of Lemma 5.5

Similar to the proof of Lemma 5.2, it suffices to obtain upper bounds for the terms |UB
E − UB

0 |
and |UB

0 − UB
00|. Throungh the proof of this lemma, it conditions on the data {(Ti, Xi)}i∈[n].

We will show that |UB
E − UB

00| is upper bounded by the quantity

C ·

s ·
√

log4(np/
√
h)

nh2


with high probability for sufficiently large constant C > 0. Following the results of 43 and the
proof of Lemma 9 in [12], we directly give the upper bounds

Upper bound for |UB
E − UB

0 | : Applying the Dudley’s inequality(Corollary 2.2.8 in[14])
and the Borell’s inequality(Proposition A.2.1. in [14]), we have

|UB
E − UB

0 | ≤ C · s ·
√
h log3(np/

√
h) + C · s ·

√
log4(np/

√
h)

nh2

≤ C · s ·

√
log4(np/

√
h)

nh2
(52)

with probability at least 1− 4
√
h/np, for some positive constant C. The last inequality holds

by the assumption that nh3 = o(1).

Upper bound for |UB
0 − UB

00| :By Lemma 3.2 and the results that if ξi
i.i.d.∼ N(0, 1), then

P

∣∣∣∣ 1n∑
i∈[n]

ξi

∣∣∣∣ >
√

2 log n

n

 ≤ 1

n
,

we obtain the Upper bound for |UB
0 − UB

00|

|UB
0 − UB

00| ≤ C ·
√
h3 log n (53)
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with probability at least 1− 1/n, for some positive constant C.
Combining the upper bounds 52 and 53, and applying the union bound, we have

P

|UB
E − UB

00| ≥ C · s ·

√
log4(np/

√
h)

nh2
+ C ·

√
h3 log n

∣∣∣∣{(Ti, Xi)}i∈[n]


≤ P

|UB
E − UB

0 | ≥ C · s ·

√
log4(np/

√
h)

nh2

∣∣∣∣{(Ti, Xi)}i∈[n]


+ P

(
|UB

0 − UB
00| ≥ C ·

√
h3 log n

∣∣∣∣{(Ti, Xi)}i∈[n]

)
≤ 4
√
h/np+

1

n
≤ 2

n
.

By the assumption that nh3 = o(1), we conclude

P

|UB
E − UB

00| ≥ C · s ·

√
log4(np/

√
h)

nh2

∣∣∣∣{(Ti, Xi)}i∈[n]

 ≤ 2

n
.

7 Technical Lemmas on Covering Number

In this section, we present some technical lemmas on the covering number of some function
classes. Lemma 7.1(Lemma 3 in [7]) provides an upper bound on the covering number for the
class of functions of bounded variation. Lemma 7.2(Lemma 14 in [12]) provides an upper bound
on the covering number of a class of Lipschitz functions. Lemma 7.3(Lemma 15 in [12]) provides
an upper bound on the covering numbers for function classes generated from the product and
addition of two function classes.

Lemma 7.1 (Lemma 3 in [7]) Let K : R→ R be a function of bounded variation. Define the
function class Fh = {K((t− ·)/h)|t ∈ R}. Then, there exists CK <∞ independent of h and K
such that for all 0 < ε < 1,

sup
Q
N(Fh, L2(Q), ε) ≤

(
2 · CK · ‖K‖TV

ε

)4

,

where ‖K‖TV is the total variation norm of the function K and Q is any probability mersure.

Lemma 7.2 (Lemma 14 in [12]) For any 0 < a < b < 1, let f(l) be a Lipschitz function
defined on [a, b]such that |f(l)− f(l′)| ≤ Lf · |l− l′| for any l, l′ ∈ [a, b]. We define the constant
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function class F = {gl : f(l)|l ∈ [a, b]}. For any probability measure Q, the covering number of
the function class F satisfies

N(F , L2(Q), ε) ≤ Lf
ε
,

where ε ∈ (0, 1).

Lemma 7.3 (Lemma 15 in [12]) Let F1 and F2 be two function classes satifying

N(F1, L2(Q), a1ε) ≤ C1ε
−v1

and
N(F2, L2(Q), a2ε) ≤ C2ε

−v2

for some C1, C2, a1, a2, v1, v2 > 0 and any 0 < ε < 1. Define ‖Fl‖∞ = supf∈Fl
‖f‖∞ for

l = 1, 2 and U = ‖F1‖∞ ∨ ‖F2‖∞. For the function classes F× = {f1f2|f1 ∈ F1, f2 ∈ F2} and
F+ = {f1 + f2|f1 ∈ F1, f2 ∈ F2}, we have for any ε ∈ (0, 1),

N(F×, L2(Q), ε) ≤ C1 · C2 ·
(

2a1U

ε

)v1
·
(

2a2U

ε

)v2
and

N(F+, L2(Q), ε) ≤ C1 · C2 ·
(

2a1

ε

)v1
·
(

2a2

ε

)v2
.

Now, we introduce Lemma 7.4 and 7.5. The proof of Lemma 7.4 and 7.5 is a direct application
of Lemma 7.1, 7.2 and 7.3.

Lemma 7.4 (Lemma 16 in [12]) Let ω±t (u) = K±h (u − t). For any 0 < a < b < 1, we define
the function classes

K±1 = {ω±t (·)|t ∈ [a, b]}
and

K±2 = {E[ω±t (T )]|t ∈ [a, b]}.
Given Assumptions 1-2, we have for any ε ∈ (0, 1),

sup
Q
N(K±1 , L2(Q), ε) ≤

(
2 · CK± · ‖K±‖TV

hε

)4

and

sup
Q
N(K±2 , L2(Q), ε) ≤ 2

hε
· ‖K±‖TV · fT .

Moreover, let k±t (u) = ω±t (u)− E[ω±t (T )] and let K± = {k±t (·)|t ∈ [a, b]}. We have

sup
Q
N(K±, L2(Q), ε) ≤

(
4 · ‖K±‖TV · C4/5

K± · f
1/5

T

hε

)5

.
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Lemma 7.5 (Lemma 17 in [12]) Let g±t,jk(u,Xij, Xik) = K±h (u − t)XijXik. For any 0 < a <
b < 1, we define the function classes

G±1,jk = {g±t,jk(·)|t ∈ [a, b]}

and
G±2,jk = {E[g±t,jk(T,Xj, Xk)]|t ∈ [a, b]}.

Given assumptions 1-2, for all ε ∈ c(0, 1) and sufficiently large MX ,

sup
Q
N(G±1,jk, L2(Q), ε) ≤

(
2 ·M2

X · log np · CK± · ‖K±‖TV
hε

)4

and

sup
Q
N(G±2,jk, L2(Q), ε) ≤ 2

hε
· ‖K±‖TV · fT ·Mσ,

with probability at least 1−1/np. Moreover, let q±t,jk(u,Xij, Xik) = g±t,jk(u,Xij, Xik)−E[g±t,jk(T,Xj, Xk)]

and let G±jk = {q±t,jk(·)|t ∈ [a, b]}. We have

sup
Q
N(G±jk, L2(Q), ε) ≤

(
4 · ‖K±‖TV · C4/5

K± · f
1/5

T ·M
1/5
σ ·M8/5

X · log4/5 np

hε

)5

with probability at least 1− 1/np.

Lemma 7.6 (Lemma 18 in [12]) For any 0 < a < b < 1, let J ±(1)
jk = {J±(1)

t,jk |t ∈ [a, b]}. Given
Assumption 1-2, for all probability measure Q on R and all ε ∈ (0, 1)

N(J ±(1)
jk , L2(Q), ε) ≤ C ·

(
p3/2 log5/3 np√

h · ε

)6

,

with probability at least 1 − 1/np, where C > 0 is a generic constant that does not depend on
p, h, and n.

Lemma 7.7 (Lemma 19 in [12])For any 0 < a < b < 1, let J ±(2)
jk = {J±(2)

t,jk |t ∈ [a, b]}. Given
Assumption 1-2, for all probability measure Q on R and all ε ∈ (0, 1)

N(J ±(2)
jk , L2(Q), ε) ≤ C ·

(
p1/6

h4/3 · ε

)6

,

where C > 0 is a generic constant that does not depend on p, h, and n.
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8 Technical Lemmas on Empirical Process

In this section, we present some existing tools on empirical process. The following Lemma claims
that the supreme of any empirical process is concentrated near its mean. It directly follows
from Theorem 2.3 in [1], an improvement on Rio’s version[10] of Talagrand’s inequality[11].

Lemma 8.1 (Theorem A.1 in [13]) Let X1, X2, . . . , Xn be independent random variables and
let F be a function class such that there exists η and τ 2 satisfying

sup
f∈F
‖f‖∞ ≤ η

and

sup
f∈F

1

n

∑
i∈n

V ar(f(Xi)) ≤ τ 2.

Define

Y = sup
f∈F

∣∣∣∣∣∣ 1n
∑
i∈[n]

(f(Xi)− E[f(Xi)])

∣∣∣∣∣∣ .
Then, for any t > 0,

P
(
Y ≥ E[Y ] + t

√
2(τ 2 + 2ηE[Y ]) + 2t2η/3

)
≤ exp

(
−nt2

)
.

The above inequality involves evaluating the expectation of the supreme of the empirical pro-
cess. The following Lemma directly follows from Theorem 3.12 in [8] and Corollary 5.1 in [6]. It
provides an upper bound on the expectation of the supreme of the empirical process as function
of its covering number.

Lemma 8.2 (Lemma F.2 in [9]) Assume that the functions in F defined on X are uniformly
bounded by a constant U and F (·) is the envelope of F such that |f(x)| ≤ F (x) for all x ∈ X
and f ∈ F . Let supf∈F E[f 2] ≤ σ2

P ≤ ‖F‖2
L2(Pn). Let X1, . . . , Xn be i.i.d. copies of the random

variables X. We denote the empirical measure as Pn = 1
n

∑
i∈[n] δXi

. If for some A, V > 0 and
for all ε > 0 and n ≥ 1, the covering entropy satisfies

N(F , L2(Pn), ε) ≤
(
A‖F‖L2(Pn)

ε

)V
,

then there exists a universal constant C such that

E

sup
f∈F

1

n

∣∣∣∣∣∣
∑
i∈[n]

(f(Xi)− E[f(Xi)])

∣∣∣∣∣∣
 ≤ C

[√
V

n
σP

√
log

(
A‖F‖L2(Pn)

σP

)
+
V U

n
log

(
A‖F‖L2(Pn)

σP

)]
.
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