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A PROOFS

Proposition If there exists a subset V C X x §
of positive measure under P such that P(y =1|V) > ¢
and Pr,(y = 1]V) < ¢, then there exists a maximum
Qg € Q of vp, such that vp(mg;) < vp(mE«).

Proof. First, note that any deterministic policy m is
fully characterized by the sets Wy(m) = {(x,s) |n(d =
1|lz,s) = d} for d € {0,1}. For a deterministic
threshold rule g, we write Wy(Q) = {(=, s) | 1[Q(y =
1lz,s) > ¢] = d} = Wy(mg). By definition, we
have that v(mg) < v(mg+). We note that whenever
the symmetric difference between the sets W4(Q) and
Wa(Q*), Wa(Q)AW,4(Q*), has positive inner measure
(induced by P) for d € {0,1} and a Q € Q, we have
v(mg) # v(mg~) and thus v(mg) < v(mwg~). Thus it only
remains to show that Wy (Q*)AW,(Qf) has positive
inner measure for d € {0,1}. Since P(y = 1|V) > ¢ by
assumption, we have V C W7(Q*). At the same time,
because of P, (y =1|V) < ¢ by assumption, we have
VN Wi(my) = (. Finally, we note that for any Q € Q,
we have that vp, (Q) = vp, (Q - Xw,(x)), Where Xe
is the indicator function on the set e. Therefore, we
can choose a maximum () maximizing vp,, such that
W1 (Q§) € Wi(mp) and thus VN W1(QF) = ° (. There-
fore V C W1(Q§)AW1(Q™*) and V has positive measure
under P by assumption. Thus Wy(QF)AW4(Q*) has
positive inner measure and we conclude vp(7qs) <
’Up(ﬂ'Q*). O

Proposition Let (o, IT', A) be a sequential policy
learning task, where II' C II are deterministic threshold
policies based on a class of predictive models, and let
the initial policy be more strict than the optimal one,
ie., Wo(mg) 2 Wo(n*). If A is non-exploring on any
ii.d. sample D ~ Py, (x,s,y) with probability at least
1—§, for all t € N, then Prlrp # 7] > 1 - Y1, 6
for any T' € N.

Proof. At each step, we have

Prim = n*] = Pr[Wy(m) = Wo(m™)]
< PI"[Wo(ﬂ't) Wo 77*)]

< b+ Pr[m_q1 = 7.

By the assumption that my # 7%, we recursively get
Pr[m, = 7*] < Z::O 9; which concludes the proof. O

Corollary A deterministic threshold policy 7w #
7 with Pr[r(z, s) # y] = 0 under P will never converge
to m* under an error based learning algorithm for the
underlying predictive model.

Proof. Since error based learning algorithms lead to
non-exploring policies whenever }°, .o 1[m(®, s) #
y] = 0, using the assumption Pr{r(x,s) # y] = 0, we
can use Proposition [2] with d; = 0 for all ¢ € N. O

Proposition[dl Let II be the set of exploring policies
and let mgp € IT'\ {w*}. Then,

v(r*) = sup {upm(ﬂ',ﬂo)
mell\{r*}
A
- S0, (m.m0) = b (m,m0))2 .

Proof. We already know that the supremum is upper
bounded by v(7*), i.e., it suffices to construct a se-
quence of policies {7, }nen., C II'\ {7*} such that
v(my) — v(r*) for n — oo. Using notation from the
proof of Proposition [T} we define

1
m(d=1|x,s) ::{1

It is clear that m, is exploring, i.e., m, € II, for all
n € Ny as well as that m, # 7m*. To compute

if (x,s) € Wi(n*)
otherwise.

7}520 vp,, (Tn, m0) =nli_)rr;0 ('U/Pwo (7n, o)
A

— 5 (b(])%,o (71'71; 770) — b}:)wo (7Tn, 7T0))2)

we look at the individual limits. For the utility we have

lim up, (75, 70)
n—oo

n—roo

m(d=1|x,s)
To(d= 1|z, ) (y_c)]

:/ P(y:1|:1:,s)—cdp (x,5) +
Wi (%) Wo(d: 1|.’B,S) o ’

Ply=1 -
lim — / y [@5) —c dPy,(x,s)
n—oon Jy, (ze  To(d=1|z,s)
=:C with |C1|<oco for any given exploring mo €Il
. O
(y —c¢)dP(z,s,y) + lim —
Wl(ﬂ' )

n—oo N
up(m").

Similarly, for the benefit terms with f(d,y) = d or



Fair Decisions Despite Imperfect Predictions

w8 optimal policy
300 100 500 600 700 800 500 550 600 650 700 750
FICO score data collection threshold &

Figure 6: We show the predictive models Q¢ learned
from data collected with an initial threshold of £ (left)
and their violation of demographic parity (right).

f(d,y) = d-y we have for s € {0,1}

3 S
nh_}rr;o bp,, (7, T0)

E fma(d=1]z,5),y)
wPro@yle) | T (d = 1], s)

:/ f(l,P(y=1|iL‘7S)>dP7r (:B‘S)—‘r
Wi () 0

mo(d=1|x,s)
1 1,Ply=1
lim 7/ f(1, Py ‘:1575)) dPﬂo(iL‘|S)
n—0o 1 Jyy (e mo(d = 1]z, s)

=:C5 with |C5|<oco for any given exploring mo €Il
CS
:/ f(1,y)dP(x,y|s) + lim —2
Wl (71'*) n—,oo N
= by ().
Because all the limits are finite, via the rules for sums
and products of limits we get

nll_}n'olo vp,, (T, T0)

= lim up, (7, m0)

n—oo
AL .
— §(nh_>ngo bp O(ﬂ‘n,ﬂ'o) - nhngo b};ﬂo (T, T0))
* A * *
= up(r") = S(bp (") = bp(7"))*

B DETAILS OF THE LENDING
EXAMPLE

For a range of initial data collection score thresholds
¢ € [500, 800], we sample 10,000 scores from the spec-
ified population (80% white, 20% black) via inverse
transform sampling given the cumulative distributions
functions over scores of the two groups. The relatively
large number of examples is chosen to illustrate that the
negative result is not a consequence of insufficient data.
We then fit an L2 regularized logistic regression model
to each of these datasets using 5-fold cross validation
to select the regularization parameter. This results in
a predictive model Q)¢ for each initial data collection
threshold €. For each of these models we construct the
decision rule m¢(d = 1|x) = 1[Q¢(y = 1| z) > ¢], with

stochastic policies

,/T*

e

o

Figure 7: This figure illustrates how it can be impossi-
ble to find the optimal policy when the allowed set of
policies is restricted to deterministic decision rules.

¢ = 0.7. We then estimate utility and fairness violation
of both equal opportunity as well as demographic par-
ity on a large sample from the entire population (one
million examples). For completeness, Figure |§| shows
the resulting logistic models as well as the violation of
demographic parity.

C ILLUSTRATION OF
IMPOSSIBILITY RESULT

Figure[7]illustrates that, even though the optimal policy
7* is deterministic, when starting from a deterministic
initial policy my, we cannot iteratively reach 7* when
updating solely within deterministic policies (red line).
It is necessary to deploy stochastic exploring policies
along the way to then be able to converge to the optimal

policy (green line).

D DESIGNING EXPLORING
POLICIES

In this section, our goal is to put Proposition [4] into
practice by designing an algorithm that finds an ex-
ploring policy that achieves the same utility as the
optimal policy 7* using data gathered by a given ini-
tial exploring policy 7y, i.e., not from the ground truth
distribution P(z,s,y). To this end, we consider a class
of parameterized exploring policies II(O) and we aim to
find the policy mg- € II(O) that solves the optimization

problem in eq. .

For a gradient-based approach, note that we can obtain
an expression for Vg,vp(me,) by simply replacing mg
with g, _, ineq. . Thus we can estimate the gradient
with samples (x;,s;,y;) from the distribution P;,_,
induced by the previous policy 7;_1, and sample the
decisions from the policy under consideration d; ~
mg,. This yields an unbiased finite sample Monte-Carlo
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estimator for the gradients

Vot log g, (di | L, Si)»

Vetb (Weuﬂetfl

nt—1

i

(diayi)
1 ‘ Z;, Sl)

Vet log e, (di | xTr;, Si).
(9)

where n;_; is the number of positive decisions taken
by me,_,. Here, it is important to notice that, while
the decisions by mg, , were actually taken and, as a
result, (feature and label) data was gathered under
Te,_,, the decisions d; ~ mg, are just sampled to im-
plement SGA. The overall policy learning process is
summarized in Algorithm |1} where MINIBATCH(D, B)
samples a minibatch of size B from the dataset D and
INITIALIZEPOLICY () initializes the policy parameters.

T, _ 1(

Remarks. In Algorithm [I] to learn each policy 7,
we have limited ourselves to data gathered only by
the previous policy m;,_1. However, we may readily
use samples from the distribution Py, induced by any
previous policy my in eq. @[) The average of multiple
gradient estimators for several ' < ¢ is again an unbi-
ased gradient estimator. In practice, one may decide
to consider recent policies 7y, which are more similar
to m, thus ensuring that the gradient estimator does
not suffer from high variance.

The way in which we use weighted sampling to estimate
the above gradients closely relates to the concept of
weighted inverse propeunsity scoring (wIPS), commonly
used in counterfactual learning |Bottou et al.| (2013]);
Swaminathan & Joachims| (2015a)), off-policy reinforce-
ment learning Sutton & Barto| (1998), and contextual
bandits |Langford et al.| (2008). However, a key differ-
ence is that, in wIPS, the labels y are always observed.
As an example, in the case of counterfactual learning
one may interpret mo(z,s) in Eq. [4] as a treatment
assignment mechanism in a randomized control trial.
Under this interpretation, the two most prominent dif-
ferences with respect to the literature become apparent.
First, we do not observe outcomes in the control group.
Second, in observational studies for treatment effect
estimation (Rubinl [2005)), one usually estimates the di-
rect causal effect of d on y, i.e., P(yldo(d = d'),z, s), in
the presence of confounders x, s that affect both d and
y. This could be evaluated in a (partially) randomized
control trial, where IPW also comes in naturally (Pearl,
2009). In contrast, in our setting, the true label y
is independent of the decision d and we estimate the
conditional P(y|z, s) using data from the induced dis-
tribution Py, (z,s) « P(x, s)mo(z,s). With exploring

policies, we obtain indirect access to the true data
distribution P(zx,s) (positivity), and thus to an un-
bias estimator of the conditional distribution P(y|z,s)
(consistency).

Despite this difference, we believe that recent advances
to reduce the variance of the gradients in weighted
inverse propensity scoring, such as clipped-wIPS|Bottou
et al|(2013)), self-normalized estimator |Swaminathan &
Joachims| (2015b)), or doubly robust estimators |[Dudik
et al| (2011), may be also applicable to our setting.
This is left for future work.

Logistic policy. Let us now introduce a concrete
parameterization of mg, a logistic policy given by

mo(d = 1|z, s) = o(¢(x,5)0) € (0,1),

where o(a) m is the logistic function,
0 € © C R™ are the model parameters, and ¢ :
R?x {0,1} — R™ is a fixed feature map. Note that any
logistic policy is an exploring policy and we can analyti-
cally compute its score function Vg, logmg, (d = 1|z, s)
as é

Vo, log(a (9] 6:)) = T;fret eR™,

where ¢; := ¢(x;, s;). Using this expression, we can
rewrite the empirical estimator for the gradient in

eq. (@)

thu(ﬂ-Gf ) 7Tt9f—1) ~

nt—1 T
1+€7¢i 0: 1
di (yi — ¢) @i
Te 1 1 (2]
o lteti®
Votb (Weﬁmfl) ~
Nneg—1 T
1+€_¢i 0: 1
dis i) i
To f( iy Yi 7
o 1tet

Given the above expression, we have all the necessary
ingredients to implement Algorithm

Semi-logistic policy. As discussed in the previous
section, randomizing decisions may be questionable
in certain practical scenarios. For example, in loan
decisions, it may appear wasteful for the bank and
contestable for the applicant to deny a loan with proba-
bility greater than zero to individuals who are believed
to repay by the current model. In those cases, one
may consider the following modification of the logistic
policy, which we refer to as semi-logistic policy:

1 if ¢(x,s)70 >0,
o(p(x,s)70) if p(x,s)70 < 0.

Similarly as in the logistic policy, we can compute the
score function analytically as:

¢ (z, 5)
1 + eqb(w,s)TG

fold=1|a,s) =

Vo log7g(d|x,s) = 1[p(x,s)" 6 < 0],
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and use this expression to compute an unbiased esti-
mator for the gradient in eq. @ as:

Nng—1
1 d; (y; —¢) @i
Vouulro, mo )~ Y
2
¢7T20,,<0

if ¢:0t71 > 07
if ¢;F0t_1 < 0.

—N—

1
(1 + e_q&?et—l)

ne—1

1 f(divyi) b;
Vo,b%(me,,mo,_,) = —
o ( [] [2] 1) Ni_1 — 1+€¢:0t
¢1Tet<0
1 if ¢ 6,1 >0,
(1+4e ¢ 0-1) ifplO,_, <O0.

Note that the semi-logistic policy is an exploring policy
and thus satisfies the assumptions of Proposition

Finally, in all our experiments, we directly worked with
the available features @ as inputs and added a constant
offset, i.e., ¢p(x,s) = (1, x).

E ADDITIONAL EXPERIMENTAL
RESULTS

E.1 Experiments on Synthetic Data

Setup. The precise setup for the two different syn-
thetic settings, illustrated in Figure[2] is as follows. The
only feature x is a scalar score and s ~ Ber(0.5). In the
first setting, x is sampled from a normal distribution
N(p=0.5—s,0 =1) truncated to = € [—0.8,0.8], and
the conditional probability P(y|z) is strictly mono-
tonic in the score and does not explicitly depend on
s. As a result, for any c, there exists a single decision
boundary for the score that results in the optimal pol-
icy, which is contained in the class of logistic policies.
Note, however, that the score is not well calibrated,
ie., P(y|x) is not directly proportional to x.

In the second setting, x ~ N (= 3(0.5 — s),0 = 3.5).
Here, the conditional probability P(y|x) crosses the
cost threshold ¢ multiple times, resulting in two disjoint
intervals of scores for which the optimal decision is
d =1 (green areas). Consequently, the optimal policy
cannot be implemented by a deterministic threshold
rule based on a logistic predictive model. We show the
best achievable single decision threshold in Figure

Repeated figure. First, in Figure 8 we again show
the contents of Figure [3]in the main text, but added
effective utility and also show shaded regions for the
25th and 75th percentile over 30 runs.

Evolution of policies. In Figure [0] we show for a
representative run at A = 0 how the different policies

evolve in the two synthetic settings over time. The
two columns correspond to the two different synthetic
settings. For all policies, we show snapshots at a fixed
number of logarithmically spaced time steps between
t = 0 and t = 200. For deterministic threshold rules, we
show the logistic function of the underlying predictive
model. The vertical dashed line corresponds to the
decision boundary in z. For the logistic and semi-
logistic policies, the lines correspond to m(d = 1| z),
i.e., to the probability of giving a positive decision for a
given input x. Note that the semi-logistic policies have
a discontinuity, because we do not randomize for which
the model believes d = 1 is a favorable decision. For
reference, we also show the true conditional distribution,
the cost parameter as well as the best achievable single
decision boundary.

In the first setting, the exploring policies locate the
optimal decision boundary, whereas the deterministic
threshold rules, which are based on learned predictive
models, do not, even though P(y = 1|x) is monotonic
in « and has a sigmoidal shape. The predictive models
focus on fit the rightmost part of the conditional well,
but ignore the right region, from which they never
receive data.

In the second setting, our methods explore more and
eventually take mostly positive decisions for x right of
the vertical dotted line in Figure |2, which is indeed
the best achievable single threshold policy. In contrast,
non-exploring deterministic threshold rules again suffer
from the same issue as in the first setting and converge
to a suboptimal threshold at z = 5. They ignoring the
left green region in Figure [2] and do not overcome the
dip of P(y = 1|z) below ¢, because they never receive
data for z < 4.

Adding fairness constraints. Figures [I0] and [I0]
show how all four metrics at the final time step
t = 200 evolve as A is increased. In Figure we
use demographic parity in the fairness constraint, i.e.,
f(d,y) = d, whereas in Figurewe use equal opportu-
nity as a fairness constraint, i.e., f(d,y) = d-y. In both
figures, the first row corresponds to the first setting
and the second row corresponds to the second setting.
In both cases, our approach achieves reduced fairness
violations for sufficiently large A at the expected cost
of a drop in (effective) utility. Interestingly, in the two
selected synthetic settings, enforcing demographic par-
ity, also leads to satisfying equal opportunity, and—to
a lesser extent—also vice versa.

E.2 Experiments on Real Data

First, in Figure [12| we again show the contents of Fig-
ures [4] and B in the main text with shaded regions for
the 25th and 75th percentile over 30 runs.
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Figure 8: Utility, effective utility, demographic parity and equality of opportunity in the synthetic settings of
Figure E}

Analogously to Figures [0 and [TT] we show the effect of
enforcing fairness constraints in the COMPAS dataset
in Figure Here, the first row corresponds to using
demographic parity as a fairness measure, while the
second row corresponds to using equal opportunity as
a fairness measure. The overall trends are similar to
the results we have observed in the synthetic settings,
reinforcing the applicability of our approach on real-
world data.

E.3 Parameter Settings

The parameters used for the different experiments have
been found by few manual trials. The number of time
steps is T = 200 for all datasets. For the first synthetic
setting we used o = 1, B =256, M =128, N = B- M,
and ¢ =~ 0.142 (chosen such that the optimal decision
boundary is at x = —0.3). For the second synthetic
setting we used a = 0.5, B=128, M =32, N =B- M,
and ¢ = 0.55. Here we also decay the learning rate by
a factor of 0.8 every 30 time steps. For the COMPAS
dataset we used o = 0.1, B = 64, M = 40-B, N = B2,
and ¢ = 0.6. While the initialization for the synthetic
settings can be seen in Figure [0} for COMPAS we
trained a logistic predictive model on 500 i.i.d. examples
for initializing policies and predictive models. For the
strategies where we use data from all previous policies,
we subsample uniformly at random to always keep the
number of gradient updates constant. We also cap the
buffer for previously collected data at a maximum size
of 10%, continuously removing the oldest examples as
new data is collected.
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Figure 9: Learned predictive models for deterministic threshold rules and learned policies for the (semi-)logistic
policies. The columns correspond to the two synthetic settings. We overlay the ground truth distribution
P(y = 1|z) (red line), cost parameter ¢ (dashed, red), and optimal single decision boundary in x within our
model class (dotted, red). We describe the plots in detail in the text.
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Figure 10: We show (effective) utility, effective utility, demographic parity, and equal opportunity (columns) at
the final time step ¢ = 200 as a function of A\ where we constrain demographic parity, i.e., f(d,y) = d. The first
row corresponds to the first setting and the second row corresponds to the second setting.
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Figure 11: We show (effective) utility, demographic parity, and equal opportunity (columns) at the final time step
t =200 as a function of A\ where we constrain equal opportunity, i.e., f(d,y) = d-y. The first row corresponds to
the first setting and the second row corresponds to the second setting.
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Figure 12: Performance on COMPAS data. The first row shows training progress for A = 0, where all four metrics
are estimated on the held-out dataset. The second row shows the final (¢ = 200) utility and demographic parity
when constraining demographic parity (first and second column), as well as utility and equal opportunity when
constraining equal opportunity (third and fourth column) also estimated on the held-out set as a function of A.



Fair Decisions Despite Imperfect Predictions

semi-logistic, t' <t —— semi-logistic, t —1 —— logistic, t' <t —— logistic, t — 1
final effective utility a(t) final utility up(m) final demographic parity |Abp(m)| final equal opportunity |Abp ()|
0.04 : } 0.20 0%
& 0.025 5
= 0.20
0.02 0.000 0.15
: 0.15
—0.025 0.10
0.00 o 0.10
~0.050
0.05 0.05
—0.02 —0.075
0.00 0.00 N
1072 1072 107! 10° 10! 1072 107! 10° 10! 1072 107! 10° 10!
A A A

final utility wp(m) final demographic parity |Abp(m)|
0.20

0.04 0.25

0.025
0.20
0.02 0.000 019
0.15
0,025 0.10
0.00 o

—0.050 0.05

0.05

—0.02 —0.075 0.00 0.00
1072 107! 10° 10! 1072 107! 10 10! 1072 107! 10" 10! 1072 107! 10° 10"
A A A A

Figure 13: We show (effective) utility, demographic parity, and equal opportunity (columns) for the COMPAS
dataset at the final time step ¢ = 200 estimated on the held-out dataset as a function of A. In the first row,
we constrain demographic parity, i.e., f(d,y) = d, and in the second row we constrain equal opportunity, i.e.,



