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Appendix

A Proofs of Theorem 3

Let z ∈ Rdz be an arbitrary local minimum of Q. From the convexity and differentiability of Qi and Ri, we have
that
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Since z is a local minimum of Q, by the definition of a local minimum, there exists ε1 > 0 such that Q(z) ≤ Q(z′)
for all z′ ∈ B(z, ε1). Then, for any ε ∈ [0, ε1/2) and any ν ∈ V[z, ε], the vector (z + εv) is also a local minimum
because

Q(z + εv) = Q(z) ≤ Q(z′),

for all z′ ∈ B(z + εv, ε1/2) ⊆ B(z, ε1), where the set inclusion follows from the triangle inequality. This satisfies
the definition of a local minimum for (z + εv). Since the composition and the sums of differentiable functions
are differentiable, the vector (z+ εv) is a differentiable local minimum. Therefore, from the first-order necessary
condition of differentiable local minima, there exists ε0 > 0 such that for any ε ∈ [0, ε0), any v ∈ V[θ, ε], and any
k ∈ {1, . . . , dθ},

∂kQ(z + εv) =
1

m

m∑
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∂Qi(φi(θ))∂kφi(z + εv) + ∂Ri(ϕi(θ))∂kϕi(z + εv) = 0, (6)

where we used the fact that φi(z) = φi(z + εv) and ϕi(z) = ϕi(z + εv) for any v ∈ V[z, ε]. From (6), there exists
ε0 > 0 such that for any ε ∈ [0, ε0), any S ⊆fin V[θ, ε] and any α ∈ Rdθ×|S|,
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where the second line follows the definition of φzi (α, ε, S) and ϕzi (α, ε, S), and the last line follows (6).

Furthermore,
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where the second line follows the assumption of the existence of a function h for writing φi(z) and ϕi(z), and
the last line follows (6).

Substituting (7) and (8) into (5), there exists ε0 > 0 such that for any ε ∈ [0, ε0), any S ⊆fin V[θ, ε] and any
α ∈ Rdθ×|S|,
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∂Ri(ϕi(z))ϕi(z).

This proves the main statement of the theorem. In the case of ρ = 1, this shows that on the one hand, there
exists ε0 > 0 such that for any ε ∈ [0, ε0), Q(z) ≤ inf{ 1

m

∑m
i=1Qi(φ

z
i (α, ε, S))+Ri(ϕ

z
i (α, ε, S)) : S ⊆fin V[z, ε], α ∈

Rdz×|S|}. On the other hand, since φi(z) =
∑dz
k=1 h(z)k∂kφi(z) and ϕi(z) = ρ

∑dz
k=1 h(z)k∂kϕi(z) with ρ = 1,

we have that Q(z) ≥ inf{ 1
m

∑m
i=1Qi(φ

z
i (α, ε, S))+Ri(ϕ

z
i (α, ε, S)) : S ⊆fin V[z, ε], α ∈ Rdz×|S|}. Combining these

yields the desires statement for the equality in the case of ρ = 1.

B Proofs of eliminating local minima

A high level idea behind the proofs of Theorems 1 and 2 in this section (instead of the proof via the PGB
necessary condition) follows the idea utilized by Kawaguchi (2016) for deep linear networks. That is, we first
obtain possible candidate local minima θ̃ via the first-order necessary condition (i.e., {(θ, a, b,W ) : a = 0}), and
then consider small perturbations of those candidate local minima. From the definition of local minima, the value
at a possible local minimum θ̃ must be less than or equal to the value at any sufficiently small perturbations
of the given local minimum θ̃. This condition imposes strong constraints on those candidate local minima, and
turns out to be sufficient to prove the desired result with appropriate perturbations and rearrangements, together
with the interpolation result with polynomial or simply based on linear algebra (i.e., we can interpolate m′ points
via polynomial as the corresponding matrix has rank m′).

In all the proofs of Theorems 1 and 2 (including the proof with the PGB necessary condition), we let θ be
arbitrary so that we can prove the failure mode of eliminating the suboptimal local minima in the next section
(Theorem 4) by reusing these proofs. Let `y(q) = `(q, y), and let ∇`y(ϕ(q)) = (∇`y)(ϕ(q)) be the gradient ∇`y
evaluated at an output ϕ(q) of a function ϕ.

B.1 Proof of Theorem 1 without the PGB necessary condition

Proof of Theorem 1. Let θ be fixed. Let (a, b,W ) be a local minimum of L̃|θ(a, b,W ) := L̃(θ, a, b,W ). Let
L̃|(θ,W )(a, b) = L̃(θ, a, b,W ). Since `y : q 7→ `(q, y) is assumed to be differentiable, L̃|(θ,W ) is also differentiable
(since a sum of differentiable functions is differentiable, and a composition of differentiable functions is differen-
tiable). From the definition of a stationary point of a differentiable function L̃|(θ,W ), for all k ∈ {1, 2, . . . , dy},
ak

∂L̃(θ,a,b,W )
∂ak

= 1
m

∑m
i=1(∇`yi(f(xi; θ)+g(xi; a, b,W )))kak exp(w>k x+bk)+2λak = ∂L̃(θ,a,b,W )

∂bk
+2λa2

k = 2λa2
k = 0,

which implies that ak = 0 for all k ∈ {1, 2, . . . , dy}, since 2λ 6= 0. Therefore, we have that

a = 0. (9)

This yields g(x; a, b,W ) = 0, and
L̃(θ, a, b,W ) = L(θ).

We now consider perturbations of a local minimum (a, b,W ) of L|θ with a = 0. Note that, among other equivalent
definitions, a function h : Rd → R is said to be differentiable at q ∈ Rd if there exist a vector ∇h(q) and a function
ϕ(q; ·) (with its domain being a deleted neighborhood of the origin 0 ∈ Rd) such that lim∆q→0 ϕ(q; ∆q) = 0, and

h(q + ∆q) = h(q) +∇h(q)>∆q + ‖∆q‖ϕ(q; ∆q),

for any non-zero vector ∆q ∈ Rd that is sufficiently close to 0 ∈ Rd (e.g., see fundamental increment lemma
and the definition of differentiability for multivariable functions). Thus, with sufficiently small perturbations
∆a ∈ Rdy and ∆W =

[
∆w1 ∆w2 . . . ∆wdy

]
∈ Rdx×dy , there exists a function ϕ such that
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L̃(θ, a+ ∆a, b,W + ∆W )

=
1

m

m∑
i=1

`yi(f(xi; θ) + ∆gi) + λ‖∆a‖22

=
1

m

m∑
i=1

`yi(f(xi; θ)) +∇`yi(f(xi; θ))
>∆gi + ‖∆gi‖2ϕ(f(xi; θ); ∆gi) + λ‖∆a‖22,

where lim∆q→0 ϕ(f(xi; θ); ∆q) = 0 and ∆gi = g(xi; ∆a, b,W + ∆W )). Here, the last line follows the definition
of the differentiability of `yi , since g(xi; ∆a, b,W + ∆W )k = ∆ak exp(w>k xi + ∆w>k xi + bk) is arbitrarily small
with sufficiently small ∆ak and ∆wk.

Combining the above two equations, since (a, b,W ) is a local minimum, we have that, for any sufficiently small
∆a and ∆w,

L̃(θ, a+ ∆a, b,W + ∆W )− L̃(θ, a, b,W )

=
1

m

m∑
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∇`yi(f(xi; θ))
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1
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m∑
i=1

‖∆gi‖2ϕ(f(xi; θ); ∆gi) + λ‖∆a‖22

≥ 0.

Rearranging with ∆a = εv such that ε > 0 and ‖v‖2 = 1, and with ∆g̃i = g(xi; v, b,W + ∆W ),

ε

m
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i=1

∇`yi(f(xi; θ))
>∆g̃i ≥ −

ε

m

m∑
i=1

‖∆g̃i‖2ϕ(f(xi; θ); ε∆g̃i)− λε2‖v‖22,

since ∆gi = ε∆g̃i. With ε > 0, this implies that

1
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>∆g̃i ≥ −

1
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m∑
i=1

‖∆g̃i‖2ϕ(f(xi; θ); ε∆g̃i)− λε‖v‖22.

Since ϕ(f(xi; θ); ε∆g̃i)→ 0 and λε‖v‖22 → 0 as ε→ 0 (ε 6= 0),

m∑
i=1

∇`yi(f(xi; θ))
>g(xi; v, b,W + ∆W ) ≥ 0.

For any k ∈ {1, 2, . . . , dy}, by setting vk′ = 0 for all k′ 6= k, we have that

vk

m∑
i=1

(∇`yi(f(xi; θ)))k exp(w>k xi + ∆w>k xi + bk) ≥ 0,

for any vk ∈ R such that |vk| = 1. With vk ∈ {−1, 1},
m∑
i=1

(∇`yi(f(xi; θ)))k exp(w>k xi + bk) exp(∆w>k xi) = 0.

By setting ∆wk = ε̄kuk such that ε̄k > 0 and ‖u‖2 = 1,

∞∑
t=0

ε̄tk
t!

m∑
i=1

(∇`yi(f(xi; θ)))k exp(w>k xi + bk)(u>k xi)
t = 0,

since exp(q) = limT→∞
∑T
t=0

qt

t! and a finite sum of limits of convergent sequences is the limit of the finite sum.
Rewriting this using zt =

∑m
i=1(∇`yi(f(xi; θ)))k exp(w>k xi + bk)(u>k xi)

t,

lim
T→∞

T∑
t=0

ε̄tk
t!
zt = 0. (10)
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We now show that zp = 0 for all p ∈ N0 by induction. Consider the base case with p = 0. Equation (10) implies
that

lim
T→∞

(
z0 +

T∑
t=1

ε̄tk
t!
zt

)
= z0 + lim

T→∞

T∑
t=1

ε̄tk
t!
zt = 0

since limT→∞
∑T
t=1

ε̄tk
t! zt exists (which follows that limT→∞

∑T
t=0

ε̄tk
t! zt = 0 exists). Here, limT→∞

∑T
t=1

ε̄tk
t! zt → 0

as ε̄ → 0, and hence z0 = 0. Consider the inductive step with the inductive hypothesis that zt = 0 for all
t ≤ p− 1. Similarly to the base case, Equation (10) implies

p−1∑
t=0

ε̄tk
t!
zt +

ε̄pk
p!
zp + lim

T→∞

T∑
t=p+1

ε̄tk
t!
zt = 0.

Multiplying p!/ε̄pk on both sides, since
∑p−1
t=0

ε̄tk
t! zt = 0 from the inductive hypothesis,

zp + lim
T→∞

T∑
t=p+1

ε̄t−pk p!

t!
zt = 0.

Since limT→∞
∑T
t=p+1

ε̄t−pk p!

t! zt → 0 as ε̄ → 0, we have that zp = 0, which finishes the induction. Therefore, for
any k ∈ {1, 2, . . . , dy} and any p ∈ N0,

m∑
i=1

(∇`yi(f(xi; θ)))k exp(w>k xi + bk)(u>k xi)
p = 0. (11)

Let x ⊗ x be the tensor product of the vectors x and x⊗p = x ⊗ · · · ⊗ x where x appears p times. For a p-th
order tensor M ∈ Rd×···×d and p vectors u(1), u(2), . . . , u(p) ∈ Rd, defines

M(u
(1)
k , u

(2)
k , . . . , u

(p)
k ) =

∑
1≤i1···ip≤d

Mi1···ipu
(1)
i1
· · ·u(p)

ip
.

Let ξi,k = (∇`yi(f(xi; θ)))k exp(w>k xi + bk). Then, for any k ∈ {1, 2, . . . , dy} and any p ∈ N0,

max
u(1),...,u(p):

‖u(1)‖2=···=‖u(p)‖2=1

(
m∑
i=1

ξi,kx
⊗p
i

)
(u(1), . . . , u(p)) = max

u:‖u‖2=1

(
m∑
i=1

ξi,kx
⊗p
i

)
(u, u, . . . , u)

= max
u:‖u‖2=1

m∑
i=1

ξi,k(u>xi)
p = 0.

where the first line follows theorem 2.1 in (Zhang et al., 2012), and the last line follows Equation (11). This
implies that

m∑
i=1

(∇`yi(f(xi; θ)))k exp(w>k xi + bk) vec(x⊗pi ) = 0 ∈ Rd
p
x . (12)

Using Equation (12), we now prove statement (i). For any θ′, there exist p and ut,k (for t = 0, . . . , p and
k = 1, . . . , dy) such that

m(L(θ′)− L(θ)) ≥
m∑
i=1

∇`yi(f(xi; θ))
>(f(xi; θ

′)− f(xi; θ))

=

m′∑
j=1

∑
i∈Ij

∇`yi(f(xi; θ))
>(f(xi; θ

′)− f(xi; θ))
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=

m′∑
j=1

dy∑
k=1

(f(x̄j ; θ
′)− f(x̄j ; θ))k︸ ︷︷ ︸

=exp(w>k x̄j+bk)
∑p
t=0 u

>
t,k vec(x̄⊗tj )

∑
i∈Ij

∇`yi(f(xi; θ))k

=

p∑
t=0

dy∑
k=1

u>t,k

m∑
i=1

∇`yi(f(xi; θ))k exp(w>k xi + bk) vec(x⊗ti )︸ ︷︷ ︸
= 0 from Equation (12)

= 0,

where the first line follows from the assumption that `yi is convex and differentiable, and the third line follows
from the fact that x̄j = x for all x ∈ Ij . The forth line follows from the fact that the vector vec(x⊗ti ) contains
all monomials in xi of degree t, and m′ input points x̄1, . . . , x̄m′ are distinct, which allows the basic existence
(and construction) result of a polynomial interpolation of the finite m′ points; i.e., with p sufficiently large
(p = m′ − 1 is sufficient), for each k, there exists ut,k such that

∑p
t=0 u

>
t,k vec(x̄⊗tj ) = qj,k for any qj,k ∈ R for

all j ∈ {1, . . . ,m′} (e.g., see equation (1.9) in Gasca and Sauer 2000), in particular, including qj,k = (f(x̄j ; θ
′)−

f(x̄j ; θ))k exp(−w>k x̄j − bk).

Therefore, we have that, for any θ′, L(θ′) ≥ L(θ), which proves statement (i). Statement (ii) directly follows
from Equation (9).

B.2 Proof of Theorem 2

Proof of Theorem 2. Let θ be fixed. Let (a, b,W ) be a local minimum of L̃|θ(a, b,W ) := L̃(θ, a, b,W ). Then, for
any k ∈ {1, 2, . . . , dy}, there exist p and ut,k (for t = 0, . . . , p) such that

m∑
i=1

(∇`yi(f(xi; θ)))
2
k =

m′∑
j=1

|Ij |(∇`f∗(x̄j)(f(x̄j ; θ)))
2
k

=

p∑
t=0

u>t,k

m∑
i=1

(∇`yi(f(xi; θ)))k exp(w>k xi + bk) vec(x⊗ti )

= 0,

where the first line utilizes Assumption 3. The second line follows from the fact that since m′ input points
x̄1, . . . , x̄m′ are distinct, with p sufficiently large (p = m′ − 1 is sufficient), for each k, there exist ut,k for
t = 0, . . . , p such that

∑p
t=0 u

>
t,k vec(x⊗ti ) = (∇`f∗(x̄j)(f(x̄j ; θ)))k exp(−w>k x̄j − bk)|Ij |−1 (similarly to the proof

of Theorem 1). The third line follows from Equation (12). Here, Equation (12) still holds since it is obtained in
the proof of Theorem 1 under only the assumption that the function `yi : q 7→ `(q, yi) is differentiable for any
i ∈ {1, . . . ,m}, which is still satisfied by Assumption 2.

This implies that for all i ∈ {1, . . . ,m}, ∇`yi(f(xi; θ)) = 0, which proves statement (iii) because of Assumption
2. Statement (i) directly follows from Statement (iii). Statement (ii) directly follows from Equation (9).

C Proof of Theorem 4

The proofs of Theorems 1 and 2 (including the proof via the PGB necessary condition) are designed such that

the proof of Theorem 4 is simple, as shown below. Given a function ϕ(q) ∈ Rd and a vector v ∈ Rd′ , let ∂ϕ(q)
∂v

be a d× d′ matrix with each entry (∂ϕ(q)
∂v )i,j = ∂(ϕ(q))i

∂vj
.

Proof of Theorem 4. Let Assumption 1 hold (instead of Assumptions 2 and 3). In the both versions of our proofs
of Theorem 1, θ was arbitrary and (a, b,W ) was an arbitrary local minimum of L̃|θ(a, b,W ) := L̃(θ, a, b,W ).
Thus, the same proof proves that, for any θ, at every local minimum (a, b,W ) ∈ Rdy ×Rdy ×Rdx×dy of L̃|θ, θ is
a global minimum of L. Thus, based on the logical equivalence (p→ q ≡ ¬q → ¬p), if θ is a not global minimum
of L, then there is no local minimum (a, b,W ) ∈ Rdy × Rdy × Rdx×dy of L̃|θ, proving the first statement in the
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case of using Assumption 1. Instead of Assumption 1, if Assumptions 2 and 3 hold, then the exact same proof
as above (with Theorem 1 being replaced by Theorem 2) proves the first statement.

Example 1 with the square loss or the smoothed hinge loss suffices to prove the second statement. However, to ob-
tain better theoretical insight, let us consider a more general construction of the desired tuples (`, f, {(xi, yi)}mi=1)

to prove the second statement. Let θ ∈ Rdθ . In addition, let A[θ] = 1
m [(∂f(x1;θ)

∂θ )> · · · (∂f(xm;θ)
∂θ )>] ∈ Rdθ×(mdy)

be a matrix, and r[ϕ] = [∇`y1(ϕ(x1))> · · · ∇`ym(ϕ(xm))>]> ∈ Rmdy be a column vector given a function
ϕ : Rdx → Rdy . Then,

∂L(θ)

∂θ
=

1

m

m∑
i=1

∇`yi(f(xi; θ))
> ∂f(xi; θ)

∂θ
= (A[θ]r[f(·; θ)])>,

and
∂L̃(θ, a, b,W )

∂θ
= (A[θ]r[f(·; θ) + g(·; a, b,W )])>.

Here, the equality A[θ]r[f(·; θ)] = 0 is equivalent to r[f(·; θ)] ∈ Null(A[θ]), where Null(A[θ]) is the null space of the
matrix A[θ]. Therefore, any tuple (`, f, {(xi, yi)}mi=1) such that r[f(·; θ)] ∈ Null(A[θ])⇒ r[f(·; θ)+g(·; a, b,W )] ∈
Null(A[θ]) at a suboptimal θ suffices to provide a proof for the second statement. An (infinite) set of tuples
(`, f, {(xi, yi)}mi=1) such that there exists a suboptimal θ of L with A[θ] = 0 (e.g., Example 1) satisfies this
condition, which proves the second statement.

D Additional numerical examples for good cases

For using L̃ instead of L, we show the failure mode and ‘bad-case’ scenarios in Section 6 and Appendix E.
Accordingly, to have a balance, this section considers some of ‘good-case’ scenarios where using L̃ instead of
L helps optimization of L. Figure 3 shows the histograms of training loss values after training with original
networks f minimizing L, and modified networks f̃ minimizing L̃ with and without the failure mode detector
based on Theorems 1, 2 and 4. We used a simple failure mode detector, which automatically restarted the
optimizer to a random point during training when ‖a‖2 + ‖b‖2 + ‖W‖2 ≥ 7. The histograms were plotted with
the results of 1000 random trials for Semeion dataset and of 100 random trials for KMNIST dataset, for each
method. Semeion (Brescia, 1994) is a dataset of handwritten digits and KMNIST (Clanuwat et al., 2018) is
a dataset of Japanese letters. We used the exact same experimental settings for both the original networks
f and the modified networks f̃ with and without the failure mode detector. We used a standard variant of
LeNet (LeCun et al., 1998) with ReLU activations: two convolutional layers with 64 5× 5 filters, followed by a
fully-connected layer with 1024 output units and the output layer. The AdaGrad optimizer was employed with
the mini-batch size of 64.

(a) Semeion (b) KMNIST

Figure 3: Histogram of loss values after training with original networks f minimizing L (original), modified
networks f̃ minimizing L̃ (elimination of local minima), and modified networks f̃ minimizing L̃ with the failure
mode detector (elimination & failure mode monitor). The plotted training loss values are the values of the
standard training objective L for both original networks f (minimizing L) and modified networks f̃ (minimizing
L̃) with and without the failure mode detector. The elimination of local minima helped a gradient-based method
for Semeion, and did not help it much for KMNIST. For KMNIST, the novel failure mode of the elimination was
detected by monitoring the norms of (a, b,W ) to restart and search a better subspace.
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E Additional numerical and analytical examples to illustrate the failure mode

Figure 4 illustrates the novel failure mode proven by Theorem 4. The setting used for plotting Figure 4 is exactly
same as that in Figure 1 (i.e., Example 1) except that `(f(x1; θ), y1) = (f(x1; θ)− y1)2 and y1 = f(x1; 0.8).

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

(a) original objective function L (b) modified objective function L̃ (c) negative gradient directions of L̃

Figure 4: Illustration of the failure mode suggested by Theorem 4 with the squared loss. The qualitatively
identical behavior as that in Figure 1 can be observed.

Examples 6 and 7 illustrate the same phenomena as those in Examples 3 and 4 with a smoothed hinge loss
instead of the squared loss.

Example 6. Let m = 1 and dy = 1. In addition, L(θ) = `(f(x1; θ), y1) = (max(0, 1− y1f(x1; θ))3. Accordingly,

L̃(θ, a, b,W ) = (max(0, 1 − y1f(x1; θ) − y1a exp(w>x1 + b))3 + λa2. Let θ be a non-global minimum of L as
f(x1; θ) 6= y1, in particular, by setting f(x1; θ) = −1 and y1 = 1. Then, L(θ) = 8. If (a, b,W ) is a local
minimum, we must have a = 0 similarly to Example 3, yielding that L̃(θ, a, b,W ) = 8. However, a point with
a = 0 is not a local minimum, since with a > 0 being sufficiently small,

L̃(θ, a, b,W ) = (2− a exp(w>x1 + b))3 + λa2 < 8.

Hence, there is no local minimum (a, b,W ) ∈ R × R × Rdx of L̃|θ. Indeed, if we set a = −2 exp(−1/ε) and
b = 1/ε − w>x1, L̃(θ, a, b,W ) = λ exp(−2/ε) → 0 as ε → 0, and hence as a → 0− and b → ∞. This illustrates
the case in which (a, b) does not attain a solution in R×R. The identical conclusion holds with the general case
of f(x1; θ) 6= y1 by following the same logic.

Example 7. Let m = 2 and dy = 1. In addition, L(θ) = (max(0, 1 − y1f(x1; θ))3 + (max(0, 1 − y2f(x2; θ))3.
Moreover, let x1 6= x2. Finally, let f(x1; θ) = −1, f(x2; θ) = 1, y1 = 1, and y2 = −1. If (a, b,W ) is a local
minimum, we must have a = 0 similarly to Example 3, yielding L̃(θ, a, b,W ) = 16. However, a point with a = 0
is not a local minimum, which follows from the perturbations of (a,W ) in the same manner as in Example 4.
Therefore, there is no local minimum (a, b,W ) of L̃|θ. Indeed, if we set a = 2 exp(−1/ε), b = 1/ε − w>x1, and
w = − 1

ε (x2 − x1),

L̃(θ, a, b,W ) = (2 + 2 exp(−‖x2 − x1‖22/ε))3 + λ exp(−2/ε)→ 8

as ε→ 0, and hence as a→ 0−, b→∞ and ‖w‖ → ∞, illustrating the case in which (a, b,W ) does not attain a
solution in R× R× Rdx .
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