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Abstract

We consider the ridge regression problem, for
which we are given an n× d matrix A of ex-
amples and a corresponding n× d′ matrix B
of labels, as well as a ridge parameter λ ≥ 0,
and would like to output an X ′ ∈ Rd×d′ for
which

‖AX ′ −B‖2F + λ‖X ′‖2F ≤ (1 + ε)OPT,

where OPT = minY ∈Rd×d′ ‖AY − B‖2F +
λ‖Y ‖2F . In the special case of λ = 0, this
is ordinary multi-response linear regression.
Our focus is on deterministically construct-
ing coresets for this problem. Here the goal is
to select and re-weight a small subset of rows
of A and corresponding labels of B, denoted
by SA and SB, so that if X ′ is the mini-
mizer to minX′ ‖SAX ′ − SB‖2F + λ‖X ′‖2F ,
then ‖AX ′ −B‖2F + λ‖X ′‖2F ≤ (1 + ε)OPT.

We show how to efficiently (in poly(n, d, 1/ε)
time) and deterministically select O(sdλ/ε)
rows of A and B to achieve this property,
and prove a matching lower bound, show-
ing that it is necessary to select Ω(sdλ/ε)
rows no matter what the weights are, for any
1 < 1/ε ≤ sdλ. Here sdλ is the statisti-
cal dimension of the input, and we assume
d′ = O(sdλ) ≤ d. In the case of ordinary re-
gression, this gives a deterministic algorithm
achieving O(d/ε) rows and a matching lower
bound for any 1 ≤ 1/ε ≤ d; for 1/ε > d we
show Θ(d2) rows are sufficient. Finally we
show our new coresets are mergeable, giving
a deterministic protocol for ridge regression
with O(sdλ/ε) words of communication per
server in a distributed setting, in the impor-
tant case when the rows of A and B have
a constant number of non-zero entries and
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there are a constant number of servers. Prior
to our work the best deterministic protocols
in this setting required Ω(min(sd2λ, sdλ/ε

2))
communication.

1 Introduction

Linear least squares regression is one of the most popu-
lar tools for fitting a linear hypothesis to a given data
set and ridge regression is an important regularized
variant. When the number n of data points is very
large, an intriguing question is whether there exists a
small weighted subset of the data points which repre-
sents the entire data well for ridge regression. These
subsets are often called coresets.

Let A be an n×d input matrix and B an n×d′ matrix
of labels corresponding to the data points in A. Here
each label is a d′-dimensional vector. Let ai ∈ Rd
denote the i-th row of a A written as a column. In
the multiple-response least squares regression problem,
the goal is to find a matrix X such that ‖AX−B‖2F is
minimized, where for a matrix C, the squared Frobe-
nius norm ‖C‖2F is the sum of squares of its entries. In
the ridge regression problem, we additionally add an
`2-regularizer to the cost and now the goal is to find
a matrix X which minimizes ‖AX − B‖2F + λ‖X‖2F ,
where λ > 0 is the regularization parameter.

We call a subset S ⊆ [n], along with corresponding
weights wi ≥ 0 for i ∈ S, an ε−coreset if the solution
to the ridge regression problem

X̃S,w = argmin
X

∑
i∈S

wi‖aTi X − bi‖22 + λ‖X‖2F

is a (1 + ε)-approximate solution to the ridge re-
gression problem minX ‖AX − B‖2F + λ‖X‖2F =
minX

∑
i ‖aTi X − bi‖22 + λ‖X‖2F i.e.,

‖AX̃S,w −B‖2F + λ‖X̃S,w‖2F
≤ (1 + ε)

(
min
X
‖AX −B‖2F + λ‖X‖2F

)
.

Ideally, we would like to have the size |S| of S be in-
dependent of n and depend linearly on the dimension
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of the data d and sub-linear in 1/ε. In the case of
ridge regression, it is often desirable to have bounds
in terms of the statistical dimension sdλ of the input
(defined below), which is always at most d and often
significantly smaller than d.

Obtaining small subsets which accurately represent
the entire data set is crucial for data interpretation
and for efficient communication protocols. Note that
unlike other solutions, such as directly computing the
covariance matrix, coresets preserve the sparsity of the
data. Indeed, if the rows of A and B are sparse, then
the selected rows in the coreset are also sparse. As we
will see, small coresets are extremely useful in giving
efficient communication protocols to solve problems in
a distributed setting.

In this work we focus on deterministic algorithms, i.e.,
algorithms with zero error probability. Since coresets
are often composed multiple times in distributed pro-
tocols, this is desirable so that the error probability
does not compound. Moreover, a deterministic core-
set allows one to generate additional rows of A and
B as a function of the data and coresets we have al-
ready computed. This allows one to adaptively gener-
ate data. Note that in general this is not possible if
the coreset is randomized. Indeed, if the input to a
coreset is allowed to depend on the randomness used
to build the coreset, there are no guarantees.

1.1 Previous Work

There is a vast body of work on least squares and ridge
regression, and we only touch upon the works most
relevant to ours here and refer the reader to the sur-
veys (Mahoney, 2011; Woodruff, 2014) and references
therein. There is a long line of work on randomized
sampling algorithms for speeding up least squares re-
gression, see, e.g., (Drineas et al., 2006a,b,c, 2011).
Since our focus here is on deterministic algorithms,
these are not directly useful for us. In the unregular-
ized case, a direct technique that we can apply is the
deterministic spectral sparsification result of Batson,
Spielman, and Srivastava (BSS) (Batson et al., 2012).
There are also several followup works (Allen Zhu et al.,
2015; Lee and Sun, 2018; Chen and Price, 2019), but
they give randomized rather than deterministic algo-
rithms.

Assume d′ = O(sdλ) ≤ d. The issue with directly
using the BSS algorithm for ordinary least squares re-
gression is that näıvely one would need a so-called sub-
space embedding of the column span of C = [A,B], the
matrix with the columns of B adjoined to those of A.
Consequently, this would result in a coreset S contain-
ing O(d/ε2) rows, which is larger than the O(d/ε) that
we desire. We instead achieve O(d/ε) rows by combin-

ing the deterministic guarantees needed for regression
in (Avron et al., 2017) with a deterministic row selec-
tion algorithm achieving approximate matrix product
in (Cohen et al., 2016). Using this property, we can
then bootstrap from it to in turn obtain a coreset of
size O(sdλ/ε). Directly applying techniques in (Avron
et al., 2017) would instead result in a coreset contain-
ing O(sdλ/ε

2) rows.

Previous work (Maalouf et al., 2019) has also ob-
served that one can preserve the covariance matrix
CTC exactly by a coreset of O(d2) rows by using
Caratheodory’s theorem, which can be implemented
in deterministic polynomial time. However, it was not
known if there is a matching lower bound in the case
of least squares regression. There are strong lower
bounds for cut and spectral sparsifiers (Andoni et al.,
2016; Carlson et al., 2017); however, they fail to ap-
ply to the case of regression when there is a specific B
matrix given.

There is also a body of work on distributed regres-
sion, for which each of the rows of C = [A,B] reside
on a single server. We refer the reader to the recent
work (Vempala et al., 2019) and references therein.
As shown in (Vempala et al., 2019), for ordinary least
squares regression, Θ(d2) words of communication per
server is necessary and sufficient to solve the problem
up to any relative error accuracy. The protocol is sim-
ple - each server computes its local covariance matrix
and sends it to the coordinator, who can then solve
the least squares problem exactly. While (Vempala
et al., 2019) proves this is optimal, even to obtain a
constant factor approximation, it need not be optimal
if each row of C only has O(1) non-zero entries. In
this case one could hope to do better than d2 com-
munication by transmitting a small number of rows.
We note that by Caratheordory’s theorem, one can
still transmit O(d2) rows or O(sd2λ) rows for the reg-
ularized version, assuming d′ ≤ sdλ, but the hope is
to do even better. Alternatively, one can transmit a
subspace embedding using O(d/ε2) rows, or O(sdλ/ε

2)
rows for the regularized version, but these are not lin-
ear in 1/ε. Alternatively, one could use one of many
randomized algorithms (see, e.g, (Woodruff, 2014)) to
obtain O(d/ε) or O(sdλ/ε) communication by using
an oblivious sketch; however, these cannot be made
deterministic. Thus, an interesting question arises if
there is a deterministic protocol achieving better com-
munication. To the best of our knowledge, such work
has not considered the sparse case, i.e., when each row
of A and corresponding row of B have at most O(1)
non-zero entries.
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1.2 Our Contributions

Given matrices A ∈ Rn×d, B ∈ Rn×d′ and parame-
ter λ, we give a deterministic algorithm to find an ε-
coreset S of size O((sdλ(A)+d′)/ε) and corresponding
weights. We do this by using Corollary 1 from Cohen
et al. (2016) on suitably defined matrices and show
that the matrix S thus obtained defines an ε-coreset
for the ridge regression problem. This immediately
gives that, with parameter λ = 0, there is an ε-coreset
of size O((rank(A) + d′)/ε).

Theorem 1.1. Given matrices A ∈ Rn×d, B ∈ Rn×d′

and λ ≥ 0, there exists a matrix S which selects and
scales O((sdλ + d′)/ε) rows of A such that solution to
the ridge regression problem

min
X
‖SAX − SB‖22 + λ‖X‖2F

is a (1+ε) approximate solution to the ridge regression
problem

min
x
‖AX −B‖2F + λ‖X‖2F .

Using ε-coresets, we give an efficient communication
protocol for computing a 1 + ε approximate solu-
tion to multi-response ridge regression in a distributed
setting with communication complexity of O(s · t ·
(min (s · sdλ(A), rank(A)) + d′)/ε) words where s is
the number of servers and t is the maximum number
of non-zero elements in a row of [A,B]. In the case
of t � d, this protocol is much more efficient than d2

words which corresponds to näıvely sending the ma-
trices ATi Ai to the central server.

Theorem 1.2. If rows of matrix A ∈ Rn×d are par-
titioned among s servers and corresponding rows of
B ∈ Rn×d′ are partitioned too, then there is a deter-
ministic communication protocol using

O(
s · t · (min (s · sdλ(A), rank(A)) + d′)

ε
) words,

where t is the maximum number of non-zero entries in
a row of [A,B].

We finally show that our bounds on the coreset size
are tight in the case of Multiple Ridge Regression for
a certain setting of λ.

Theorem 1.3. For all ε such that 1 ≤ 1/100ε ≤ d
and λ ≤ 1/4ε, there exist matrices A,B ∈ Rd/100ε×d
for which any matrix S that selects and rescales k rows
of A and B such that the solution to

min
X
‖SAX − SB‖2F + λ‖X‖2F

is a (1 + ε)-approximation to

min
X
‖AX −B‖2F + λ‖X‖2F

has k = Ω(sdλ(A)/ε) rows.

1.3 Notation

A+ denotes the Moore-Penrose pseudo-inverse of a
matrix A. For a matrix A and a vector x, ΠA(x)
denotes the projection of x onto the column span
of A given by ΠA(x) = AA+x. [n] denotes the
set {1, 2, 3, . . . , n}. range(A) denotes the subspace
spanned by the columns of the matrix A. We start
by defining the case when X just has a single column,
in which case we denote X by x.

A matrix S is an ε-subspace embedding for range(A),
if for all x,

(1− ε)‖Ax‖22 ≤ ‖SAx‖22 ≤ (1 + ε)‖Ax‖22.

A typical ridge regression problem is given by inputs
A ∈ Rn×d, b ∈ Rn and λ ≥ 0. Let ai ∈ Rn be the
vector corresponding to the i-th row of matrix A and
bi ∈ R be the i-th component of vector b. Let x∗

denote the optimum solution for ridge regression and
define OPT = ‖Ax∗−b‖22+λ‖x∗‖22. A set S ⊆ [n] along
with weights wi ≥ 0 for i ∈ S defines the weighted
ridge regression problem

min
x

∑
i∈S

wi(a
T
i x− bi)2 + λ‖x‖22.

Let x̃S,w be the optimal solution for the ridge regres-
sion problem defined by S,w. We say (S,w) is an
ε-coreset if

‖Ax̃S,w − b‖22 + λ‖x̃S,w‖22 ≤ (1 + ε)OPT.

For notational convenience, we define a selecting and
scaling matrix S corresponding to set S ⊆ n and w,
such that

‖SAx− Sb‖22 =
∑
i∈S

wi(a
T
i x− bi)2.

By a selecting matrix, we mean that each row of S has
exactly one non-zero entry.

1.4 Preliminaries

1.4.1 Singular Value Decomposition

Definition 1.4 (Singular Value Decomposition). Any
matrix A ∈ Rn×d can be written as UΣV T , where both
U and V are orthonormal matrices and Σ is a diagonal
matrix with non-zero entries in a non-increasing order.
We call the entries of Σ the singular values and label
them by σ1, σ2 . . . , σd such that σ1 ≥ σ2 ≥ . . . ≥ σd.

1.4.2 Statistical Dimension

Definition 1.5 (Statistical Dimension). For a matrix
A ∈ Rn×d with non-zero singular values σ1, σ2, . . . , σd,



Optimal Deterministic Coresets for Ridge Regression

the statistical dimension with respect to λ ≥ 0, sdλ(A),
is defined to be

sdλ(A) =

rank(A)∑
i=1

1

1 + λ
σ2
i

(1.1)

Wherever A is apparent, we use the notation sdλ for
sdλ(A). Note that sdλ(A) ≤ rank(A) ≤ d. This def-
inition of statistical dimension captures our intuitive
notion that as λ increases, the importance of the data
decreases. Furthermore, if λ ≥ σ2

1/ε, 0d is a 1 + ε
approximate solution for any ridge regression problem
with data matrix A and regularization parameter λ
(See Lemma 14 of (Avron et al., 2017) for a proof).
Proofs of the following lemmas can be found in the
supplementary material.

Lemma 1.6. If Â is a matrix with orthonormal

columns such that range(Â) = range(

[
A√
λI

]
) and if

U1 comprises the first n rows of Â, then ‖U1‖2F =
sdλ(A) and ‖U1‖22 = 1/(1 + λ/σ2

1) ≤ 1.

Lemma 1.7. If A′ is the sub-matrix of A formed by
taking rows of A, then sdλ(A′) ≤ sdλ(A).

Lemma 1.8. For any r ≥ 1, sdλ/r(A) ≤ min(r ·
sdλ(A), rank(A)).

1.4.3 Spectral Sparsification

Theorem 1.9. (BSS Algorithm (Batson et al., 2012))
Given n vectors v1, v2, . . . , vn ∈ Rd, there exists a sub-
set S ⊆ [n] of size O(d/ε2) with corresponding weights
wi ≥ 0 for i ∈ S such that

(1− ε)
n∑
i=1

viv
T
i �

∑
i∈S

wiviv
T
i � (1 + ε)

n∑
i=1

viv
T
i

and there is a deterministic polynomial time algo-
rithm to find this subset along with the corresponding
weights.

2 Upper Bounds for Linear
Regression

In this section, we show that there exists an ε-coreset
of size O(d/ε) for “linear regression” in the single re-
sponse case (whenX has one column) andO((d+d′)/ε)
in the multiple response case and show that the BSS
algorithm can be used to find this coreset determinis-
tically.

2.1 Single Response Linear Regression

Lemma 2.1 (Lemma 1 of (Cohen et al., 2016)). If S
is an ε-subspace embedding for colspan(A,B),

‖ATSTSB −ATB‖2 ≤ ε‖A‖2‖B‖2.

Theorem 2.2. If S is a
√
ε/4 subspace embedding for

colspan([A, b]), then x̃opt = argminx ‖SAx − Sb‖22 =
(SA)+(Sb) is a (1 + ε)-approximate solution for the
regression problem minx ‖Ax− b‖22.

Proof. The proof goes along the line of Sarlos (2006).
Let A = UΣV T be the singular value decomposition
of A. Define xopt = argminx ‖Ax− b‖22. Define α such
that Axopt = Uα and β such that Ax̃opt−Axopt = Uβ.
Let w = b−Axopt. Let OPT = minx ‖Ax−b‖22 = ‖w‖22.
We have colspan(A, b) = colspan(U,w) and UTw = 0.
Let S be a

√
ε/4 subspace embedding of colspan(A, b).

We bound the cost of x̃opt as follows:

‖Ax̃opt − b‖22 = ‖Axopt − b‖22 + ‖Ax̃opt −Axopt‖22
(Pythagorean Theorem)

= OPT + ‖Uβ‖22
= OPT + ‖β‖22

We get an upper-bound on ‖β‖2 in terms of OPT be-
low.

‖β‖2 − ‖UTSTSUβ‖2 ≤ ‖(I − UTSTSU)β‖2
≤
√
ε/4‖β‖2 (By Lemma 2.1)

=⇒ ‖β‖2 ≤
‖UTSTSUβ‖2

1−
√
ε/4

We show that UTSTSUβ = UTSTSw and use the fact
that S satisfies an approximate matrix multiplication
property to bound ‖UTSTSw‖2 = ‖UTSTSUβ‖2.

SU(α+ β) = SAx̃opt

= SA((SA)+Sb))

= ΠSA(Sb)

= ΠSU (Sb)

(Since colspan(SA) = colspan(SU))

= ΠSU (S(w + Uα))

= SUα+ ΠSU (Sw)

Hence,

SUβ = ΠSU (Sw)

=⇒ UTSTSUβ = UTSTSw.

The last implication follows from the fact that for all
A, x : ATΠA(x) = ATx. Now,

‖UTSTSw‖2 = ‖UTSTSw − UTw‖2 (Since UTw = 0)

≤
√
ε/4‖U‖2‖w‖2 (By Lemma 2.1)

=
√
ε/4 ·OPT.
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Finally,

‖β‖2 ≤ ‖U
TSTSUβ‖2

(1−
√
ε/4)2

≤ ε/4

(1−
√
ε/4)2

OPT

≤ εOPT.

Therefore, ‖Ax̃opt− b‖2 = OPT + ‖β‖2 ≤ (1 + ε)OPT.

Theorem 2.3. Given matrix A ∈ Rn×d and b ∈ Rn,
there exists a matrix S which selects O(d/ε) rows
of A and scales them such that solution to the re-
gression problem argminx ‖SAx − Sb‖22 is a (1 + ε)-
approximation to the regression problem ‖Ax − b‖22.
This implies the existence of an O(d/ε)-sized coreset.

Proof. Applying BSS to the matrix [A, b] with pa-
rameter O(

√
ε) gives a selecting and rescaling ma-

trix S with O(d/ε) rows such that S is a
√
ε/4 sub-

space embedding for colspan(A, b). By Theorem 2.2,
we get that the solution to the regression problem
minx ‖SAx − Sb‖22 is a (1 + ε) approximate solution
to the problem minx ‖Ax− b‖22.

Theorem 2.4. Given matrix A ∈ Rn×d and b ∈ Rn,
there exists a matrix S which selects O(d2) rows of A
and scales them such that the solution to the regression
problem argminx ‖SAx − Sb‖22 is an optimal solution
to argminx ‖Ax− b‖22.

Proof. The proof of this theorem is similar to that of
(Maalouf et al., 2019), and is included here for com-
pleteness. Assume that the matrix A is full rank.
Let ai be the ith row of A written as a column. Let
ãi ∈ Rd+1 be the vector ai appended with bi. Con-
sider the matrices ãiã

T
i for i = 1 . . . n. The matrix

(1/n)
∑n
i=1 ãiã

T
i lies in the convex hull of the matrices

ãiã
T
i for i = 1 . . . n. By Caratheodory’s theorem, there

exists a set S ⊆ [n], |S| = O(d2) and corresponding
weights wi ≥ 0 for i ∈ S, such that

1

n

n∑
i=1

ãiã
T
i =

∑
j∈S

wj ãj ã
T
j

We obtain the following relations from the above:

n∑
i=1

aia
T
i =

∑
j∈S

(nwj) aja
T
j

n∑
i=1

biai =
∑
j∈S

(nwj) bjaj

Let s1, s2, . . . , s|S| ∈ [n] be the elements of S. Define
a sampling and rescaling matrix S as follows

Si,si =
√
nwsi i = 1 . . . |S|

and the rest of the entries of S are 0s. Then,

argmin
x
‖SAx− Sb‖22 = (ATSTSA)−1(ATSTSb)

=

 |S|∑
i=1

S2
i,siasia

T
si

−1 |S|∑
i=1

S2
i,sibsiasi


=

∑
j∈S

nwj aja
T
j

−1∑
j∈S

nwj bjaj


=

(
n∑
i=1

aia
T
i

)−1( n∑
i=1

biai

)
= (ATA)−1(AT b)

= argmin
x
‖Ax− b‖22

2.2 Multiple Response Linear Regression

We now consider the problem of multiple response lin-
ear regression, where given matrices A ∈ Rn×d and
B ∈ Rn×d′ , we find the solution of the following opti-
mization problem

min
X∈Rd×d′

‖AX −B‖2F .

Theorem 2.5. Given matrices A ∈ Rn×d and
B ∈ Rn×d′ , if S is a

√
ε/4 subspace embedding for

colspan(A,B), then the solution to the optimization
problem

X̃ = argmin
X∈Rd×d′

‖SAX − SB‖2F

is a 1+ε approximate solution to the multiple response
regression problem on matrices A,B, i.e.,

‖AX̃ −B‖2F ≤ (1 + ε) min
X∈Rd×d′

‖AX −B‖2F .

Such a matrix S with O((d+d′)/ε) rows can be obtained
using BSS.

Proof. Let xi denote the i-th column of X and bi be
the i-th column of matrix B. Then the multiple re-
sponse linear regression can be written as

min
x1,x2,...,xd′

∑
i

‖Axi − bi‖22.

These are d′ independent single response linear re-
gression problems and given that S is a

√
ε/4 sub-

space embedding for colspan(A,B), we get that for
all i = 1 . . . d′, S is a

√
ε/4 subspace embedding for

colspan(A, bi). From Theorem 2.2, x̃i = minx ‖SAx−
Sbi‖22 is a 1 + ε approximate solution to the regression
problem on A and bi and hence,

d′∑
i=1

‖SAx̃i − bi‖22 ≤
d′∑
i=1

(1 + ε) min
xi
‖Axi − bi‖22.
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So, the matrix X̃ having ith column equal to x̃i is a
(1+ε) approximate solution for the regression problem
on (A,B). Thus,

‖AX̃ −B‖2F ≤ (1 + ε) min
X
‖AX −B‖2F .

3 Upper Bounds for Ridge Regression
- Statistical Dimension

In this section, we extend our results to the case of
ridge regression and present coresets of size O((sdλ +
d′)/ε). We use approximate matrix product techniques
of Cohen et al. (2016) to obtain the bounds in terms
of statistical dimension.

Theorem 3.1. Given matrices A ∈ Rn×d, B ∈ Rn×d′

and λ ≥ 0, there exists a matrix S which selects and
scales O((sdλ + d′)/ε) rows of A such that solution to
the ridge regression problem

min
X
‖SAX − SB‖22 + λ‖X‖2F

is a (1+ε) approximate solution to the ridge regression
problem

min
X
‖AX −B‖2F + λ‖X‖2F .

Proof. Consider the matrix Â =

[
A√
λId

]
and B̂ =[

B
0d×d′

]
. Let A be a matrix with orthonormal columns

such that range(A) = range([Â B̂]) and the first d
columns of A are a basis for colspan(Â). Let

A =

[
U1
U2

]
=

[
U1 U ′1
U2 U ′2

]
where U1 ∈ Rn×(d+d′), U2 ∈ Rd×(d+d′), U1 ∈ Rn×d,
U ′1 ∈ Rn×d′ , U2 ∈ Rd×d and U2 ∈ Rd×d′ . We have
‖U1‖22 = ‖[U1 U

′
1]‖22 ≤ 1 and using Lemma 1.6 we get

‖U1‖2F = ‖[U1 U
′
1]‖2F = ‖U1‖2F + ‖U ′1‖2F ≤ sdλ(A) + d′.

By Corollary 1 of (Cohen et al., 2016), we can ob-
tain a selecting and scaling matrix S with O((sdλ +
d′)/(ε/16)) = O((sdλ + d′)/ε) rows such that

‖UT1 STSU1 − UT1 U1‖22 ≤
ε

16

(
‖U1‖22 +

‖U1‖2F
sdλ(A) + d′

)2

≤ ε

16

(
1 +

sdλ(A) + d′

sdλ(A) + d′

)2

= ε/4

Consider the selecting and scaling matrix

S =

[
S 0
0 I

]

We have ‖ATSTSA−ATA‖22 = ‖UT1 STSU1 +UT2 U2−
UT1 U1−UT2 U2‖22 = ‖UT1 STSU1−UT1 U1‖22 ≤ ε/4. Hence,
S is a

√
ε/4 subspace embedding for range(A) =

range[Â B̂]. By Theorem 2.5, we have that the so-
lution to the regression problem

min
X
‖SÂX − SB̂‖2F = min

X
‖
[
SA√
λI

]
X −

[
SB
0

]
‖2F

= min
X
‖SAX − SB‖2F + λ‖X‖2F

is a (1 + ε) approximate solution to

min
X
‖ÂX − B̂‖2F = min

X
‖
[
A√
λI

]
X −

[
B
0

]
‖2F

= min
X
‖AX −B‖2F + λ‖X‖2F

4 Deterministic Communication
Protocol for Ridge Regression

4.1 Communication Model

We consider the communication model in which there
are s servers and there is a central coordinator which
can communicate with every server. All communica-
tion occurs through two-way communication channels
between the servers and the coordinator. The coor-
dinator initiates the communication protocol and al-
ways decides who speaks next. This model is simpler
to analyze and can simulate the arbitrary peer-to-peer
communication model with a communication complex-
ity of at most twice that of the peer-to-all model, by
instead of having server A talk directly to server B,
having server A forward its message through the co-
ordinator. We must also add log s bits per message to
tell the coordinator who to forward the message to.

4.2 Ridge Regression in the Distributed
Setting

Consider the setting of ridge regression in a row-
partition distributed setting. Let there be s servers
with matrices A1, A2, . . . , As and corresponding la-
bel matrices B1, B2, . . . , Bs, respectively. Let A be
the matrix obtained by stacking A1, A2, . . . , As and
B be the matrix obtained by stacking B1, B2, . . . , Bs.
Assume that ε and all the entries are multiples
of 1/poly(nd) and are upper bounded by poly(nd).
Therefore by multiplying all the entries by poly(nd),
we can assume that all the entries are integers and are
upper bounded by poly(nd) and hence each entry takes
O(log(nd)) bits to encode. This assumption also en-
sures that all the weights evaluated can be rounded to
be encoded using O(log(nd)) + O(log(1/ε)) bits. We
call O(log(nd)) bits a word. Let there be a central
coordinator each server can communicate with. We
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would like to compute a (1 + ε) approximate solution
to the following optimization problem while minimiz-
ing the communication required

min
X
‖AX −B‖2F + λ‖X‖2F

= min
X

(
s∑
i=1

‖AiX −Bi‖2F

)
+ λ‖X‖2F

Theorem 4.1. If rows of matrix A ∈ Rn×d are par-
titioned among s servers and corresponding rows of
B ∈ Rn×d′ are partitioned too, then there is a deter-
ministic communication protocol using

O(
s · t · (min (s · sdλ(A), rank(A)) + d′)

ε
) words.

where t is the maximum number of non-zero entries in
a row of [A,B].

Proof. For each i, define the following matrices

Âi =

[
Ai√
λ/sId

]
B̂i =

[
Bi
0

]
Let Ai be a matrix with orthonormal columns such
that range(Ai) = range([Âi B̂i]). From the proof
of Theorem 3.1, we obtain a

√
ε/4 subspace em-

bedding Si of the form

[
Si 0
0 I

]
for range(Ai) =

range([Âi B̂i]). The matrix Si selects and scales
O((sdλ/s(Ai) + d′)/ε) rows of Ai and Bi. Now, we
have that the matrix

S = diag(S1,S2, . . . ,Ss)

is a
√
ε/4 subspace-embedding for

range(

A1

...
As

) = range(

Â1 B̂1

...
...

Âs B̂s

).

From Theorem 2.5, we obtain that solution to the op-
timization problem

min
X
‖S

Â1

...

Âs

X − S
B̂1

...

B̂s

 ‖2F
= min

X

∑
i

‖SiÂiX − SiB̂i‖2F

= min
X

∑
i

(‖SiAix− SiBi‖2F +
λ

s
‖X‖2F )

= min
X

(
∑
i

‖SiAiX − SiBi‖2F ) + λ‖X‖2F

= min
X
‖SAX − b‖22 + λ‖X‖22

where S is defined as

S = diag(S1, S2, . . . , Ss)

is a (1+ε) approximate solution to the regression prob-
lem.

min
X
‖

Â1

...

Âs

X −
B̂1

...

B̂s

 ‖2F
= min

X

∑
i

‖ÂiX − B̂i‖2F

= min
X

∑
i

(‖AiX −Bi‖2F +
λ

s
‖X‖2F )

= min
X

(
∑
i

‖AiX −Bi‖2F ) + λ‖X‖2F

= min
X
‖AX −B‖2F + λ‖X‖2F .

The communication protocol is as follows: the i-th
server computes the selecting and scaling matrix Si as
above and sends the the matrices SiAi and SiBi to the
central server (also called the coordinator). The cen-
tral server can now compute the solution to the prob-
lem minX

∑
i ‖SiAiX −SiBi‖2F +λ‖X‖2F by standard

techniques. The solution obtained is guaranteed to be
a (1 + ε) solution as shown above.

When each row of matrix [Ai, Bi] has at most t non-
zero entries, the communication required is at most

O(s · t · maxi sdλ/s(Ai)+d
′

ε ) words for the entries of the

matrices and O(s · maxi sdλ/s(Ai)+d
′

ε ) words for the
weights. But, for all i, sdλ/s(Ai) ≤ sdλ/s(A) ≤ min(s ·
sdλ(A), rank(A)). Hence, the communication com-

plexity is O( s·t·(min (s·sdλ(A),rank(A))+d′)
ε ) words.

5 Lower Bounds for Multi Response
Ridge Regression

In this section, we give example matrices A,B ∈
Rd/100ε×d, ε > 0, λ ≥ 0 such that sdλ(A) = Ω(d)
and any selecting and scaling matrix S needs at least
Ω(d/ε) rows for it to give a 1+ε approximate solution.

Theorem 5.1. For all ε such that 1 ≤ 1/100ε ≤ d
and λ ≤ 1/4ε there exist matrices A,B ∈ Rd/100ε×d
for which any matrix S that selects and rescales k rows
of A and B such that the solution to

min
X
‖SAX − SB‖2F + λ‖X‖2F

is a (1 + ε) approximation to

min
X
‖AX −B‖2F + λ‖X‖2F

has k = Ω(sdλ(A)/ε) rows.
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Proof. Let the matrix A be a block matrix where each
block has dimensions 1/100ε× 1. Define blocks on the
diagonal of A to be the vectors 11/100ε and remaining
entries of A to be 0. The singular values of this matrix
are all equal to

√
1/100ε. For λ ≤ 1/4ε, sdλ(A) ≥

d/26. Similarly, let B be a block matrix, where each
block has size 1/100ε×d. So, the matrixB is formed by
stacking matrices B1, B2, . . . , Bd. Let each row of Bi
be a distinct unit vector in the standard basis for Rd.
We can choose 1/100ε distinct standard basis vectors
as d ≥ 1/100ε. For the block matrix Bi, define a set
Hi ⊆ [d] of integers k such that ek is a row in Bi.

The problem minX ‖AX−B‖2F +λ‖X‖2F is equivalent
to

min
x1,x2,...,xd

(‖11/100εxT1 −B1‖2F + λ‖x1‖22) + . . .+

(‖11/100εxTd −Bd‖2F + λ‖xd‖22) (5.1)

and the above is equivalent to minimizing each of the
problems independently.

We consider the problem

min
x1

‖11/100εxT1 −B1‖2F + λ‖x1‖22. (5.2)

Without loss of generality assume that H1 = [1/100ε]
i.e., rows of B1 are the first 1/100ε standard basis vec-
tors of Rd. Consider a matrix S which selects k rows
of [11/100ε, B1] and solves the following optimization
problem

min
x1

‖S11/100εx
T
1 − SB1‖2F + λ‖x1‖22

We can assume that S selects the top k rows without
loss of generality. Then the above problem is equiva-
lent to

min
y1,y2,...,yd∈R

k∑
i=1

(wi(1− yi)2 + (W − wi)y2i + λy2i )

+

d∑
i=k+1

(λ+W )y2i

where wi is the weight S assigns to error in row i and
W =

∑k
i=1 wi. By taking the partial derivative of the

objective function with respect to yi and setting it to
0, we get that it is minimized when yi = wi/(W + λ)
for i = 1 . . . k and yi = 0 for i = k + 1 . . . d. When
this solution is used for the original ridge regression
problem (5.2), the cost is

1

100ε
− k

+

k∑
i=1

(
1− wi

W + λ

)2

+

(
1− 1

100ε

)(
wi

W + λ

)2

+ λ

(
wi

W + λ

)2

For a fixed W , the cost is minimized when all wi’s are
equal and hence we set wi = W/k = b for some b ≥ 0.
The cost can now be written as

1

100ε
− k

+ k

[(
1− b

λ+ kb

)2

+

(
1

100ε
− 1

)(
b

λ+ bk

)2

+λ

(
b

λ+ bk

)2
]

=
1

100ε
− k + k

[
1 + c2 − 2c+

(
1

100ε
− 1

)
c2 + λc2

]
where c =

b

λ+ bk

=
1

100ε
− k + k + k

[(
1

100ε
+ λ

)
c2 − 2c

]
=

1

100ε
+ k

[(
1

100ε
+ λ

)
c2 − 2c

]
. (5.3)

This is minimized when c = 1
λ+1/100ε which is ob-

tained when b = λ
λ+(1/100ε−k) (This is a valid setting

of weights as k ≤ 1/100ε and hence b ≥ 0). The mini-
mum value is hence equal to 1/100ε− k/(λ+ 1/100ε).
This is the least error we can get on (5.2) using any
matrix S which selects and re-scales ≤ k rows. Sub-
stituting k = 1/100ε we recover the OPT value for
(5.2) which is equal to 1/100ε − 1/(1 + 100λε). Now,
1/100ε− k/(λ+ 1/100ε) is ≤ (1 + 2ε)OPT iff

1

100ε
− k

λ+ 1/100ε
≤ (1 + 2ε)

(
1

100ε
− 1

1 + 100λε

)
iff

1

100ε
− k

λ+ 1/100ε
≤ 1

100ε
+

1

50
− 1 + 2ε

1 + 100λε

iff −k ≤ λ+ 1/100ε

50
− 1 + 2ε

100ε

=
2ελ+ 1/50− 1− 2ε

100ε

iff k ≥ 49/50− 2ελ+ 2ε

100ε
.

For any λ ≤ 1/4ε, this implies that k ≥ 1/400ε.

To get a (1+ε) approximate solution to (5.1), we need
to solve at least d/2 sub-problems upto (1+2ε) approx-
imation. Hence, the selecting matrix S for the whole
problem must select at least d/2× 1/400ε = Ω(d/ε) =
Ω(sdλ(A)/ε) rows.

This shows the O(d2) upper bound to construct covari-
ance matrices using Caratheodory’s theorem is tight.
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