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Abstract

Consequential decisions are increasingly in-
formed by sophisticated data-driven predic-
tive models. However, consistently learning
accurate predictive models requires access to
ground truth labels. Unfortunately, in prac-
tice, labels may only exist conditional on cer-
tain decisions—if a loan is denied, there is
not even an option for the individual to pay
back the loan. In this paper, we show that, in
this selective labels setting, learning to predict
is suboptimal in terms of both fairness and
utility. To avoid this undesirable behavior, we
propose to directly learn stochastic decision
policies that maximize utility under fairness
constraints. In the context of fair machine
learning, our results suggest the need for a
paradigm shift from “learning to predict” to
“learning to decide”. Experiments on synthetic
and real-world data illustrate the favorable
properties of learning to decide, in terms of
both utility and fairness.

1 INTRODUCTION

The use of machine learning models to assist consequen-
tial decision making—where decisions have significant
consequences for individuals—is becoming common in
a variety of critical applications. For example, in pre-
trial release decisions, a judge may consult a learned
model of the probability of recidivism to decide whether
to grant bail or not. In loan decisions, a bank may
decide whether or not to offer a loan based on learned
estimates of the credit default probability. In fraud
detection, an insurance company may flag suspicious
claims based on a machine learning model’s predicted
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probability that the claim is fraudulent. In all these
scenarios, the goal of the decision maker (bank, law
court, or insurance company) may be to take decisions
that maximize a given utility function. In contrast, the
goal of the machine learning model is solely to provide
an accurate prediction of the outcome, referred to as
(ground truth) label.

In this context, there has been much work on compu-
tational mechanisms to ensure that machine learning
models do not disproportionately harm particular demo-
graphic groups sharing one or more sensitive attributes,
e.g., race or gender (Dwork et al. |2012; Feldman et al.|
2015)). However, most of this work does not distinguish
between decisions and label predictions and, conse-
quently, suggests an inherent trade-off between fairness
and prediction accuracy (Chouldechova, 2017} |Klein-
berg et al.l |2017b)). Only recently has the distinction
been made explicit (Corbett-Davies et al.l 2017; |Klein,
berg et al. [2017a; [Mitchell et al. 2018; Valera et al.
2018). This recent line of work has shown that if a
predictive model achieves perfect prediction accuracy,
deterministic threshold rules, which derive decisions
deterministically from the predictive model by thresh-
olding, achieve maximum utility under various fairness
constraints. This lends support to focusing on deter-
ministic threshold rules and seemingly justifies using
predictions and decisions interchangeably.

However, in many practical scenarios, the decision de-
termines whether a label is realized or not—if bail (a
loan) is denied, there is not even an option for the in-
dividual to reoffend (pay back the loan). This problem
has been referred to by [Lakkaraju et al.| (2017) as selec-
tive labels. As a consequence, the labeled data used to
train predictive models often depend on the decisions
taken, which likely leads to suboptimal performance.
Even worse, deterministic threshold rules using even
slightly imperfect predictive models can be far from
optimal (Woodworth et al. |2017). This negative result
raises the following question: Can we do better if we
learn directly to decide rather than to predict?
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In the present work, we first articulate how the “learn-
ing to predict” approach fails in a utility maximization
setting (with fairness constraints) that accommodates
a variety of real-world applications, including those
mentioned previously. We show that label data gath-
ered under deterministic rules (e.g., prediction based
threshold rules) are neither sufficient to improve the
accuracy of the underlying predictive model, nor the
utility of the decision making process. We then demon-
strate how to overcome this undesirable behavior using
a particular family of stochastic decision rules and
introduce a simple gradient-based algorithm to learn
them from data. Experiments on synthetic and real-
world data illustrate our theoretical results and show
that, under imperfect predictions, learning to predict
is inferior to learning to decide. Code is available at
github.com /nikikilbertus/fair-decisions

Related work. The work most closely related to
ours analyzes the long-term effects of consequential
decisions informed by data-driven predictive models
on underrepresented groups (Hu & Chen, 2018; |Liu
et al.l |2018; IMouzannar et al.l 2019; [Tabibian et al.|
2019). However, this line of work focuses mainly on
the evolution of several measures of well-being under a
perfect predictive model, neglecting the data collection
phase (Dimitrakakis et al.l [2019; [Holstein et al.l 2018).
In contrast, we focus on analyzing how to improve a
suboptimal decision process when labels exist only for
positive decisions. More broadly, our work relates to
the growing literature on fairness in machine learning,
which mostly attempts to match various statistics of
the predictive models across protected subgroups.

We also build on previous work on counterfactual infer-
ence and policy learning (Athey & Wager| [2017; [Ensign
et al.| |2018} |Gillen et al., |2018} [Heidari & Krause] [2018;
Joseph et al. 2016; |Jung et al.| 2018} [Kallus| [2018;
Kallus & Zhoul, [2018} [Lakkaraju & Rudin, [2017). In
these settings, the decision typically determines which
of the potential outcomes is observed and the focus is
on confounders that effect both the decision and the
outcome (Rubinl 2005). In contrast, in our approach
the decision determines whether there will be an out-
come at all, but there is no unobserved confounding.
Two notable exceptions are by [Kallus & Zhou (2018)
and |[Ensign et al. (2018), which also consider limited
feedback. However, |[Kallus & Zhou| (2018)) focus on de-
signing unbiased estimates for several fairness measures,
rather than learning how to decide. [Ensign et al.| (2018)
assume a deterministic mapping between features and
labels, which allows them to reduce the problem to the
apple tasting problem (Helmbold et al.,2000). Remark-
ably, in their deterministic setting, they also conclude
that the optimal decisions should be stochastic.

Unlike in the fairness literature, where deterministic

policies dominate (Corbett-Davies et al., 2017} [Valera
et al., 2018 Meyer et al, 2019)), stochastic policies are
often necessary to ensure adequate exploration (Sil
ver et al) |2014) in contextual bandits (Dudik et al.,
2011; [Langford et al., 2008} |Agarwal et al.| 2014)) and
reinforcement learning (Jabbari et al., 2016} [Sutton &
Bartol, [1998). However, the typical problem setting
there differs fundamentally from ours and typically nei-
ther fairness constraints nor selective labels are taken
into account. A recent notable exception is|Joseph et al.
(2016)), initiating the study of fairness in multi-armed
bandits, however, using a fairness notion orthogonal
to the most popular ones (as considered in our work),
and ignoring the selective labels problem.

2 DECISIONS FROM IMPERFECT
PREDICTIVE MODELS

Let X C R? be the feature domain, S = {0,1} the
range of sensitive attributes, and ) = {0,1} the set of
ground truth labels. We assume the standard sigma
algebras on these spaces. A decision rule or policgﬂ
is a mapping m : X x § — P({0,1}) that maps an
individual’s feature vector and sensitive attribute to a
probability distribution over decisions d € {0,1}. We
sample x,s and y from a ground truth distribution
P(x,s,y) = P(y|x,s)P(x,s). Decisions d are sam-
pled from a policy d ~ w(d |, s), where we often write
m(x, s) for w(d|x, s). The decision determines whether
the label y ~ P(y|x, s) comes into existence. In loan
decisions, the feature vector & may include salary, edu-
cation, or credit history; the sensitive attribute s may
indicate sex; a loan can be granted (d = 1) or denied
(d = 0); and the label y indicates repayment (y = 1) or
default (y = 0) upon receiving a loan.

Inspired by [Corbett-Davies et al.| (2017)), we measure
the wutility as the expected overall profit provided by
the policy with respect to the distribution P, i.e.,

UP(W) = Em,s7y~P, d~m(z,s) [yd - Cd] (1)
=Epsop[n(d=1|z,s)(Ply=1|x,s)— )],

where ¢ € (0,1) may reflect economic considerations of
the decision maker. For example, in a loan scenario,
the utility gain is (1 —¢) if a loan is granted and repaid,
—c if a loan is granted but the individual defaults,
and zero if the loan is not granted. One could think
of adding a term for negative decisions of the form
9(y)(1 — d) for some given definition of g, however,
we would not be able to compute such a term due to
the selective labels, except for constant g. Therefore,
without loss of generality, we assume that g(y) = 0 for
all ¢, because any constant g can easily be absorbed in
our framework.

1We use the terms decision rule, decision making process
and policy interchangeably.
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For fairness considerations, we define the f-benefit for
group s € {0,1} with respect to the distribution P by

bj:’ (71-) = Ew,yNP(:c,y | s), d~m(x,s) [f(d7 y)]7

with f: {0,1} x{0,1} — R. Note that various common
fairness criteria can be expressed as b% (1) = b (7) for
different choices of f. For example, demographic parity
(or no disparate impact) (Feldman et al.l|2015) amounts
to f(d,y) = d and equality of opportunity (Hardt et al.|
2016) amounts to f(d,y) =d - y.

Under perfect knowledge of P(y|x, s), the policy max-
imizing the above utility subject to the group benefit
fairness constraint b%(7) = bL(n) is a deterministic
threshold rule (Corbett-Davies et al., 2017)E|

7 (d=1|z,s) =1[Ply=1|=x,s) > ¢, (2)

where we allow for group specific cost factors cy, cy
such that b%(7) = bL (7). Without fairness constraints,
we simply have ¢g = ¢; = ¢. However, as discussed
in [Woodworth et al.| (2017)), in practice, we typically
do not have access to the true conditional distribu-
tion P(y|x, s), but instead to an imperfect predictive
model Q(y |, s) trained on a finite training set. Such
a predictive model can similarly be used to implement
a deterministic threshold rule as

me(d=1]z,s) =1Qy =1]z,5) = .  (3)

Here, the predictor Q(y = 1|z, s) = P(y = 1|z, s)—ds,
with ds = ¢s; — ¢, directly incorporates the fairness
constraint, i.e., it is trained to maximize predictive
power subject to the fairness constraint. In this context,
‘Woodworth et al.| (2017) have shown that this approach
often leads to better performance than post-processing
a potentially unfair predictor as proposed by [Hardt
et al.| (2016)). Unfortunately, they have also shown that,
because of the mismatch between Q(y = 1|x,s) and
P(y =1]|,s)—ds, the resulting policy mg will usually
still be suboptimal in terms of both utility and fairness.
To make things worse, due to the selective labeling, the
data points x, s, y observed under a given policy 7y are
not i.i.d. samples from the ground truth distribution
P(x,s,y), but instead from the weighted distribution

Pm(:c,s,y) O(P(y|£l:,8)7r0(d=1‘33,8)P(:B7S). (4)

Consequently, if 7y is not optimal, i.e., my # 7*, the
necessary i.i.d. assumption for consistency results of
empirical risk minimization is violated, which may also
be one reason for a common observation in fairness,
namely that predictive errors are often systematically
larger for minority groups (Angwin et al., 2016). In the
remainder, we will say that the distributions Py, (x, s,y)

2Here, 1[e] is 1 if the predicate e is true and 0 otherwise.

and Pr, (x,s) are induced by the policy m. In the
next section, we study how to learn the optimal policy,
potentially subject to fairness constraints, if the data
is collected from an initial faulty policy mg.

3 FROM DETERMINISTIC TO
STOCHASTIC POLICIES

Consider a class of policies II, within which we want
to maximize utility, as defined in eq. subject to the
group benefit fairness constraint 6% (m) = bL(r). We
formulate this as an unconstrained optimization with
an additional penalty term, namely to maximize

op(r) = up(r) — S (R(m) ~Oh(m)?  (5)

over m € II under the assumption that we do not have
access to samples from the ground truth distribution
P(z,s,y), which up(m) and b} () depend on. Instead,
we only have access to samples from a distribution
P, (z,s,y) induced by a given initial policy 7y as in
eq. (4). We first analyze this problem for deterministic
threshold rules, before considering general deterministic
policies, and finally also general stochastic policies.

3.1 Deterministic policies

First, assume the initial policy 7y is a given determin-
istic threshold rule and II is the set of all deterministic
threshold rules, which means that each = € II (and
7o) is of the form eq. for some predictive model
Q(y|x,s). Given a hypothesis class of predictive mod-
els Q, we reformulate eq. to maximize

vp(nq) = up(rq) — 2 (Bh(rq) ~ bh(ra))®  (6)

over Q € Q, where the utility and the benefits for
s € {0,1} are simply up(mg) = Egsy~p[1[Q(y =
1], 5) > dl(y — )] and b (1) = Ea,oper F(L[Q(y =
1|z,s) > c],y)]. Note that eq. has a unique op-
timum 7*. Therefore, if 7* € II (the set of all deter-
ministic threshold rules), eq. @ will also reach this
optimum if Q is rich enough. However, the optimal
predictor @* may not be unique, because the utility
and the benefits are not sensitive to the precise values
of Q(y | x, s) above or below c.

If we only have access to samples from the distribution
Py, induced by some 7y # 7*, we may choose to simply
learn a predictive model Qf € Q that empirically max-
imizes the objective vp, (mg), where the utility and
the benefits are computed with respect to the induced
distribution P . However, the following negative re-
sult shows that, under mild conditions, (Q)j leads to a
suboptimal deterministic threshold ruleE|

3All proofs can be found in appendix
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Figure 1: We show the utility and violation of equal op-
portunity of threshold decision rules 7(0) learned from
data collected with an initial threshold of &;. Harsh
data collection policies (i.e., large y)—while achieving
equal opportunity—render the learned policies useless
in terms of utility.

Proposition 1. If there exists a subset YV C X X S of
positive measure under P such that P(y = 1|V) > ¢
and Pr,(y = 1|V) < ¢, then there exists a maximum
Q5 € Q of vp,, such that vp(mg;) < vp(me+).

Lending example. We briefly illustrate this result in
a lending example based on FICO credit score data as
described in Hardt et al| (2016]). Such single feature
scenarios are highly relevant for score-based decision
support systems where full training data and the func-
tional form of the score are often not available (e.g.,
also for pretrial risk assessment). For any score that is
strictly monotonic in the true success rate, the optimal
policy is simply to threshold the score. This lends
additional support to score-based systems.

Here, we can generate new scores for a given group via
inverse transform sampling from the known cumulative
distribution functions. We consider 80% white and 20%
black applicants. A hypothetical new bank that has
access to FICO scores x € X := {300,...,820}, but
not to the corresponding repayment probabilities may
expect to be profitable if at least 70% of granted loans
are repaid, i.e., ¢ = 0.7. A risk-averse lender may ini-
tially choose a high score threshold £ € X and employ
the decision rule 1[z > £]. After collecting repayment
data D© := {(z;,y;)}7, with this initial threshold,
they learn a model Q¢(y = 1| ) and then decide based
on me(d = 1|z) = 1[Qe(y = 1|z) > ¢|. In Figure[]]
we show how the initial data collection threshold &
affects utility and fairness of the resulting predictive
model-based decision rule. Conservatively high ini-
tial thresholds of £ > 650 lead to essentially useless
decisions 7¢, because of imperfect prediction models re-
gardless of how much data was collected. More lenient
initial policies can result in near optimal decisions with
improved fairness compared to the maximum utility
policy for the given cost ¢ (dashed). Details of this
motivating example can be found in appendix [B]

Impossibility results. Supplementing the result in
Proposition we will now prove that—in certain
situations—a sequence of deterministic threshold rules,
where each threshold rule is of the form of eq. and

its associated predictive model is trained using the data
gathered through the deployment of previous thresh-
old rules, fails to recover the optimal policy despite it
being in the hypothesis class. To this end, we consider
a sequential policy learning task, which is given by a
tuple (7o, Il’, A), where: a) II' C II is the hypothesis
class of policies, b) my € II' is the initial policy, and
c) A: I x U= (X x S x Y)* — II is an update rule.
The update rule A takes an existing policy 7 and a
dataset D € (X x S x Y)™ and produces an updated
policy 741, which typically aims to improve the policy
in terms of the objective function vp(7) in eq. (5). In
our setting, the dataset D is collected by deploying pre-
vious policies, i.e., from a mixture of the distributions
Py (x,s,y) with 7 < .

To introduce useful notation and terminology, note
that any deterministic threshold policy 7 is fully char-
acterized by the sets Wy(m) := {(x,s) | n(x,s) = d}
for d € {0, 1}, i.e., we can partition the space X x S =
Wo(m) U Wi(n) into negative and positive decisions.
Then, we say an update rule is non-exploring on D
iff Wo(A(m, D)) C Wy(nr). Intuitively, this means that
no individual who has received a negative decision un-
der the old policy m would receive a positive decision
under the new policy A(m, D)). Remarkably, common
learning algorithms for classification, such as gradient
boosted trees are error based, i.e., they only change
the decision function when they make errors on the
training set. As a result, they lead to non-exploring
update rules on D whenever they achieve zero error.

Proposition 2. Let (mo,II', A) be a sequential policy
learning task, where II' C II are deterministic threshold
policies based on a class of predictive models, and let
the initial policy be more strict than the optimal one,
i.e., Wo(mo) 2 Wo(n*). If A is non-exploring on any
i.i.d. sample D ~ Pyp, (x,s,y) with probability at least
1— 6, for all t €N, then Priny # 7% > 1 -1 6
for any T € N.

We can thus conclude that, for error based learning al-
gorithms under no fairness constraints, learning within
deterministic threshold policies is guaranteed to fail.
Even though the optimal policy lies within the set of
deterministic threshold policies, it cannot easily be ap-
proximated within this set starting from a suboptimal
predictive model. We illustrate this fact in appendix [C]

Corollary 3. A deterministic threshold policy m # 7*
with Pr[m(x, s) # y] = 0 under P will never converge
to ™™ under an error based learning algorithm for the
underlying predictive model.

While we have focused on deterministic threshold rules,
our results readily generalize to all deterministic poli-
cies. An arbitrary deterministic policy 7 can always
be written as a threshold rule mg as in eq. with
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Qy=1|z,s)=1[r(d=1]|x,s) =1]. To conclude, if
we can only observe the outcomes of previous decisions
taken by a deterministic initial policy m, these out-
comes may be insufficient to find the (fair) deterministic
decision rule that maximizes utility.

3.2 Stochastic policies

To overcome the undesirable behavior exhibited by de-
terministic policies discussed in the previous section,
one could use a fully randomized initial policy, where
mo(d =1]x,s) = 1/2 for all &, s. It readily follows from
eq. that then P, = P. Hence, if the hypothesis
class of predictive models Q is rich enough, we could
learn the optimal policy 7* from data gathered under
mo. In practice, fully randomized initial policies are
unacceptable in terms of utility or unethical—it would
entail releasing defendants by a coin flip. Fortunately,
we will show next that full randomization is not re-
quired to learn the optimal policy. We only need to
choose an initial policy 7y such that mo(d = 1|z, s) >0
on any measurable subset of X x S with positive prob-
ability under P, a requirement that is more acceptable
for the decision maker in terms of initial utility. We
refer to any policy with this property as an exploring
policyEI For an exploring policy mg, we can compute the
utility in eq. and the group benefits for s € {0,1}
via inverse propensity score weighting

UPWO (7'(', 71—0) = E:l:,s,yNPﬂo |:

d(y —¢) )}

mo(d=1|z,s

d~m(x,s)
(7)
fd,y)
by (m,m0) :=Eg s y~pr, [—}
P”‘O( 0) dNT?i(%S)O Wo(d =1 | :13,8)
Crucially, even though up(m) = wup, (7, m) and

by (m) = b, (m, 7o), the expectations are with respect
to the induced distribution Py, (x,s,y), yielding the
following positive result.

Proposition 4. Let II be the set of exploring policies
and mg € II\ {7*}. Then, the optimal objective value is

A

v(m*) = sup {UPWO(W, 7T0)—§

mell\{m*}

This shows that—unlike within deterministic thresh-
old models—within exploring policies we can learn the
optimal policy using only data from an induced distri-
bution. Finally, we would like to highlight that not all
exploring policies may be (equally) acceptable to soci-
ety. For example, in lending scenarios without fairness

47 is exploring, iff the true distribution P is absolutely
continuous w.r.t. the induced distribution P,. This means
the data collection distribution must not ignore regions
where the true distribution puts mass. This condition does
not strictly require randomness, but could be achieved by
a pre-determined process, e.g., “d = 1 every n-th time”.

(b, (., m0)~bb, (7, 70))? }.

constraints (i.e., A = 0), it may appear wasteful to deny
a loan with probability greater than zero to individuals
who are believed to repay by the current model. In
those cases, one may like to consider exploring policies
that, given sufficient evidence, decide d = 1 determinis-
tically, i.e., mo(d = 1|, s) =1 for some values of x, s.
Other settings, like the criminal justice system, may
call for a more general discussion about the ethics of
non-deterministic decision making.

4 LEARNING EXPLORING
POLICIES

In this section, we exemplify Proposition ] via a simple,
yet practical, gradient-based algorithm to find the solu-
tion to eq. within a (differentiable) parameterized
class of exploring policies IT1(O) using data gathered by a
given, already deployed, exploring policy my. While our
algorithm works for any differentiable class of exploring
policies, here we consider two examples of exploring
policy classes in particular. First, the logistic policy,
which is given by 7e(d = 1|x,s) = o(p(x,s)"0) €
(0,1), where o(a) := m is the logistic func-
tion, @ € ©® C R™ are the model parameters, and
¢ : R x {0,1} — R™ is a fixed feature map. Sec-
ond, the semi-logistic policy, which deterministically ap-
proves examples believed to contribute positively to the
utility by the current model and only explores stochas-
tically on the remaining ones, i.e., Tg(d = 1|z, s) =
1[p(x,5)70 >0] +1[pp(x,5)'0 <0] o(d(w,5)0).

We use stochastic gradient ascent (SGA) (Kiefer et al.,
1952)) to learn the parameters of the new policy, i.e.,
0,01 = 0; + Oz,'VgUP(ﬂ'g)|g=9i, where ngp(ﬂg) =
Voup(me) — A(bo(me) — b1(me))(Vebo(me) — Vabi (o)),
and «; > 0 is the learning rate at step ¢ € N. With
the reweighting from eq. and the log-derivative
trick (Williams), [1992), we can compute the gradient of
the utility and the benefits as

d(y — c)Veglogm
Veup(ﬂe):]Em,s,y~P,ro[ y —¢) Vs log 9}7

drme(x,5) 7T()(d =1 | T, 5) (8)
, f(d,y)Velog e
b3 =Ez sy~ —_ = —
VO P(T‘—G) d:\/;i(::’;(s[ ﬂ-o(d: 1‘;[375) :|

where Vg log mg := Vg logmg(d|x, s) is the score func-
tion (Hyvarinen| 2005). Thus, our implementation
resembles a REINFORCE algorithm with horizon one.
A detailed derivation of the of the score functions and
respective gradients can be found in appendix

Unfortunately, the above procedure has two main draw-
backs. First, it may require an abundance of data from
Py, which can be unacceptable in terms of utility if m
is far from optimal. Second, if mo(d = 1| x, s) is small
in a region where mg often takes positive decisions, one
may expect that an empirical estimate of the above gra-
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Figure 2: Two synthetic settings. In red, we show
P(y = 1|x), where the score x is drawn from different
distributions for the two groups (blue/orange). For
given ¢ (black, dashed), the optimal policy decides d = 1
(d = 0) in the shaded green (red) regions. The vertical
black, dotted line shows the best policy achievable
with a single threshold on z. In pink, we show a
possible imperfect logistic predictive model and its
corresponding (suboptimal) threshold in x.

dient will have high variance, due to similar arguments
as in weighted inverse propensity scoring (Sutton &
Barto, [1998). On the other hand, in most practical
applications updating the model after every single de-
cision is impractical. Typically, a fixed model will be
deployed for a certain period, before it is updated.

To overcome these drawbacks, we build two types
of sequences of policies {mg, }1 ,: a) the iterative
sequence w1 = A(m, D') with D' ~ Py, (z,s,vy),
where only data gathered by the immediately previ-
ous policy are used to update the current policy; and
b) the aggregated sequence 11 := A(my, Uf:o D) with
D' ~ Py, (x,s,y), where data gathered by all previous
policies are used to update the current policy. The over-
all training procedure is shown in Algorithm [I] Note
that in UPDATEPOLICY the input data D was collected
under mg/. The decisions d ~ my;) are just sampled
to implement SGA. The function MINIBATCH(D, B)
samples a minibatch of size B from the dataset D and
INITIALIZEPOLICY() initializes the policy parameters.
In appendix [D| we show in detail how to compute gradi-
ent estimates Vouv(mg, To')|9—p). In Algorithm [1| we
learn each policy 7 only using data from the previous
policy m;—1. This may readily be generalized to a mix
of various previous policies 7y in eq. @[) Averaging
multiple gradient estimators for several ' < ¢ is again
an unbiased gradient estimator. To reduce variance,
in practice one may consider recent policies 7y most
similar to ;.

Our weighted sampling closely relates to the concept

Algorithm 1 CONSEQUENTIALLEARNING: train a se-
quence of policies g, of increasing vp(mg, ).

Require: Cost ¢, time steps T', decisions N, iterations M,
minibatch size B, penalty A, learning rate «.

1: 6o + INITIALIZEPOLICY()

2: fort=0,...,7T—1do > time steps
3: D' + COLLECTDATA(6;, N)

4: 0.1 + UppATEPOLICY(8:, D', M, B, c)

5: return {Wgt}tT:()

6: function CoLLECTDATA(O, N)

7 D+

8: fori=1,...,N do > N decisions
9: (xi,8:) ~ P(x,s) and d; ~ mg (x4, 5;)

10: if d; =1 then > positive decision
11: D« DU {(xi, si,ys)} with y; ~ P(y| i, s;)

12: return D > data observed under mg
13: function UppaTrePoricy(0’, D, M, B, a)
14: 09 ¢

15: for j=1,...,M do > iterations

16: DY) « MiniBarcH(D, B) > sample minibatch
17: V&0,n;+0
18: for (x,s,y) € DY) do > accumulate gradients
19: d~ Wo(j)(w,s)
20: if d =1 then
21: n; < nj; + 1
22: V + V + Vou(ne, o) g—e@)
23: U+ L W) +aX
n
24: return 6

of weighted inverse propensity scoring (wIPS), com-
monly used in counterfactual learning [Bottou et al.
(2013); Swaminathan & Joachims| (2015a)), off-policy
reinforcement learning |Sutton & Barto| (1998)), and con-
textual bandits |Langford et al.| (2008]). However, a key
difference is that, in wIPS, the labels y are always ob-
served, which we elaborate on in appendix D} Despite
this difference, we believe that recent advances in vari-
ance reduction for wIPS such as clipped-wIPS [Bottoul
et al.| (2013), self-normalized estimators |Swaminathan
& Joachims| (2015b)), or doubly robust estimators Dudik
et al.| (2011) may be applicable to our setting. This is
left for future work. Finally, we opt for the simple SGA
approach on (semi-)logistic policies over, e.g., contex-
tual bandits algorithms, because it provides a direct
and fairer comparison with commonly used prediction
based decision policies (e.g., logistic regression), also
often trained via SGA.

5 EXPERIMENTS

In our experiments, we learn a sequence of policies
{mg, }1_, using the following strategies:

Optimal: decisions are taken by the optimal determin-
istic threshold rule 7* given by eq. , ie., m =x* for
all ¢. It can only be computed when the ground truth
conditional P(y|x,s) is known.
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Figure 3: Utility, demographic parity and equality of
opportunity in the synthetic settings of Figure [2] (first
setting left, second setting right).

Deterministic: decisions are taken by deterministic
threshold policies 7, = 7g,, where ), are logistic mod-
els maximizing label likelihood trained either in an
iterative or aggregate sequence.

Logistic: decisions are taken by logistic policies m; =
g, trained via Algorithm [I] either in an iterative or
aggregate sequence.

Semi-logistic: decisions are taken by semi-logistic
policies 7i; = 7rg, trained via Algorithm [I] either in an
iterative or aggregate sequence.

It is crucial that while each of the above methods
decides over the same set of proposed {(z;, s;)}Y; at
each time step t, depending on their decisions, they
may collect labels for differing subsets and thus receive
different amounts of new training data. During learning,
we record the following metricsﬂ

Utility: the utility up(m;) achieved by the current
policy 7; estimated empirically on a held-out dataset,
the test set, sampled i.i.d. from the ground truth distri-
bution P(x,s,y). This is the utility that the decision
maker would obtain if they deployed the current policy
m; at large in the population.

Fairness: the difference in group benefits between
sensitive groups |Abp(m)| = |[b% () — bh(7)| for both
disparate impact (f(d,y) = d) and equal opportunity
(f(d,y) =d-y). A policy satisfies the chosen fairness
criterion iff |Abp(7)| = 0. Again, we estimate fairness
empirically on the test set and thus measure the level
of fairness m; would achieve in the entire population.

5For readability we only show medians over 30 runs.
Figures with 25 and 75 percentiles are in appendix E

logistic, t — 1

det., t' <t det., t —1 ----- optimal best achievable

5.1 Experiments on synthetic data

We assume that there is a single non-sensitive feature
x € R per individual—similar to the lending example in
Section and a sensitive attribute s € {0,1}. While
P(z|s = 0) # P(z|s = 1), in our experiments the
policies only take z as input, and not the sensitive at-
tribute, which is only used for the fairness constraints.
We consider two different settings, illustrated in Fig-
ure [2| where s ~ Ber(0.5) and the distributions over
z differ for the two groups, see appendix [E] In the
first setting, the conditional probability P(y = 1]|x) is
strictly monotonic in the score and does not depend
on s, but is not well calibrated, i.e., not directly pro-
portional to . In the second setting, the conditional
probability P(y = 1|z) crosses the cost threshold ¢
multiple times resulting in two disjoint intervals for
which the optimal decision is d = 1 (green areas).

Figure [3] summarizes the results for A = 0, i.e., without
fairness constraints. Our method outperforms predic-
tion based deterministic threshold rules in terms of
utility in both settings. This can be easily understood
from the evolution of policies illustrated in Figure 0] in
appendix[E] In the first setting, exploring policies locate
the optimal decision boundary, whereas the determinis-
tic threshold rules get stuck, even though P(y =1]|z)
is monotonic in x. In the second setting, our methods
explore more and eventually identify the best single
threshold at the black vertical dotted line in Figure
In contrast, non-exploring deterministic threshold rules
converge to a suboptimal threshold at z ~ 5, ignoring
the left green region.

In the first setting, we also observe that the subopti-
mal predictive models amplify unfairness beyond the
levels exhibited by the optimal policy both in terms of
demographic parity and equality of opportunity. For
our approach, levels of unfairness are comparable to
or even below those of the optimal policy. The sec-
ond setting shows that depending on the ground truth
distribution, higher utility can be directly linked to
larger fairness violations. In such cases, our approach
allows to explicitly control for fairness. Results on
utility, demographic parity and equality of opportunity
under fairness constraints with different A are shown in
Figures [10] and [I1] in appendix [E} In essence, A trades
off utility and fairness violations to the point of perfect
fairness in the ground truth distribution.

5.2 Experiments on real data

Here, we use the COMPAS recidivism dataset compiled
by ProPublica/Angwin et al.| (2016, which comprises of
information about criminal offenders screened through
the COMPAS tool in Broward County, Florida during
2013-2014. For each offender, the dataset contains
a set of demographic features, the criminal history,
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Figure 4: Training progress on COMPAS data for A = 0, i.e., without fairness constraints.
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Figure 5: Fairness evaluation on COMPAS data for the
final (¢ = 200) policy as a function of A for demographic
parity (top) and for equal opportunity (bottom).

and the risk score assigned by COMPAS. Moreover,
ProPublica collected whether or not these individuals
were rearrested within two years of the screening. In our
experiments, s € {0,1} indicates whether individuals
were identified “white”, y indicates rearrest, and d ~
m(x, s) determines whether an individual is let out on
parole. Again, s is not used as an input. We use 80% of
the data for training, where at each step ¢, we sample
(with replacement) N individuals, and the remaining
20% as a held-out set to evaluate each learned policy
in the population of interest.

We first summarize the results for A = 0, i.e., without
fairness constraints in Figure[d] A slight initial utility
advantage of the deterministic threshold rule is quickly
overcome by our exploring policies. This is best seen
when looking at effective utility, the average utility ac-
cumulated by the decision maker on training data up to
time ¢, for which our strategies dominate after t = 50.
Hence, early exploration not only pays off to eventually
be able to take better decisions, but also reaps higher
profit during training. Moreover, all strategies based
on exploring policies consistently achieve lower viola-
tions of both fairness metrics than the deterministic
threshold rules. In summary, even without fairness
constraints, i.e., in a pure utility maximization setting,
exploring policies achieve higher utility and simulta-
neously reduce unfairness compared to deterministic
threshold rules.

In Figure [f] we show how utility and demographic par-
ity (equal opportunity) of the final policy mm;—200 change
as a function of A when constraining demographic par-
ity (equal opportunity). As expected, while we are able
to achieve low demographic parity (equal opportunity),
this comes with a drop in utility. All remaining met-
rics under both constraints are shown in Figure [[3]in
appendix [E] Finally, two remarks are in order. First,
for real-world data we cannot evaluate the optimal pol-
icy and do not expect it to reside in our model class.
However, even when logistic models do not perfectly
capture the conditional P(y = 1| x), our comparisons
here are “fair” in that all strategies have equal modeling
capacity. Second, we take the COMPAS dataset as
our (empirical) ground truth distribution even though
it likely also suffered from selective labels. To learn
about the real distribution underlying the dataset, we
would need to actually deploy our strategy.

6 DISCUSSION

In this work, we have analyzed consequential decision
making using imperfect predictive models, which are
learned from data gathered by potentially biased his-
torical decisions. First, we have articulated how this
approach fails to optimize utility when starting with
a faulty deterministic policy. Next, we have presented
how directly learning to decide with exploring poli-
cies avoids this failure mode while respecting common
fairness constraints. Finally, we have introduced and
evaluated a simple, yet practical gradient-based algo-
rithm to learn fair exploring policies.

Unlike most previous work on fairness in machine learn-
ing, which phrases decision making directly as a pre-
diction problem, we argue for a shift from “learning
to predict” to “learning to decide”. Not only does this
lead to improved fairness in this context, but it also
establishes connections to other areas such as counter-
factual inference, reinforcement learning and contextual
bandits. Within reinforcement learning, it would be
interesting to move beyond a static distribution P by
incorporating feedback from decisions or non-static ex-
ternalities. Moreover, since we have shown how shifting
focus from learning predictions to learning decisions re-
quires exploration, we hope to stimulate future research
on how to explore ethically in different domains.
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