Supplementary Notes

1 Preliminaries

The notations in this supplementary notes are same with main text if not defined particularly.

Definition 1 Throughout our proof, we consider the parameter space
Uoas = {0 € Ryl = 0.04(6) > m. 0]l < € < s, max 01 < .
j€lp j€lp

where 0 < A\1(0) < X2(©) < ... < A,(O) is the eigenvalues of ©. A similar class of matrices
were considered in the literature on inverse covariance matrix estimation|[3][12]. We allow s to
increase with n and p.

Proposition 1 The right Epanechnikov kernel function K+ = 1.5 (1 — u?) - Lo<u<1y satisfies

/K+(u)du = 1,/ulK+(u)du < oo,/KHdu < o0,

for 1 =1,2,3,4. Moreover, |K*||3 = [ K™*(u)du = 6/5, ||[K" |l = sup, |[K"(u)| = 3.2 and
|K*||lrv = 1.5 fol 2udu = 3/2. The definition of left Epanechnikov kernel function is defined in
the same way.

Assumption 1 Assume that there exists a constant f such that infycpq) fr(t) > f > 0.
Furthermore, assume that fr is twice continuously dzﬁer@nmable and that there exists a constant

Jr < 00 such that max{|| frlloc, | frlloc: 1 frlloc} < Fr-

Now, we give assumption 2. Different from assumption 2 in [12], to detect graph change, we
only assume X;;(t) is right continuous in [0, 1].

Assumption 2 Assume X (t) is right continuous and E;tk(t), Ejik(t) and Efk(t) exist for Vt €
(0,1), 4,k € [p]. ¥,.(0) = £;1(0), X5,(1) = Xjx(1) and there are finite number of discontinuities
of X(t) fort € [0,1]. There exists a constant M, such that

sup max max{XF, (¢), 51 (1), S5(4), 5,(4), 35, (1), S5, ()} < M,
te[0,1] k€[]



2 Notation

We define some notations. Let

:%Zf(X

i€[n]

and
Gnlf] = V- (P[] = E[f(X)]).

For notational convenience, for fixed j, k € [p], let

gtj,[]k(T Xij, Xiw) = K;p (T; — ) X35 X,

R
wi (T;) = K; (Ti — 1),
quk<T Xl]?*Xlk) = gfyk(T XZ]7X ) E[Qﬁjk(Tv vaXk>]7
and let
k£ (T) = Wi (T,) — Elw (T)].

By the definition of %(¢)%, we have

Zie[n] g;:]k(T Xz]aX ) _ ]P)n[gt{t]k;}
Zie[n} w; (T3) P, w;']

Denote ©%(t) as the CLIME estimator for ©%(t), we define

XA]jik(t) =

(T X)) = KT — 1) (XPOR0) (X768

and N N
Eie[n ltjk<T‘i?Xi) . P, [lt]k]

Zie[n] wi(T)  Palwf]

Qi) =

In addition, let

TETL X)) = V- (05(1)" - [IKGEH(T — )X XE — B [KH(T - )X XT]] - 0 (1),

TE (D) = VR (021))" - [KE(T — 1) - E [KE(T - 1)]] - S5(¢) - 0 (1),
TENTL X)) = TP (T, X)) — TEP (T

and let
WiE(Th, X, Xa) = VR [KE(T — )Xy Xa — KGE(T — 6)55,(1)]



3 Theorem 1

Theorem 1 Assume that h = o(1) and that log® np - log(np/v/'h) /nh = o(1). For any 0 < a <
b < 1, under assumptons 1-2, there exists a positive constant C' such that

. 1
D [S(E) = SO < C - [ 42202V
t€la,b] nh

with probability at least 1 — 3/np, for sufficiently large n.

The proof of theorem 1 is inspired by the proof of theorem 1 in [12]. In [12], they upper bounded
the quantity supei, ) 55 (t) = XF(#)|[mae by the summation of two terms:

SUD gy AN ke [ () — B [S(0)]
known as the variance and bias terms, respectively. To upper bound the variance term, they
applied Talagrand’s inequality[11] as well as the results of [9]. The bound they obtained

%. We generate their proof to fit in our model. To de-

tect the change-point, we use right and left Epanechnikov kernel to estimate the covariance
matrices so that the result in [12] is sharper due to the absence of first order term in 21
and the difference of the covering number of the function class. In corollary 2, we establish
the consistency of Q*(t) with the same procedure to proof theorem 1. The upper bound of

A 2
SUPsero M ke [4(1) — (O (DOF(1) +2- (04(1)°)
the consistency of nomalization term &?k(t).

and SUpye, ;) MAX; ke(p) ‘E [f]jk(t)} - ij(t)‘, which are

for their estimator is h? +

is applied in lemma 5.1 to establish

3.1 Thechnical Lemmas

Lemma 3.1 Under the following conditions

Gn[wsc]
‘\/ﬁ EP ]| < (©)
and
E[P,[w; ] # 0, (7)
we have N
BIS0] = pyp (1 + 10 (BBl Gulg] + BIG2Ist)

Lemma 3.2 Assume that h = o(1). Under Assumptions 1-2, for any 0 < a < b < 1, we have

sup max |E[P + Ei B 8
te[a%wke[p | [gmk:“ fr(t) Jk ‘ 8



sup [E[P,[wi]] — fr(t)] = O(h), (9)

tela,b]
1
ZE £ 1-G,lwill =0 = 10
Ei%ﬁ%n‘ [Gulgiel - Gulwi']]| (nh) (10)
1
su E[G2[wE —(9<—). 11
s CEEH ] =0 (1)
and ) |

~E[G? =0(—). 12
s e SEG2lg ) (nh) (12)

Lemma 3.3 Assume that h = o(1) and log(np/v/h)/(nh) = o(1). Under Assumptions 1-2, for
sufficiently large n and 0 < a < b < 1, there exists a universal constant C > 0 such that

log(np/v/h)

:l: .
sup (6] < € |25

tela,b
with probabiity at least 1 — 1/np.

Lemma 3.4 Assume that h = o(1) and log® np - log(np/v/'h)/nh = o(1). Under Assumptions
1-2, for sufficiently large n and 0 < a < b < 1, there exists a universal constant C > 0 such
that

1 h
sup max ‘G gt]k)” < C . M’

tefa,b] J-KEP] - h

with probabiity at least 1 — 2 /np.

3.2 Proof of Theorem 1

For any a and b satisfying 0 < a < b < 1, We have

sup [|ST() = 2T lnae < sU max‘E E[i*t]—{—su max’IE[ }—E*t‘
S [S50) = 4 O)ler < s mae S50~ [S500)] |+ sup max [ [S50)] - 2400

=1, + I,.

It suffices to obtain upper bound for I; and I5.
We first verify that the two conditions in 6 and 7 hold. By Lemma 3.2, we have

B [Bafw/]]| = O(h) + fr(t) > f,(t) >0,



where the last inequality follows from Assumption 1. Moreover,
G [w/] 1
<C-—=(Galw/ |-
Vi -E [P, w]] \/_ R el

log(np/Vh) 1
nh S+ O(h)

<C-

<1,

for sufficiently lareg n, where the first inequality is obtained by an application of Lemma 3.2,
the second inequality is obtained by an application of Lemma 3.3, and the last inequality is
obtained by the scaling assumptions h = o(1) and log(np/v/h)/(nh) = o(1).

Upper bound for I;: By the proof of Lemma 3.1 in [12], we have

S = Colia)  EPlgly)l Gulei) BlPulgy )
WO T U ERT] T BRI

Thus, by Lemma 3.1, we have

+0 ([G w +] ~Gn[gtfjkﬂ + Gi[g:rjk]) .

— max G [g:_]k] _ G [ ] E[Pn[gt]k“
S ot by e R o

< sup max{|[11| + [L12| + [113]},
te[a,b] J-k€
where 13 = O ([Gu[wi] - Gulgi )] + Gilg ] + E[Galwi] - Gulgl ]l + E[G g ]]) /n.
We now provide upper bounds for I31, 12, and I13. By an application of Lemmas 3.2, 3.3
and 3.4, we obtain

Golg; il log(np/v'h)
sup max |I;;| <n 2. su max—tjk<C~ _— 13
te[apb]Jke[P | 11’ te[apb]Jke[p f +O<h) nh ( )
Similarly, we have
Gulg il (FrE5(8) + O(h)) log(np/v/h)
sup max |I15| <n Y% sup max bk ik <C =L (14
te[apb}Jke[P| 12 te[ﬂ]ake[p} (f, +O(h))? B nh 14
For I3, we have
1 1
sup max |13 < sup max |—O (|G, |w/] -G, + G2 (—)
te[cﬁa}ﬁke[pl| 1 te[a]%]ﬂke[p] ([ il [gtjk]] gt]k h
om0 o (1)
nh
<C- M' (15)

nh



Combining 13,14 and 15, we have

L <C- W, (16)

with probability at least 1 — 3/np.
Upper bound for /5: By Lemmas 3.1 and 3.2, we have

I, = sup max —E[Pn[g;’rjk“
2 can dkeln] | E[P,w;t]]
< onp e | FTOZR + O
tefap) kel | fr(t) + O(h)
g e | FOZR0 £ O
tea,b] JRE[P] frt) + O(h)

= sup max O - Zﬁ(t)) +0 <L>
te[al,)b} J,k€[p] fT(t) + O(h) nh

sc.(m%), (17)

where the first inequality follows from 8 and 9, the second equality follows from 10 and 11, and
the last inequality follows from the assumption that h = o(1).
Combining the upper bounds 16 and 17, we obtain

~ S(0) + O (ElGu[wf ] - Galg] + EIGS [g:jkn)'

~ S5(0) + O (BIGwr] - Gulgil) + E[Gi[g:,jkn)|

~ S +0(-)

3 1
sup [|X7(t) = 7 () e < C- | A+ log(np/v'h)
telab] nh

with probability at least 1 — 3/np.

3.3 Corollary of Theorem 1

Given Theorem 1, the following corollary establishes the uniform rates of convergence for (;)i(t)
using the CLIME estimator as defined in [2]. It follows directly from the proof of Theorem 6
in [2].

Corollary 1 For any 0 < a < b < 1, suppose that OF(t) € Usmar for all t € [a,b]. Under
the same conditions in Theorem 1, there exists a constant C' > 0 such that if \ > C - M - (h +

\/log(np/\/ﬁ)/nh), we have

i 1 -
sup [05(0) - 0%(1) o < C- M2 [ g 1/ 2802/}
t€la,b] nh



log(np/v'h)

sup max [|©F(t) — OF(¢)|, < C-M-s- | h+ 1 ———|;

t€fa,b] JEP] nh
R A 1
sup max||2i(t)@;t(t)_€j”oo <C-M-{h+ %}{\/ﬁ)

te[a,b) JEIP]

with probability at least 1- 3/np for sufficiently large n. Please notice that \ here is the parameter
of CLIMFE rather not the eigenvalues of ©.

Following directly from the proof of Theorem 1, corollary 1 establishes the uniform rate of
convergence for QF(¢) under the maximum norm.

Corollary 2 Assume that h = o(1) and log* np - log(np/vh)/nh = o(1). Under the same
conditions in Corollary 1, there exists a constant C' > 0 such that

00) — (050070 + 2. (O51)°)| < 0 [ /B2

sup max
te|a,b] J-kE(P]

with probability at least 1 — 4/np for sufficiently large n.

4 Proof of Technical Lemmmas in Theorem 1

4.1 Proof of Lemma 3.1
The proof of Lemma 3.1 directly follows from the proof of Lemma 1 in [12].

4.2 Proof of Lemma 3.2

Proof of 8: Here, we only give the proof of the results for right Epanechnikov kernel function.
The results for left Epanechnikov kernel function can be proved in the same way. We have

E[P.[g;/ ;)] =E B (E) Xij}

=K %w (T_) E[Xij]T]]
1
i (

=

H(w) Sk (uh + t) fr(uh + t)du. (18)

I
—_—
S
=
_l’_
VR
-
N——
M
=
=
e
3
QL
~



For Vt € [a,b] and sufficiently small h, ¥;;(uh + t) is twice differentiable for v € (0,1]. So, we
can apply Taylor expansions to Xj;(uh +t) and fr(uh +t). We have

Sik(ub +t) = SH(t) + uh - (1) + %u2h2 SE() (19)
and .
fr(uh+1t) = fr(t) +uh- fr(t) + §U2h2 - fr(t"), (20)

where t' and t” are between ¢ and uh + t. Substituting 19 and 20 into 18, we have

/w ( t) +uh - X5(t) + Lep s St )) (fT( )+uh-fT(t)+%u2h2-f'T(t")> du

2
(21)
By assumptions 1 and 2, we have
BSfOFr() [ ukt (u)du < CMFr = O) (22)
BEOF() [ ukt (a)du < BCMFL = O) (23)

Substituting 22 and 23 into 21 and bounding the other higher-order terms by O(h), we obtain
E[Pulg )] = fr()Z5(t) + O(h),
for all ¢ € [a,b] and j,k € [p]. This implies that

sup max |E[P — (O ()| = O(h
sup o [R5, - Fr0S0)

The proof of 9 follows from the same set of argument.
Proof of 10: We have

1
n [Gn{ggjk] -Gy, [W;FH
=E [Pn[Qij] Prfw gtjk }
-E |- K F s ~E [Palgi]] - E [Puler]]
ZE[”] ze [n]
1
— EE[K;;?(T HX;X] + — ]E SO KT - )EK (Tr — )Xy Xa | — E [Pulg/ )] - E [P
ze[n] e

1
= —E[K;*(T - t)%;
n
1

= “BIK(T — )8(T)] - %E [Pn[g:jkn B[R]

8

= )] E [T = )2(T)]) — E [Palgi]] - E [Pul



where the second to the last equality follows from the fact that T; and T}, are independent. By
proposition 1 and Assumptions 1-2, we have

1

%E[K,TQ(T —)%(T)] = — / %K*Q (?) Yix(T) fr(t)dT

1 — 1 T—t 1
< —M KT —— ) dT = —
= nh “fT/h ( h >d O(nh)’
where the last equality holds by a change of variable. Moreover, by 8 and 9, we have

TE [Puloful] [Pl 1] = - (fr0Z50) + O) - (frle) + 0 = 0 (1),

n

Taking the supreme over t € [a,b] and j, k € [p] on both sides of the eqution, we obtain

sup max [E [Gulgi ] - Galw]]| = O (n—1h> 0 (%) ~0 (n—lh) ,

t€[a,b] J-RE[P]

where the last equality holds by the scaling assumption of A = o(1). The proof of 11 and 12
follows from the same set of argument.

4.3 Proof of Lemma 3.3

Lemma 3.3 and 3.4 provide upper bounds for the supreme of the empirical processes G, [w;’]
and G, [g;[jk], respectively. To this end, we apply the Talagrand’s inequality [11] in Lemma 8.1.
Let F be a function class. In order to apply Talagrand’s inequality, we need to evaluate the
quantities n and 72 such that

Sup [ flloo <7
fer

and

sup Var(f(X)) < 72

feF
Talagrand’s inequality in Lemma 8.1 provides an upper bound for the supreme of an empirical
process in terms of its expectation. By Lemma 8.2, the expectation can then be upper bounded
as a function of the covering number of the function class F, denoted as N(F, La(Q), €).

The proof of Lemma 3.3 uses the set of arguments as detailed in appendix E.3.1 of [12].

Recall the definition that w;' (T;) = K, (T; — t) and k" (T}) = w; (T;) — E[w," (T)], respectively.
We consider the class of functions

K+ = {k|t € [a,b]}.



First, note that

sup ||k loo = sup [|w; (T3) — Elw; (T)]]loo
t€la,b] te[a,b]

1 —
< S IK e+ Fr + O()
2
< 2K (24

where the first inequality holds by Proposition 1 and Lemma 3.2, and the last inequality holds
by the scaling assumption h = o(1) for sufficiently large n.
Next, we obtain an upper bound for the variance of k;(7;). Note that

sup Var(k (7)) = sup E [(wf (T) - Elw/(T)])’]

t€[a,b] t€[a,b]
< sup 2E [w;*(T)] + sup 2E* [w/(T)],
t€[a,b] tela,b]

where we apply the inequality (z —y)* < 22* + 2y for two scalars z,y. By Lemma 3.2, we
have sup;e(, 5 2E? [wi (T)] < 2(fr + O(h))% Also, by a change of variable and second-order
Taylor expansion on the marginal density fr(-), we have

sup 2E [w;*(T)] =2 sup iKJr2 (T _ t) fr(T)dT

tefa,bl tefap] ] R h

— 2 sup 2 / K2 () fr(uh + t)du (25)

t€la,b] h
1 . 1 i}

=2 sup — / K2 (u) <fT(t) + uhfr(t) + —u2h2fT(t')> (26)

t€la,b] h 2
9_
< EfTHKJF||§+(’)(1)—|—O(h), (27)

where t' € (t,t + uh). Thus for sufficiently large n and the assumption that h = o(1), we have

sup Var(k(T)) <

t€la,b]

o BT (28)

>

By Lemma 7.4, the covering number for the function class KT satisfies

—1/5 5
4o |KH |y - CE T
he '

sgp N(KT, Ly (Q),¢) < <

We are now ready to obtain an upper bound for the supreme of the empirial process, sup;¢, |G, [wit]|.

. —1/5
By Lemma 8.2 with A = 2- ||K+HTV~C’;1</E- T/ INE oo, U = |FllLy@,) =2 |KH|oo/h, V =5,

10



SWpre o, B = suppepey Var(kH (1)) < op = 3- o - [ KF(3/h < (2 K [loo/R)” = IF |7, e,
for sufficiently large n, we obtain

E | sup |G, sup — w, (T3) — Elw; (T)])
t€la,b] \/— tefa] ™ e[n]
1og log
N 1og
nh

where z = y means there exists a constant C' > 0 such that + < C' -y and x ~ y means there
exist C7,Cy > 0 such that Cy -y > o > C5 - y. The last ex_pression holds by the assumption
that log(p/v/h)/(nh) = o(1). By Lemma 8.1 with 72 = 3f, - |[K*|3/h, n = 2 - [|[K || /h,

ElY]<C- \/log(\/l/h)/nh and picking ¢t = y/log(np)/n, for sufficiently large n, we have

- % NGl ]l = sup = |3 (W (T) — Bl (7))

tela,b] tefa,b] T ien]

log(+/1/h /log np log(y/1/h)  log(np)
nh nh nh

log(np/v/h)
nh

A

with probability 1—1/np, where the last expression holds by the assumption that log(np/v/h)/(nh) =
o(1) and h = o(1). Multiplying both sides of the above equation by y/n completes the proof of

Lemma 3.3.

4.4 Proof of Lemma 3.4

For convenince, we prove Lemma 3.4 by conditioning on the event

A= {maxmax]X”| < Mx - +/lognp}.

1€[n] jE[p]

Since X;; conditioned on 7' is a Gaussian random variable, the event A occurs with prob-
ability at least 1 — 1/np for sufficiently large constant Mx > 0. Recall the definition that

11



9 in(Ti, Xig, Xir) = K (Ti—=1) X35 X and g7, (T, Xij, Xin) = 9,750 (Ti X, Xan) —Elg, (T, X5, Xi)],
respectively. We consider the function class

Q+ = {qt—t_]k“ € [(1, b]a]ak € [p]}
We first obtain an upper bound for the function class

sup max [, [leo = sup max |lg,;% (Ti, Xij, Xiw) — Elg,5.(T, X5, Xi)]lloo

t€la,b] -RE(P] t€la,b] -FE(P]

< sup max [l (T3, Xij, Xar) oo + sup max [[E[g,7,. (T, X;, Xi)]l|o
t€fa,b] J:-kE[P] t€[a,b] S REP]

< sup max || K, (T; — ) Xij Xiklloo + f - My + O(h)
t€la,b] J-FE(P]
1 —

<o MK - lognp + Fr - M + O(h)
2

< 5 My - [|K 7 |oo - log np, (29)

where the second inequality holds by Assumptions 1-2 and Lemma 3.2, the third inequality
holds by Proposition 1 and by conditioning on the event A, and the last inequality holds by
the scaling assumption h = o(1) for sufficiently large n.

Next, we obtain an upper bound for the variance of qgjk(Ti, Xij, Xir). Note that

sup max Var(q;rjk(T, X;, Xg)) = sup max E [(g:jk(ﬂ-,Xij,Xik) — E[g:jk(T, X5, X)))?]

t€fa,b] J:-k€[P] t€[a,b] JkEP)
< sup max 2E [¢;2(T, X;, X3,)| + sup max 2E? [¢} (T, X;, Xi)],
te[al,)b] 3,k€Ep] [gt’]k( ’ k>] te[al,)b] J.k€Ep] [gt’]k( ! k)]

where we apply the inequality (z —y)? < 222+ 2y? for two scalars z,y. By Lemma 3.2, we have
SUD; ¢ (4,4 TAX; ke ] 2E> [g;fjk(T, X5, Xe)] <2(fr M, + O(h))Q. Also, by a change of variable
and second-order Taylor expansion on the marginal density fr(-) as in 25-26, we have
sup max 2F [¢2 (T, X;, X;.)] =2 sup max E [K;7*(T —t) - E[X2X2|T
rela] 2D (T X, X)) rela) 1€l (T = 1) BXGXT)
<2k sup E[K;*(T —t)]

tela,b]

2k —
< T KA+ 0(1) + O(h),

where the first inequality follows form the fact that [E[X?X?|T]| < & for some x < co, and the
second inequality follows from 25-26. Thus, for sufficiently large n and the assumption that
h = o(1), we have

3K

sup max Var(qf, (T, X;, Xy)) < 5 fr - [[K75.
tela,b] IHED) h

12



By Lemma 7.5, the covering number for the function class Q satisfies

5
4| K ||py - O T MY M§/5-log4/5np>
he ’

SgpN(Q+,L2(Q), €) <p*- (

where we multiply p? on the right hand side since the function class Q is taken over all j, k €

[p]. We now obtain an upper bound for the supreme of the empirical process, sup;c(, 5 MaX; kejp) |Gnlg, 1]
By lemma 8.2 with A = 2 |[K* |z - CY2 - Fy° - MY5 . M 25 log_1/52np/||K+||oo,

U = Flla@y = 2 K [loo - MY - lognp/h, V. = 5, sup,ejoy max; ey By, < op =

(3k/R) - Fp- IKT)2 < (2/h- M2 - | K ||o - lognp)”® = IF||7,p,) for sufficiently large n, we

obtain

1
E | sup max — Il =E | sup max — - (T, Xii, Xaw — Elg (T, X, X
te[apbjkE[P]\/_ G [gt’]k” te[apb]J,ke[p} g[;](gmk( ’ [gt’jk( 5 X))
_ [log(p*/* -log" " np/V/h)  lognp - log(p*/® - log"/" np/V'h)
~ nh nh
\/log (p*/* - log"® np/ V')
nh ’

where the last inequality holds by the assumption log np - \/ log(p?/> - log"® np/v/h) /nh = o(1).
By Lemma 8.1 with 72 = (3x/h) - fr - |K*||2, n = 2/h - M% - |K"||o - lognp, E[Y] < C -

\/log(p2/5 1og*® np/v/h) /nh, and picking t = \/log np/n, for sufficiently large n, we have

1 1
sup max —— - [Galgiyl| = sup max — |3 (g85 (T Xig, Xaw — Bl (T, X5, X))

t€la,b] IFE(P] te[a,b] JkEP] T )
log(p?/® - log*® np/v/h)  [lognp
< +
~ nh nh
log(p?/5 - log™/ h)  log’
L+ lognp. 1 108®° - log np/Vh) . log” np
nh nh
log(np/V/'h)
~ nh

with probability at least 1 —2/np. The second inequality holds by the assumption that log® np-
log(np/v/h)/nh = o(1). Multiplying both sides of the equation by \/n, we complete the proof
of 3.4.

13



5 Theorem 2

Theorem 2 Assume that vVnh® = o(1). In addition, assume that poly(3)~\/log4(np/\/ﬁ)/nh2+
poly(s) - log®(p/h) - log®(ns)/(nh) = o(1), where poly(s) is a polynomial of s. Under the same
conditions in Corollary 2, we have

lim  sup Pouy(Ug>c(l—o,E)) <

n—00 9(')61/{5,771,,1%
where ¢ (1 — «, E) follows the definition that
c(1—a, E)=inf{qg € R|P (UF < q|{(t:;, Xi) Yiep)) > 1 — a}.

To prove Theorem 2, we use a similar set of arguments in the series of work on Gaussian
multiplier bootstrap of the supreme of empirical [6][5][4] and generate the proof of theorem 2
n [12]. Recall the definition that, for any 0 <a <b <1

Ug = sup max vVnh- (@d+ @jk(t))—(é)?;(t)—@;k(t))(/ajk(t)

te(a,b] (4,k)EE(t)

where 7j;(t) is the normalization term. We also have the bootstrap statistic

~

ME*(t) = ((i)*(t)>TK,j(ti — 1) (XiXTG,C*(t) - ek) ;
ME-(t) = (é; (t))T K, (ti —t) (XiX-T@;(t) - 6k> )

and

MEF (e . :
UE = sup max \/ 1€[n J:Jk ( )g ZlE[n zjk ( )5
teap] GoR)EE(t Z N CED) Zz‘e[n] K, (t; —t)

zzd

/T (t)

in which &,...,&, ~ N(0,1).
We aim to show that UZ is a good approximation of Ug. However, Ug and UZ are not
exact averages. To apply the results in [5], we define four intermediate processes:

D e M (1) > ien Mijr(t)

e BKn (i =1 D K (6= 1)

Up = /6jk<t)§

tefab) GRIEE(®)

Up = sup max vn

tefa,b) GR)EE(?)

Zie[n} Mzgkz(t) _ Zie[n] Mz;k:(t) _ n- A;_k( ) . n- Aj_k(t)
Dic K (ti = 1) P Ky (ti— 1) Dicw K (ti = 1) P K (i — 1)
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i€[n]

Uf = [T (t);

( ) Diem K (ti— 1)

tela,b) GR)EE()

UB = sup max Vn

tefa] GREE®)

t)

> icin] K+( ) > ici K (8 — 1)

where
M5 (8) = (6F ()" Kir(t: — 1) (G XT = $H(1)) ©f (1),
M, (6) = (67 (1) K, (t; — ) (X, XT — (1)) ©; (1),
M%) = (0F ()" (B [KH(T - )XXT] —E [K(T - )] S(1)) f (t),
A = (05 (1) (E[K, (T —t)XXT] —E[K,; (T —t)] £ () ©; ()
& & N(0,1)

Similar to the proof of theorem 2 in [12], we show that Uy is a good approximation of
Ug and that UZ is a good approximation of U5. We then show that there exists a Gaussian
process W such that both U and Uyy can be accurately approximated by W. This is done by
applications of Theorems A.1 and A.2 in [5]. The following summarizes the chain of empirical
and Gaussian processes that we are going to study

Ug +— U, Ugo +— W +— UL +— UP +— US.

5.1 Thechnical Lemmas

We first give the uniform rates of convergence for the normalization term ;(¢) in lemma 5.1.

Lemma 5.1 Under the same conditions in corollary 2, there exists a positive constant C' such
that

log(np/v/h)

<C-lh
<C-|h+ —

53.(1) — (O5(007(1) + (01,(1)" + 65, (05 (1) + (05(1)°)

sup max
t€[a,b) J:-kEP]

with probability at least 1 — 8/np for sufficiently large n.

15



Lemma 5.2 Assume that h + \/Iog(np/\/ﬁ)/nh = 0(1) and Vnh? + s - log (np/\/ﬁ> /\/nh =

o(1). Under Assumption 1-2, for sufficiently large n, there ezists a universal constant C' > 0

such that
log(np/v/h)
Ug—Uyp| <C- | Vnh3+s- ——= |,
‘ E UOl ( m

with probability at least 1 — 8 /np.

We now apply Theorems A.1 and A.2 in [5] to show that there exists a Gaussian process W
such that the quantities |Uy — W/| and |T i W‘ can be controled, respectively. The results
are stated in the following Lemmas.

Lemma 5.3 Assume that log®(ns)log(s)log*(p/h)/(nh) = o(1).Under Assumptions 1-2, for
sufficiently large n, there exist universal constants C,C" > 0 such that

2 4 4 1/8 2 4 4 1/8
P <|U00 —wl>C- <1Og (ns)log”(s)log (p/h)> ) <c. <log (ns)log”(s)log (p/h)>

nh nh

Lemma 5.4 Assume that log®(ns) - log*(s) - log*(p/h)/ (nh) = o(1). Under Assumptions 1-2,
for sufficiently large n, there exist universal constants C,C"” > 0 such that

P (!Uo% -W|>C- (10g2(n8) -InggLS) -log*(p/ h))1/8

{(Ti,Xi)}ie[n]>

; (10g2(n8) -log?(s) - log*(p/h) ) e
<C"- N ;
n

with probability at least 1 — 3/n.

Finally, the following lemma provides an upper bound on the difference between UZ and
U&. conditioned on the data {(T}, X;) }iep-

Lemma 5.5 Assume that s - \/log4(np/\/ﬁ)/nh2 = o(1) and nh® = o(1). Under Assumptions
1-2, for sufficiently large n, there exist universal constants C,C"” > 0 such that, with probability
at least 1 — 10/np,

1
P (107 - vl 2 0o PR

(T, Xi) biep | <

S

16



5.2 Proof of Theorem 2

With Lemma 5.1 - 5.5, we are now ready to prove Theorem 2.
Now we show that Ug can be well-approximated by the (1 — ) conditional quantile of U5,
i.e. P(Ug > ¢(1 —a)) < a. For notation convenience, we let r = ry + 19 + 13 + 14, where

iy s Los(np/ V)
T = \/W+ S \/%
2 nh

ry = <log2<ns> : 1°fi§f> - 1og3(p/h))1/8

log* (np/v/h)

4= S - - - 7

nh? '

These are the scaling that appears in Lemmas 5.2-5.5. By Lemmas 5.2 and 5.3, it can be shown
that
P(|UE —W| Z 1 +T2) S P(|UE—U()0| + |U00 —Wl Z T1+T2) S 27“2 (31)

since 7 > 1/np. With some abuse of notation, throughout the proof, we write P:(UZ > t) to
indicate P(UE > t|{(T}, X;) }iepn))- By Lemmas 5.4 and 5.5, we have

Pe(|UG = W] > 1y +714) < Pe(|UG — Ul + [Ugg = W| > 7+ 74) < 219 (32)
since 5 > 13 and 75 > 1/n. Define the event
E=A{P(UE = W|=ry+r4) <o},

and note that P(£) > 1 — 3/n by Lemma 5.4 and 5.5. Throughout the proof, we condition on
the event £.
By the triangle inequality, we obtain

PUg<c(l—a)>1—-PUg—W+W+r>c(l—a)+r)
>1—-P(lUg=W|>r)—=PW >c(1l—-a)—r)
>P([W|<c(l—a)—r)—2ry, (33)

where the last inequality follows from 31. By a similar argument and by 32, we have

P(W|<c(l—a)—r)> P (Uf <c(l—a)—2r)—2r
> P (U <c(l—a)) —2ry— P (JU§ —c(1—a)| <), (34)
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where the last inequality follows from the fact that P(X <t—e)—P(X <t) > —P(|X —t| <¢)
for any € > 0. Thus, combining 33 and 34, we obtain

PlUp<c(l—a)>1—a—4r— P (U —c(l—a)| <7). (35)

It remains to show that the quantity P (|US — ¢(1 — a)| < r) converges to zero as we increase
n.
By the defintion of Uy and U, we have

o SUD;e (.4 MAX( KB () | Diem Trin(Ti Xi) = 2icp Jon(Tir Xi)
e Vi fr(t) - ox(t)

and

SUD¢e|a,b) MAX(j,k)eE(L)

(i) T30 (T X0) = Sy Tia(T5 X)) - &
Vi fr(t) - oju(t) '
2
Let Otgk = Z? 1 (Zze[n} Jt—i_]k(T“X) - Zze[n] Jt]k(j—%?X‘)) /(n ) be the condi-

tional variance, and let o = infy . 61 jx and @ = sup, j;, ¢ jx- By Lemma A. 1 of [6] and Theorem
3 of [4], we obtain

~B
UOO_

Pe(IT§ - c(1-a)| <)
<C-5/a-r- (B [UE{(T, X)biew] + VTV Iogla/r))

< C-/o-r- (B [TRHT. X0)}iew] +E [JUE = ORI, X e + VIV Iogle/n))
(36)

We first calculate the quantity . By 47, we have

- 2 _ log?(2ns)
sup max || (S5 (T3, Xi) — J; (T3, X3)) /(f%(t) T(0) oo £ C - ————
te(a,b] S*ElP] h
Moreover, by 47, we have
+ - 4 4 4 log*(2ns)
sup max E | (J75(T, X0) — (T, X))/ (F4(0) - a(0) | < 0 225
te(a,b] S*ElP] h

Define the function class

7= LU = . x0) [ (0o

z€[0,1],4,k € [p]}

18



By Lemma 7.3, 7.6 and 7.7, we have

48
11/6 15g5/6
* p og " np
SgpN(j ,LQ(Q),G)SC'p2‘< Ril/12, ) '

Thus, applying Lemma 8.2 with 0% = C-log"(2ns)/h2, V = 48, || F| 1, < C-p*-log?(2ns)/h
and A||F||r,@,) < p'/® log®%(np)/h'/12 | we have

E | sup max |— qutjk T;, X;) — E ¢ i (T, X)]

te[a,b] J-kElP] | T

log’(2np)
nh? '’

<C-

where we denote )

(5T Xo) = J, (T3, X3))

Pugel(Tiy Xi) = o0

for notation simplicity.
By an application of the Marknov’s inequality, we obtain

/4
log® (2np) !
P — T;, X, LT X >0 [ =222
o 0 3 o0 X0 = Bl 00 > - (R
<C log® (2np) 1/4
- nh? '
Thus, we have with probability at least 1 — C - (log5(2np) / (nhz))l/ 4,
/4
log® (2np) '
72 = sup max — T;, X;) < sup max E T, X +C’-(—
tela, b]JkE[p Z@jk ) te[a%]]ke[P] 91 ) nh?
< Clog’s (37)

where the last inequality follows from 49 for sufficiently large n. By Lemma 10 in [12], we have
infy ji E (¢ x(T, X)] > ¢ > 0. Therefore, we have

mf—Z(bt]k T;, X;) > ¢ — sup max —Zqﬁt]k T, Xi) —E ¢ (T, X)]| > ¢/2>0

gk 1 tea,b] JREP] [TV ]

with probability at least 1 — C' - (log”(2np)/ (nhQ))l/4.
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Next, we calculate the quantity E [Uﬁ)]{(Ti,Xi)}ie[n]} By Dudley’s inequality (Corollary
2.2.8 in [14]), 50 and 37, we obtain

E [UO%\{(Ti, XZ-)}Z-GM] < C-logs-+/log(p/h). (38)

Moreover, by Lemma 5.5 and 5.4, we have

E||UF = URIH(T, X0 bieln

4 1/4
<(C-s- M +C- log(np/\/ﬁ) AV + (10g("5}{\/ﬁ)>

- nh?
log'(np/Vh) _
< C.
<C-s- g ST (39)
with probability at least 1- 3/n. Substituting 37, 38 and 39 into 36, we obtain
1 20 .1 8 h) -1 2 1/8
P (T —c(l—a)| <) < C- ( g (o) Jog (/0 Tog (”p)) . (40)
n

Thus, substituting 40 into 35, we have

og”(): o€ /1) - ') "

P(UEgc(l—a))zl—a—élrQ—( —

By the scaling assumptions, 7, = o(1) and log®(s) - log®(p/h) - log®(np)/(nh) = o(1). Thus,
this implies that
lim P(Ug <¢(l—a)) >1—aq,

n—oo

which implies that
lim P(Ug > ¢(1 — a)) < a,

n—o0

as desired

6 Proof of Technical Lemmas in Theorem 2

6.1 Proof of Lemma 5.1
Recall the definition that

7 (0(0) = ¥ it — 0 (670 (xixerc W)) D e

i€[n] i€[n]
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we have

o (ogp(0) = ((er (t)ZTX")Q ((6r)"x)

Zze[n] K}—:— (ti - t)

So,

sup max
t€a,b] k€]

7 (65 (1) - (650850 + (04(1)°)

SO CHOCAORERCHON

< sup max

tefap] kel | 7

T
2 - + a + i:Jr AN+ o + 2
+2- sup o |O3.(0) (67()) SH0OL() - (O5(1)

CHOICHOEE

J

+ sup max
t€la,b] J:k€p]

By Corollary 1-2,

sup max
te[a,b] JFEP]

7 (65 (1) - (650850 + (4(1)°)

<C- (h+ W) (41)

with probability at least 1 — 4/np. Similarly,

sup max ‘52 (é?,;(t)) - <@;j(t)@1;k(t) + (G;k(t)f)

t€[a,b) J-kEP]

<cC. (h+ W) (42)

with probability at least 1 — 4/np. Finally, combining 41 and 42, we complete the proof of
Lemma 5.1.
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6.2 Proof of Lemma 5.2

Lemmas 5.2-5.5 can be proved by the same set of argument of the proof of Lemma 6-9 in [12].
Lemma 5.2 provides an approximation error between the statistic Ugr and the intermediate
empirical process Uyp.

By the triangle inequality, we have |Ug — Uyo| < |Ug — Up| + |Uy — Upo|. Thus, it is suffices
to obtain upper bounds for the terms |Ug — Uy| and |Uy — Uy|. With the fact that for any
j#kelp,telab], @fj(t)@,fk(t) + (@jtk(t))2 > m? given \;(©%(t)) > m, we have

107 I 1©% (Dl1/a5(t) < M?/(V2m) (43)

with probability at least 1 — 8/np. Following the results of 43 and the proof of Lemma 6 in
[12], we give the uppper bounds for |[Ug — Uy| and |Uy — Up| directly.
Upper Bound for |Ug — Up|:

2

Up —Up| < C-Vah-s- | bty 22V

=C- (s s+ 2 IO%/\/E) +s- h\/log(np/\/ﬁ)) (44)

with probability at least 1 — 8 /np, for sufficiently large n.
Upper Bound for |Uy — Uyl:

log(np/V'h)
nh

|U() - U()()' S C- V?’Lh3 (45)

Thus, combining 44 and 45, there exists a constant C' > 0 such that

|Ug — Upo| < C - (W%—S-W—%s-W%—s-hﬂlog(n}?/\/ﬁ)),

with probability at least 1 — 8/np. By the assumption that nh® = o(1), we obtain

U — Upo| < C- (\/WH.W).

6.3 Proof of Lemma 5.3

Recall from 30 the definition

Uy = sup max Vnh-
relay] GREB)

2icn) Migi (?) 2iep) Mige(®) 1\ n - AJ(t) - Ay (t)
t) 2

Diepy B (i —=1) Dy Ky (ti — v Ko (G =) 2 K (L — 1)

/oK (t).
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Recall from 4 that JE5, (T3, X;) = J W (T, Xi) — J50 (), where J,5) (T;, X;) and J;- ) (T))

are as defined in 2 and 3, respectively. Let J = {J;5, — J [t € [0,1], 5,k € [p]} and J*
{thfjk|t € [0,1],7,k € [p|}. Then the intermediate empirical average Uy, can be written as

Zze[n] K+( ) Zie{n} K, (ti—1t)

By Lemma 3.2 and Lemma 3.3, with probability 1 — 1/np, we have

o (K71 (T = )] = fr(t) + O(h) + O (W) ,

Up = sup max +/n
tela,b) GR)EE()

/G(1).

for sufficiently large n.
By Lemma 5.1, denote 7, (%) \/@ )07, (t) (@;rk(t)) +05;(1)O.(t) + (@j_k(t))Q, with
probability at least 1 — 8/np, we have

log(np/v'h)

Denote Uyy = SUDPyea,p) MAX(j k)eE(t)

et T T X3) = Yy Te(T X0) | / (Vi (8) - 33e(1).
Thus, with probability at least 1-10/np, there exists a positive constant C', such that

1/4
’Uoo - Uoo} <Oy log(np/Vh) - | Vh + (W) : (46)

We will show that there exists a Gaussian process W such that

log?(ns) log(s) log*(p/h) ) 18

‘UDO_W‘SC.( nh

with high probability. To this end, we apply Theorem A.1 in [5], which involves the following
quantiites

o upper bound for sup,cjq,p max;rep) || |/ (T Xi) = T (T Xi) | / (fr(t) - 50(8)) [l

o upper bound for sup;e(, y max; ke B [ (15 (7, X) = Ju(T. X))/ (f2(0) - o (t))?]

e covering number for the function class J.
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Let S;(t) and Si(t) be the support of ©;(t) and O(t), respectively. Note that the cardinality
for each set is less than s. We now obtain the above quantities

Upper bound for sup;¢(, ;) max; xepy) || |Jt+]k (T3, X;) — thjk(Ti, XZ)‘ / (fr(t
have, with probability at least 1 — 1/(2ns),

sup maX 1 T50:(Tos Xi)ll oo/ (fr(2) - 0ji(t))
t€fa,b] J-RE(P]

) 50(0)) [t Wo

te[a,b] JkE

S\/EM-—(z M2

max

< Vi sup ma 107 OLISF O] - (o ol + Mo 147 1) /(8- 90

i CRU LY SECRERI N
M MM, K- log(2ns)
— — a_- m- nS
h fo0
log(2ns)
:C-—,
R

where the first inequality follows by Holder’s inequality and definition of q;r i and k;” and the
second inequality follows from 24 and 29. Note that since we are only taking max over the set
S;(t) and Si(t), instead of a lognp factor from 29, we obtain a log(2ns) factor. Thus

sup max || ;5 (T3, Xi) = J 0 (Ti Xo) oo/ (fr(E) - 0k (t))

te[a,b) J:-k€P]

< sup max |15 (Th, Xi)lloo/ (fr(t) - ;i (t)) + sup max 1655 (T Xidlloo/ (fr(2) - 034 (1))
t€[a,b] JREP] t€la,b) JREP]

log(2ns)

S 20—

Upper bound for sup;¢, ;y max; ey E (thk (T, X) — J (T, )) J (fr(t) - o,(t ))2]: By
an application of the inequality (z — y)? < 2z% + 2y?, we have

sup max E [J,5 (T, X)] / (fr(t) - x(t))
t€fa,b] J:kE[P]

tzg};ggﬁ{(%ﬁ% (T, X) = J (D)) }/ (fr(t) - Gu(t))?

() ? 2
<2 0 e (0@ 0) ] o o)

~~

Iy

+2;&gﬁgﬁ[(%?( ) }/(fT() an(1))°

J
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To obtain an upper bound for /;, we need an upper bound for sup,¢, ;) max; kejy) E [maxjeg (1), kESK(1) qj?k} .
Recall from 1 the definition of g;fjk(T Xii, Xir) = K;F (T;—t) X;; X1, and that q;’jk(T Xij, X)) =
g;’rjk(T Xij, X)) — E[g;’rjk(T, X, Xi)]. Thus, we have

sup max E max +2.] = su max]E{ max +  —Elg", 2}
te[a%]JkE[p] Lesja),kesk(t)q”k te[apb]JkE[M JES; (1) kESK() (950 = Eloiz)

< 2 sup max [E [ max } +2 sup max E?
t€fa,b] J> Jke[p] JES;(t),keSk(t )gt] tea,b] J» Jkep] [ t]k}

where we apply the fact that y)? < 2z% + 2y? to obtain the last inequality. By Lemma 3.2,

(z—
we have 2sup;c(, 5 max; repp) E? [geje] < 2 (f - My + O(h))Q. Moreover, we have

2 sup max E max 1 =2 sup max E max KT —t XZXZ}
tE[a%]]kE[P] |:j68j(t)uk68k(t) t’jk} te[apb]JkE[p] LGSj(t),kGSk(t) h ( ) itk

=2 sup max E {K“(T —t)E { max X]?X,f|Z”
te[a,b] J-RE[P] JES;(t),k€SK(L)

<2- My -log?(2s) sup max E [K;7*(T —t)]
t€la, b]JkG[P}

<2tk togh(2s) (T KV + O(1) + O

— log?(2s
<3 Tp It paf 222
where the second inequality follows from an application of 27.

Thus, by Holder’s inequality, we have

I; <2-h- sup max E

(n@j(t)nl-u@k(wnl-. max |q:jk|) [ () - a(0))?

t€[a,b] J-RE[P] FES;(t),kESK(L)
1 - log?(2 _
LT
1 =
<8 M- f_ fr- My - [K™[[3 - log®(2s),

where the second inequality holds by the fact that ©(t) € Us -
Similarly, to obtain an upper bound for /5, we use the fact from 28 that

sup E [k:;r 2} <

te(a,b]

Fr IE*3. (48)
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By Holder’s inequality, we have

I, <2-h sup max E
t€[a,b) JkEP]

<||@j(t)||1-||®k(t)!|1 max |3 ()I-kal)]/(fT() oin(t))”

(k)€
1
<2-h-M?-— M sup E k]

Jor t€la,b]

<6 My M fr [KI

e[ =

where the second inequality holds by Assumption 2 and by the fact that ©(t) € Us ., and
the last inequality holds by 48.
Combing the upper bounds for I; and Iy, we have

sup max E [J;2 (T, X)] <8- M?.

1 —
- Frll K5 - (M2 + My -log?(2s)) < C - log”s,
t€a,b] J-RE[P] S

for sufficiently large C' > 0. Thus, we have

sup max E | (Jj5 (7, X) = I (T, X))*| / (fr(0) - 0(0))’

tea,b] JREP]

<2 sup max B [J5 (T, X)] / (fr(t) - 530(1))* + 2 sup max E [J 3 (T, X)] / (fr(t) - 50(1))”
t€[a,b] JKEP] te[a,b) J-k€P]

<4C -log®s = o> (49)

Covering number for the function class J : First, we note that the function class J+
is generated from the addition of two function classes

T = {7501t € [a,0]}

J

and
D= {T5D1 € [a,b]}.

Thus, to obtain the covering number of 7, we first obtain the covering numbers for the function
classes \7;,;(1) and ‘73.;(2). Then, we apply Lemma 7.3 to obtain the covering number of the
function class J. From Lemma 7.6, we have with probability at least 1 — 1/np,

3/2100%/3 6
p~—log~ np
N(J;ZS’,L2<@>,e)gc.< = )

Moreover, from Lemma 7.7, we have

1/6 \ 6
p
N <$§E€2),L2(Q),e> <C- (W) .
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Applying Lemma 7.3 with a; = p¥2log®? np/hY2, vy =6, ay = p*/®/h*/3, and v, = 6, we have

5/6 10g5/6 2
prlogt o np
N(T*, Ly(Q),€) < C - p*- ( h11/12¢ > ’

where we multiply p? on the right hand side since the function class J7 is taken over all
J, k € [p]. In the end, since J is generated by addition of 7 and J~, we have

24
5/6 105/6
p~rlog np

N(j,Lz(Q)7€>§C'p2'< R1L/12, ) ‘

Thus, for function class J' = {(J;", — Ji ) / (fr(t) - 6;(t)) |t € [0,1], 4, k € [p]}, we have

5/610g5/6 >
plogt o np
N(j/aL2<Q)7p€) §0p2 < h11/12€ ) ‘

So,

24
11/6 1:5/6
P’ o8 P ) . (50)

N(T', La(Q),pe) < C - p* ( hT1/12

Application of Theorem A.1l in [5]: Applying Theorem A.1 in [5] with a = p''/!? .

h=512 . log=/Snp, b= C -log(ns)/vVh, o5 = C -logs, v = 24, and
K, = Av - (logn Vlog(ab/o;)) = C -log(p/h).

For sufficiently large constant A,C > 0, there exists a random process W such that for any
7 €(0,1),

P (’Uoo — W| >C- (’yn)l/Z + ,.),1/2711/4 71/3n1/6

<c. (”H‘ logn)
n

for some absolute constant C’. Picking v = (log*(ns)log*(s)log*(p/h)/(nh))

log®(ns) log*(s) log® <p/h>) ”8)

nh

K, (boy) 2K b1/3a§/3K2/3]>

1/8
/ , we have

P(|U00—W|ZC'(

<o (log2<ns> og'(s) log4<p/h>)”8 | 651)
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Combine 46 and 51, we get

2 4 4 1/8
P <|U00 -W|>C- (10g (ns) log’(s) log (p/h)> )

nh

<C. (log2(ns) logjlgj) 10g4(p/h))1/8

6.4 Proof of Lemma 5.4
Recall from the proof of Lemma 5.3 that

Zie[n JtJr]k(fF“X) Zze[n] Jt]k E7X /
- k
Zze[n] K+( ) Zze[n] K %

Up = sup max +/n
tefa,p] (GR)EE(D)

We note that

Zz‘e[n} Klj (ti - t) Zie[n] Kh_ (ti - t)

[Gjk(t),

UB = sup max n
00k GREE®)

where & "% N (0,1). To show that the term |[W — UZ| can be controlled, similar to proof of
Lemma 5.3, we use

Usp = sup max —= f S TT X)) = T (T Xa) | - &l (Fr(D)a(t))

t€fa.b) i€[n] i€[n]

to approximate U and we apply Theorem A.2 in [5] to controll |[U£ — W]|.

Let
G = /a?,Kn+ po K3\
" n n
and

b

1 2,2 |3 1/4 1
’Yn(d):_(b 7 n)
) n

as defined in Theorem A.2 in [5]. From the proof of Lemma 5.3, we have b = C' - log(ns)/\/_
oy =C-logs, and K, = C-log(p/h). Since b*K,, = C'log®(ns)-log(p/h)/h < nC?-log” s = no?
for sufficiently large n, there exists a constant C” > 0 such that

n

P (108 = W1 > b0+ (5 X0 bt ) < €7 2200).
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with probability at least 1—3/n. Choosing § = (log®(ns) - log?(s) - log®(p/h)/ (nh))l/s, we have

2 2 3 1/8
P (!Uo% —w|>c (bg (ns) - log?(s) - log <p/h>)

nh

{(Ti,Xi)}iE[nO

, <1og2<ns> log(s) - log*(p/h) ) e
SO ) h )
n

with probability at least 1 — 3/n.

6.5 Proof of Lemma 5.5

Similar to the proof of Lemma 5.2, it suffices to obtain upper bounds for the terms |[UZ — UJ|
and |U — Ug|. Throungh the proof of this lemma, it conditions on the data {(7}, X;)}icjn).
We will show that |UE — U&| is upper bounded by the quantity

log*(np/V'h)

nh?

with high probability for sufficiently large constant C' > 0. Following the results of 43 and the
proof of Lemma 9 in [12], we directly give the upper bounds

Upper bound for [UF — UP| : Applying the Dudley’s inequality(Corollary 2.2.8 in[14])
and the Borell’s inequality (Proposition A.2.1. in [14]), we have

1 4
Ug —Uy| <C s \/hlogS(np/\/ﬁ) L Oy 108 R/
nh?
log*(np/V'h)
SO\ = (52)

with probability at least 1 — 4v/h /np, for some positive constant C'. The last inequality holds
by the assumption that nh® = o(1).

Upper bound for |UP — UZ| :By Lemma 3.2 and the results that if &

1
P ‘EZ@-

i€[n]

g N(0,1), then

21
- ogn

1
<_a
n

n

we obtain the Upper bound for |UZ — UZ|
UE -~ Ul < C-+/h3logn (53)
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with probability at least 1 — 1/n, for some positive constant C.
Combining the upper bounds 52 and 53, and applying the union bound, we have

1
P |U5—U£|ZC-S-\/Og <”p/\/_ +C /BB logn|{(T, X))
1
<P|UB-UEI>C s oz ( np/\/_ ‘{E,X i)
P(‘UO U00‘>C V b3 logn|{(T;, X;) 'LE[n])
1 2
§4\/ﬁ/np+—§—.
no-n
By the assumption that nh3 = o(1), we conclude
1 2
Pz —vg) = sl ’{T“X m | <=
n

7 Technical Lemmas on Covering Number

In this section, we present some technical lemmas on the covering number of some function
classes. Lemma 7.1(Lemma 3 in [7]) provides an upper bound on the covering number for the
class of functions of bounded variation. Lemma 7.2(Lemma 14 in [12]) provides an upper bound
on the covering number of a class of Lipschitz functions. Lemma 7.3(Lemma 15 in [12]) provides
an upper bound on the covering numbers for function classes generated from the product and
addition of two function classes.

Lemma 7.1 (Lemma 3 in [7]) Let K : R — R be a function of bounded variation. Define the
function class Fr, = {K((t—-)/h)|t € R}. Then, there ezists Cx < 0o independent of h and K
such that for all 0 < e < 1,

€

2.0+ ||IK 4
SgpN(fh,Lz(Q),e)S( K- HTV) |

where ||K||7v is the total variation norm of the function K and Q is any probability mersure.

Lemma 7.2 (Lemma 14 in [12]) For any 0 < a < b < 1, let f(I) be a Lipschitz function
defined on [a, blsuch that |f() — f(I')] < Ly - |l =1U| for any I,I' € [a,b]. We define the constant
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function class F = {g; : f(I)|l € [a,b]}. For any probability measure Q, the covering number of
the function class F satisfies

N(F, Lo(Q),) < .

€
where € € (0,1).

Lemma 7.3 (Lemma 15 in [12]) Let Fy and Fy be two function classes satifying
N(F1, L2(Q), ar€) < Cre ™

and

N(fQ, Lg(Q), CLQE) S CQE_UQ

for some C1,Cy,a1,a,v1,v2 > 0 and any 0 < € < 1. Define ||Filloc = supsep || fllec for
1=1,2 and U = || Filleo V || F2lloe- For the function classes Fy = {f1fa|f1 € Fi, fa € Fo} and
Fo=A{fi+ folf1 € F1, fo € Fo}, we have for any € € (0,1),

N(Fe, La(Q),€) < Cy - G- (2“1U>v1 , (2a2U>”2

€ €

and
2@1 2@2

N(F i Lo(Q),€) < Gy Cy (7) - (—)

€

Now, we introduce Lemma 7.4 and 7.5. The proof of Lemma 7.4 and 7.5 is a direct application
of Lemma 7.1, 7.2 and 7.3.

Lemma 7.4 (Lemma 16 in [12]) Let wif(u) = Kif(u —t). For any 0 < a < b < 1, we define
the function classes

Kt = {wi ()t € [a, 0]}
and
K35 = {E[ (D))t € [a,b]}.

Given Assumptions 1-2, we have for any € € (0, 1),

2. Opes - HKiHTV>4

SgpN(’Cit7L2(Q)’e) < ( he

and 5
sgpN(/Cf,LQ(Q),E) < e | K= |7y - fore

Moreover, let ki (u) = wif (u) — ElwE(T)] and let K* = {kf(-)|t € [a,b]}. We have

5
4| KE |y - O3 R
tp N(KE, Lo(Q), o S( |55y - C2 T\

Q he
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Lemma 7.5 (Lemma 17 in [12]) Let gf’cjk(u Xijy Xaw) = KiF(u — ) Xy X, For any 0 < a <
b < 1, we define the function classes

Gije = {900 ()1t € la,b]}

and
G5y = {Elgiu (T X, Xyt € [a, b))
Given assumptions 1-2, for all € € ¢(0,1) and sufficiently large Mx,

2. M% -lognp - C= - ||KiHTV>4

sgp N(ijk,LQ(Q)yf) < ( he

and

2
sgpN(QSfjk,Lz(Q),) e K= |lzv - for - M,

with probability at least 1—1/np. Moreover, let quk(u Xij, Xig) = gfjk(u Xij, Xir)— ]E[gfjk(T, X, X))
and let gj.; = {qfcjk()|t € [a,b]}. We have

g 5
LK * av - G2 1T/5-Mi/5-M§/5-1og4/5np>
he

sup N (G La(Q).€) < (
with probability at least 1 — 1/np.

Lemma 7.6 (Lemma 18 in [12]) For any 0 < a <b < 1, let ji(l) {Jt]k |t € [a,b]}. Given
Assumption 1-2, for all probability measure ) on R and all €€ (0 1)

6
p3/2 10g5/3 np
Vh-e ’

with probability at least 1 — 1/np, where C > 0 is a generic constant that does not depend on
p, h, and n.

N(TZY, La(Q),e) < C- (

Lemma 7.7 (Lemma 19 in [12])For any 0 < a <b <1, let ‘7;,;(2) - {J:j(,f)ﬁ € [a,b]}. Given
Assumption 1-2, for all probability measure @@ on R and all e € (0,1)

N(T:?, Ly(Q),e) < C- i 6
jk o 2 5 =~ h4/3'€ )

where C' > 0 1s a generic constant that does not depend on p, h, and n.
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8 Technical Lemmas on Empirical Process

In this section, we present some existing tools on empirical process. The following Lemma claims
that the supreme of any empirical process is concentrated near its mean. It directly follows
from Theorem 2.3 in [1], an improvement on Rio’s version[10] of Talagrand’s inequality[11].

Lemma 8.1 (Theorem A.1 in [153]) Let Xy, Xs, ..., X, be independent random variables and
let F be a function class such that there exists n and 7% satisfying

sup [| flloe <
feF

and 1
?0161]2 - Zezn Var(f(X;)) < 2.
Define
1
Y = sup |- iez[;](f(Xz) —E[f(X3)])

Then, for anyt > 0,

P <Y > E[Y] + t/2(72 + 25E[Y]) + 2t2n/3> < exp (—nt?) .

The above inequality involves evaluating the expectation of the supreme of the empirical pro-
cess. The following Lemma directly follows from Theorem 3.12 in [8] and Corollary 5.1 in [6]. It
provides an upper bound on the expectation of the supreme of the empirical process as function
of its covering number.

Lemma 8.2 (Lemma F.2 in [9]) Assume that the functions in F defined on X are uniformly
bounded by a constant U and F(-) is the envelope of F such that |f(x)| < F(x) for allx € X
and [ € F. Let supser E[f?] < 0p < ||F|7, e, Let Xu,..., X, be i.i.d. copies of the random

variables X. We denote the empirical measure as P, = %Zie[n] Ox,. If for some A,V >0 and
for all e > 0 and n > 1, the covering entropy satisfies

A\IFH@(P”))V

€

N(F, Lo(B,), ¢) < (

then there exists a universal constant C such that
1% AlF VU AllF
v \/1og ( [ \|L2<ﬂ»n>) VU o ( H HL2<M>>] |
n op n op
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