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A Technical Assumptions

Before stating the assumptions, we first define the  2-norm.

Definition A.1 ( 2-norm). For a real valued random variable A, its  2 norm is defined by

kAk 2 = inf{u > 0 : E exp(A2
/u

2)  2}.

Definition A.2 (sub-Gaussian). We say that a real random variable A is 1-sub-Gaussian if kAk 2 < 1. We say

that a random variable B with values in RN
is 1-sub-Gaussian if hB, vi is 1-sub-Gaussian for all v 2 RN

with

kvk = 1.

As mentioned previously, we need to have assumptions that control the growth of Wt to be not too large and
not too small. Because we have two phases the algorithm, initialization and iteration, we require two forms of
these bounds. For initialization, our assumption is essentially the same as Assumption 1 of Lounici et al. (2014).

Assumption A.3 (sub-Gaussian Wt). For each m  t, each column wm 2 Rr
of Wt satisfies:

1. wm is drawn independently (for each m) from a 1-sub-Gaussian distribution;

2. there exists a numerical constant c1 with 0 < c1  1 such that

E(hwm, ui) � c1khwm, uik 2 8u 2 Rr
.

For iteration, we also need non-asymptotic bounds on the singular values, which would hold if Wt were i.i.d.
Gaussian from results from random matrix theory (see Corollary 5.35 of Vershynin (2010)).

Assumption A.4 (Growth of Singular Values). We assume that �r(X̊) > 0, and that there exists a Csv large

enough that for every t � Csv, X̊Wt satisfies

�r(X̊W
T

t
) � 3

4
�r(X̊)

p
t, kX̊W

T

t
k  3

2
�1(X̊)

p
t (8)

with probability at least 1� t
�2

for t � Csv.

For matrix completion, we need an incoherence assumption as in Candès and Tao (2009), Candès and Recht
(2009), and Recht (2011). There are many ways of interpreting this parameter, but intuitively, it says that
observing an entry actually gives information about other entries. It turns out that generating i.i.d. Gaussians
for each entry of WM will produce right singular vectors that are incoherent: with WM = UWM⌃WMV

T

WM
the

SVD, for some constants C, c, with probability at least 1�cM�3 logM , maxi kPVWM
eik 

p
Cmax{r, logM}/M

(See Lemma 2.2 of (Candès and Recht, 2009)). Here PV denotes projection to the column space of V . This
metric is equivalent to the coherence definition given below, which leads to Assumption A.6.

Definition A.5. The coherence of an M ⇥ r matrix V is µ(V ) := maxm2[M ](M/r)keT
m
V k22.

Assumption A.6 (Incoherence). There exists some Cinc such that for large enough M , for any subset of [t] of
size M , with probability at least 1�M

�3 logM , µ(VWM )  Cinc logM .

Note we do not assume incoherence of the column space of X̊. In practice, having incoherent column space is
probably helpful. But for our theoretical results, because N is fixed as the number of columns t is growing,
incoherence of X̊, which provides high probability bounds with respect to N (not t), are not as useful.



Column Space Recovery from Partially Observed Entries on a Budget

B Algorithm for Two Block Sizes and Uniformly Random Sampling Theorems

Algorithm 2 DoubleColumnSpaceEstimate: column space estimation with two block sizes

Input: Partially observable Yt 2 RN⇥t; k(1), k(2) 2 N, such that the total number of samples per column is
k
(1) + k

(2); Minit 2 N the number of columns for initialization; M1,M2 2 N, the sizes of blocks of columns
for least squares; s1, s2 2 N the numbers of blocks; ✏, the desired accuracy; a, a boolean indicator of active
sampling

1: function DoubleColumnSpaceEstimate(Yt, k(1), k(2), Minit, M1,M2, s1, s2, ✏, a)
2: . Spectral initialization with uniformly random sampling
3: ⌦Minit  ;
4: for m = 1, . . . ,Minit do

5: S ⇠ Unif(C(N, k
(1) + k

(2)))
6: ⌦ ⌦ [ (S ⇥ {m})
7: end for

8: X̂  ScaledPCA (P⌦(Yt), k(1) + k
(2)

, N)
9: . Least squares iteration

10: L1  C
meddlogM1e

11: for i = 1, . . . , s1 do

12: m M
init + (i� 1)L1M1 + 1

13: I  [m : (m+ L1M1 � 1)]
14: ⌦(1)

,⌦(2)  Sample(X̂, k
(1)

, k
(2)

, I, a)
15: X̂  MedianLS (X̂, Yt,⌦(1)

,⌦(2), M1, m, ✏)
16: ⌦ ⌦ [ ⌦(1) [ ⌦(2)

17: end for

18: L2  C
meddlogM2e

19: for i = 1, . . . , s2 do

20: m M
init + s1L1M1 + (i� 1)L2M2 + 1

21: I  [m : (m+ L2M2 � 1)]
22: ⌦(1)

,⌦(2)  Sample(X̂, k
(1)

, k
(2)

, I, a)
23: X̂  MedianLS (X̂, Yt,⌦(1)

,⌦(2), M2, m, ✏)
24: ⌦ ⌦ [ ⌦(1) [ ⌦(2)

25: end for

26: return X̂,⌦
27: end function

Theorem B.1 (Noisy observations, random sampling, for small �Z/✏). Suppose that U , the orthonormal part

of QR(X̊), is k
(1)

-isomeric. Suppose further that Assumptions 2.1, 4.5, A.3, A.4, A.6 hold, and N/2 � k
(1) �

r, k
(2) � 1, 1 � ✏ � e

�M
M , and Equation (2) hold. Then there exists constants C

init
B.1, C

iter
B.1, C

prob
B.1 such that for

all ✏ > 0, if we initialize with Minit columns, where

Minit � C
init
B.1

�1(X̊)6N2(logMinit)
3
r
2

�r(X̊)6(k(1)+k(2))2�⇤(U ;k(1))2
,

and we use s blocks, where s � log
⇣
�r�⇤(U ;k(1))

48
p
r✏

⌘
, and each block has size M , with

M � C
iter
B.1

�1(X̊)6r3N(logM)2

�r(X̊)6k(2)�⇤(U ;k(1))2
+ log

�
1
✏

�
,

then ColumnSpaceEstimate(Yt, k
(1)

, k
(2)

, Minit, M , s, ✏, True) returns an X̂ such that sin ✓(U, X̂)  ✏ with

probability at least 1� 2M�2
init � C

prob
B.1 sM

�2
.

Theorem B.2 (Noisy observations, random sampling, for large �Z
✏
). Suppose Assumptions 2.1, 4.1, A.3, A.4,

A.6 hold, and N/2 � k
(1) � r, k

(2) � 1, 1 � ✏ � e
�M

M . Let ✏ satisfy equation (3). Then there exist constants

C
init
B.2, C

iter
B.2, C

prob
B.2 such that for every ✏ > 0, if we initialize with Minit columns, where

Minit � C
init
B.2

�1(X̊)6N2(logMinit)
3
r
2

�r(X̊)6(k(1)+k(2))2�⇤(U ;k(1))2
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and perform alternating minimization with s1 = log
⇣
�r�⇤(U ;k(1))

48�Z

p
k(1)

⌘
blocks of size

M1 � C
iter
B.1

�1(X̊)6r3N(logM)2

�r(X̊)6k(2)�⇤(U ;k(1))2
+ log

�
1
✏

�
,

followed by alternating minimization with s2 = 1 block of size

M2 � C
iter
B.2

r
2
�
2
Z�1(X̊)4Nk

(1)(logM)2

�r(X̊)6k(2)�⇤(U ;k(1))2✏2
+ log

�
1
✏

�
,

then DoubleColumnSpaceEstimate(Yt, k
(1)

, k
(2)

, Minit, M1, M2, s1, s2, ✏, True) returns an X̂ such that

sin ✓(U, X̂)  ✏ with probability at least 1� 2M�2
init � C

prob
B.1 s1M

�2
1 � C

prob
B.2 M

�2
2 .

C SmoothQR Hardt (2014)

SmoothQR (Hardt, 2014): Smooth Orthonormalization

function SmoothQR(W̃ , ✏, µ)
W  QR(W̃ ), GH  0,�  ✏kW̃k/M
while µ(W ) > µ and �  kW̃k do

W̃  GS(W̃ +GH) where GH ⇠ N (0,�2
/M)

�  2�
end while

return (W,GH)
end function

D Scaled PCA Estimator

Here 1N 2 RN⇥N is the matrix with each entry equal to 1, and IN 2 RN⇥N is the identity matrix.

ScaledPCA

Input: Partially observed P⌦(Y ) 2 RN⇥M ; k, the number of entries per column, N the number of rows of
P⌦(Y )

1: function ScaledPCA(P⌦(Y ), k, N)
2: C  P⌦(Y )P⌦(Y )T

3: . We denote by � the Hadamard (elementwise) product

4: Cscaled  
⇣

N
2

k(k�1)1N

⌘
� C +

⇣⇣
N

k
� N

2

k(k�1)

⌘
IN

⌘
� C

5: X̂  QR(Cscaled)
6: return X̂

7: end function


