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Abstract

We analyze alternating minimization for col-
umn space recovery of a partially observed,
approximately low rank matrix with a grow-
ing number of columns and a fixed budget
of observations per column. We prove that
if the budget is greater than the rank of the
matrix, column space recovery succeeds – as
the number of columns grows, the estimate
from alternating minimization converges to
the true column space with probability tend-
ing to one. From our proof techniques, we
naturally formulate an active sampling strat-
egy for choosing entries of a column that is
theoretically and empirically (on synthetic
and real data) better than the commonly
studied uniformly random sampling strategy.

1 Introduction

In many applications of recommendation systems, we
have data in the form of an incomplete matrix, where
one dimension is growing and the other dimension is
fixed. For instance, in recommendation systems, there
is a fixed set of potential products (rows of a matrix) to
o↵er customers that arrive over time (columns of a ma-
trix). Three other applications are choosing machine
learning models (rows) for each new customer’s dataset
(columns) (Fusi et al., 2018), choosing which survey
questions (rows) to ask to respondents (columns) that
arrive sequentially (Zhang et al., 2019), or choosing
which lab tests (rows) to order for each new patient
(columns) (Huck and Lewandrowski, 2014). In these
cases, there is an inherent asymmetry with respect to
the dimensions in the budget: we have a budget over
each column, not over each row. We could choose any
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machine learning model and recommend it for each
dataset, or choose any survey question and give it to
every user, but it is very hard to run every machine
learning pipeline on an arbitrary dataset, or to give
every survey question to an arbitrary respondent (in-
deed, in Zhang et al. (2019), users omitting too many
answers was the precise motivation for their problem).
Similarly, running all lab tests on one patient siginifi-
cantly exceeds the time and cost budget per patient.

In these applications, we are often interested in ap-
proximately recovering the column space of a matrix,
or equivalently, the subspace spanned by the top prin-
cipal components of a data matrix. This subspace
would give insights as to which machine learning mod-
els tend to perform better, which questions are most
informative to ask in a survey, or which lab tests would
be most valuable to order.

In particular, for a matrix that has approximately low
rank r, we are interested in the case where we have
a fixed number k of entries that are sampled for each
new column. We can then pose the following questions
– is it possible to recover the column space accurately?
And if we learn the column space more accurately, does
this lead to better imputation of the matrix?

In this work, we show that for an approximately rank
r matrix with N rows and t columns, when we have
a budget of k > r observations per column, we can
recover the column space with probability tending to
one (as t grows) using alternating minimization when
samples are randomly selected. Moreover, we establish
theoretically and experimentally that an active learn-
ing strategy can help learn this subspace faster. We
also show experimentally that more accurate column
space recovery can lead to more accurate matrix com-
pletion.

1.1 Related Works

There are two natural ways to approach column space
recovery with random sampling, which leads to two
areas of related work: using the empirical covariance
matrix, or using matrix completion results.
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One approach, typically taken in the streaming PCA
literature, is to to assume that columns are i.i.d. and
use the empirical covariance matrix of the columns to
estimate the true covariance (Lounici et al., 2014; Go-
nen et al., 2016; Mitliagkas et al., 2014). We can then
use the column space of this estimated covariance ma-
trix. This approach works, but it loses e�ciency due to
rescaling: for instance, if every entry is observed with
probability p, then because each entry of the empirical
covariance matrix is the product of two observed en-
tries of the original matrix, each (o↵-diagonal) entry
of the empirical covariance matrix is observed with
probability p

2. Therefore, this approach pays a p
�2

penalty instead of p
�1 penalty in terms of missing-

ness. Moreover, while matrix completion approaches
can have a log(✏�1) dependence on the desired accu-
racy ✏ (in the low noise regime) for sample complexity,
passing through the empirical covariance matrix natu-
rally results in an ✏

�2 penalty (Lounici et al., 2014; Go-
nen et al., 2016; Mitliagkas et al., 2014). Other works
(Eftekhari et al., 2019) in the streaming PCA litera-
ture avoids covariance estimation using a least squares
approach (similar to us), but do not prove convergence
to the true subspace.

Another approach would be to rely on powerful results
in matrix completion (See, for instance, Candès and
Recht (2009); Candès and Plan (2010); Candès and
Tao (2009); Koltchinskii et al. (2011); Recht (2011);
Cai et al. (2010); Chatterjee et al. (2015); Jain et al.
(2013); Hardt (2014); Keshavan et al. (2010a,b); Ge
et al. (2016)). However, there is no straightforward
way to do this. For instance, one might think one
could first perform matrix completion on the partially
observed matrix, and then use its singular value de-
composition to recover the column space. However,
for an N ⇥ t matrix with t > N whose rank is r,
matrix completion results typically require more than
rt log t observations. Exceptions to the superlinear (in
t) number of total observations (Krishnamurthy and
Singh, 2013, 2014) violate our per-column budget or
require a higher per-column budget for higher accuracy
(Gamarnik et al., 2017). This means that in order to
get the desired guarantees from the matrix completion
literature, we need to observe an increasing number of
entries per column. This is not a natural model for the
budgeted learning case (there is no reason to assume
that our budget increases with time) and is unneces-
sary, as we show in our theory. Another way to try
to apply these matrix completion results is to split an
N ⇥ t matrix into N ⇥ a matrices, with a < t, perform
matrix completion on these smaller matrices (which
now have enough samples), and then combine the re-
sulting column space estimates. This might work if
matrix completion were unbiased, but since the esti-
mates tend to be the solution of a regularized problem,

they tend to be biased (and bias correction is not sim-
ple (Javanmard and Montanari, 2014)).

As for active learning, there have been experimen-
tal results on active learning for matrix factorization
and completion (Elahi et al., 2016; He and Cai, 2009;
Kawale et al., 2015), but they rarely come with the-
oretical guarantees, and we are not aware of a work
that gives guarantees for growing number of degrees
of freedom. For instance, Kallus and Udell (2016)
also consider a setting where customers are arriving
with time, but their algorithm employs non-uniform
sampling only for minimization of a bandit-like re-
gret quantity, not for better estimation. As mentioned
above, Krishnamurthy and Singh (2013, 2014) prove
theoretical results on matrix completion with active
sampling, but they violate the budget assumption by
sampling some columns in their entirety. Gonen et al.
(2016) prove active sampling can help, but they share
the drawbacks of using the first (covariance matrix es-
timation) approach and their error bounds hold only
in expectation, not with high probability.

Therefore, matrix completion results do not apply to
our setting. However, in this work, we will leverage
some of the technical components from that literature.
In particular, we show theoretically that alternating
minimization will consistently recover the column sub-
space, both for uniformly random sampling and for
active sampling.

1.2 Organization

The paper is organized in the following way: We first
state the notation and assumptions (Section 2), fol-
lowed by our algorithms (Section 3). We then state
our theoretical results (Section 4) and present our ex-
perimental results (Section 5). We conclude by men-
tioning ideas of the proof (Section 6) followed by a
brief summary (Section 7).

2 Background

Notation For M 2 N, we use [M ] to denote
{1, . . . ,M} and for M

0 2 N, M
0  M , we use

[M 0 : M ] to denote {M 0
,M

0 + 1, . . . ,M}. For a ma-
trix Y 2 RN⇥M , given ⌦ ⇢ [N ] ⇥ [M ], a subset of
indices (typically the indices of the observed entries),
we define P⌦(Y ) 2 RN⇥M by setting the entries with
indices not in ⌦ to 0:

(P⌦(Y ))ij =

(
Yij (i, j) 2 ⌦

0 (i, j) /2 ⌦.

For ⌦ ⇢ [N ]⇥ [M ], I ⇢ [M ], we denote by ⌦I the set
{(n,m) 2 ⌦ | m 2 I}. We take complements of these
sets by ⌦C

I
:= {(n,m) 2 [N ] ⇥ I | (n,m) /2 ⌦I}.
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The singular value decomposition (SVD) of Y ex-
presses Y as U⌃V T , U 2 RN⇥r

, V 2 RM⇥r, where
r is the rank of Y , and the columns of U are or-
thornomal (known as the left singular vectors of Y ),
the columns of V are orthonormal (the right singu-
lar vectors of Y ), and ⌃ is diagonal and contains the
singular values. k · kF is the Frobenius norm, given

by kY kF =
qP

N

n=1

P
M

m=1 Y
2
nm

. We use k · k to de-

note the operator norm, given by kY k = �1(Y ), where
�1(Y ) � . . . � �r(Y ) are the singular values of Y .
Throughout our paper, t will denote the total number
of columns of Yt 2 RN⇥t that are available, whereas
M  t is the second dimension of an (N ⇥M) subma-
trix we are considering at a particular point.

2.1 Assumptions

Our goal is to estimate the column space of an approx-
imately low rank matrix Yt 2 RN⇥t as the number of
columns of the matrix grows. This is not possible for
arbitrary growing matrices Yt. As an extreme exam-
ple, if all the columns after some point are identically
zero, then we will no longer be able to learn anything
about the column space, which means we need to as-
sume that kYtk is “not too small”. On the other hand,
if kYtk keeps growing too fast, we will only fit on the
latest columns, which makes learning impossible, so
we need kYtk to be “not too large”.

First, we will assume that Yt arises from a low rank
plus noise model. We will assume that the noise is
actually Gaussian because we will use its rotational
symmetry in the proofs. It is likely possible to relax
this to more general classes of noise matrices, but we
leave this for future work.

Assumption 2.1 (Low rank plus Gaussian noise).
Yt = X̊W

T

t
+ Zt, where X̊ 2 RN⇥r

,Wt 2 Rt⇥r
, and

where (Zt)n,m
iid⇠ N (0,�2

z
).

Next, we need to make assumptions about Wt. Due
to limited space, here we present high-level versions of
these assumptions. Specifically, the conditions we need
are sub-Gaussian tails (Assumption A.3), a bound on
how fast (and slow) the singular values of Yt grow (As-
sumption A.4), and incoherence of the row space (As-
sumption A.6). The details of these assumptions can
be found in Section A of the Appendix . An example
that satisfies all these assumptions is when each col-
umn wm 2 Rr of Wt has entries that are distributed
i.i.d. according to N (0, B) for some rank r covariance
matrix B.

3 Algorithms

One way to view the column space of a matrix Y 2
RN⇥M is to view it as the span of the top r eigen-
vectors of Y Y

T . We have Y Y
T =

P
M

m=1 Bm where
Bm = ymy

T

m
, and ym are the columns of Y . If we

sampled each entry uniformly at random with proba-
bility p, we can get an estimate of each Bm 2 RN⇥N

in the following way: let y0
m

be the columns of P⌦(Y ),
and consider B

0
m

= y
0
m
(y0

m
)T 2 RN⇥N . For inde-

pendent Bernoulli(p) sampling, if we form the ma-
trix D

0
m

:= p
�2

B
0
m

+ (p�1 � p
�2)diag(B0

m
), we have

E[D0
m
] = B

0
m
. So if we approximate the eigenvec-

tors of
P

M

m=1 B
0
m
, we might expect them to be close

to the eigenvectors of Y Y
T under mild assumptions.

This is the approach taken by Gonen et al. (2016) and
Mitliagkas et al. (2014). Indeed, under our assump-
tions, this will properly estimate the column subspace
in expectation (Lemma 2 in Gonen et al. (2016)). If
we exactly compute the eigendecomposition (which is
computationally less e�cient but has the best the-
oretical guarantees), we obtain ScaledPCA (Algo-
rithm 4), essentially the same as POPCA of Gonen
et al. (2016)), whose pseudocode is included in the
Appendix. 1

This is a nice and intuitive algorithm, but for matrix
completion, it is known that methods based purely on
spectral decompositions are outperformed by methods
based on optimization on the Frobenius norm of recov-
ery error kP⌦(Y�Ŷ )k2

F
(such as least squares, gradient

descent, or message passing) (Keshavan et al., 2012).
What is worse for ScaledPCA is that because it es-
timates the covariance matrix first, it essentially pays
a p

�2 penalty in terms of missingness instead of a p
�1

penalty.

In this work, we give a proof that alternating mini-
mization (Algorithm 1) can indeed be used to recover
the column subspace. Algorithm 1 performs spectral
intialization followed by alternating minimization, us-
ing some of the samples (⌦(1)) to estimate W and the
remaining samples (⌦(2)) to estimate X. Algorithm 1
uses two subroutines, Sample and MedianLS. Me-
dianLS uses SmoothQR (Hardt, 2014), which is a
version of QR factorization that adds noise before per-
forming QR, which for completeness, we include in
Section C of the Appendix. SmoothQR helps main-
tains incoherence of the estimate of W in MedianLS
, and taking the median of estimates of X leads to
a higher probability bound, which are useful for our
theory, but not necessary in practice (Hardt, 2014).

We denote by S ⇠ Unif(C(N, k)) a subset S ⇢ [N ]

1Lounici et al. (2014) aims to estimate just the true
covariance matrix, not the underlying subspace, under the
setting where t < N .
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that was sampled uniformly at random among sub-
sets of [N ] of size k. In our algorithms, we assume we
have enough columns to observe (e.g., for Algorithm
1, t � Minit + sC

med
MdlogMe). C

med is an absolute
constant that is not required as input. Cinc is a con-
stant from our incoherence assumption (Assumption
A.6). We use . to denote comments.

Algorithm 1 ColumnSpaceEstimate

Input: Partially observable Yt 2 RN⇥t; k(1), k(2) 2 N,
such that the total number of samples per column
is k(1)+k

(2); Minit 2 N, the number of columns for
initialization; M 2 N, the size of blocks of columns
for least squares; s 2 N, the number of blocks;
✏, the desired accuracy; a, a boolean indicator of
active sampling

Output: X̂ 2 RN⇥r, the column space estimate, ⌦ ⇢
[N ]⇥ [t], the subset of observed indices

1: Algorithm ColumnSpaceEstimate(Yt, k
(1),

k
(2), Minit, M , s, ✏, a)

2: . Spectral initialization with uniform random
sampling

3: Initialize: ⌦ ;
4: for m = 1, . . . ,Minit do

5: S ⇠ Unif(C(N, k
(1) + k

(2)))
6: ⌦ ⌦ [ (S ⇥ {m})
7: end for

8: X̂  ScaledPCA (P⌦(Yt), k(1) + k
(2)

, N)
9: . Least squares iteration

10: L C
meddlogMe

11: for i = 1, . . . , s do

12: . The next block of LM columns to use,
which further gets broken down into L

blocks of size M in MedianLS
13: m M

init + (i� 1)LM + 1
14: I  [m : (m+ LM � 1)]
15: ⌦(1)

,⌦(2)  Sample(X̂, k
(1)

, k
(2)

, I, a)
16: X̂  MedianLS (X̂, Yt,⌦(1)

,⌦(2),
M , m, ✏)

17: ⌦ ⌦ [ ⌦(1) [ ⌦(2)

18: end for

19: return X̂, ⌦
20: end Algorithm

Practical Considerations We state our algorithms
in a way that is natural to prove theoretical results,
which is the main goal of this paper. However, for
more practical purposes, the large block size M might
at first seem prohibitive to use in MedianLS . We
mitigate this in the following way: first, as mentioned
above, the SmoothQR step in Line 4 of MedianLS
and median step in Line 11 are not necessary in prac-
tice. Therefore, given an X

prev, we need only to per-
form two linear least squares regressions (lines 2 and

Sample: Choose samples for one block of columns

Input: current estimate of column space X̂ 2 RN⇥r;
k
(1)

, k
(2) 2 N, such that the total number of sam-

ples per column is k
(1) + k

(2); block of columns
I ⇢ [M ]; a, a boolean indicator of active sampling

Output: ⌦(1)
,⌦(2) ⇢ [N ]⇥I, the samples for columns

indexed by I

1: function Sample(X̂, k
(1)

, k
(2)

, I, a)
2: Initialize: ⌦(1)  ;, ⌦(2)  ;
3: for m 2 I do

4: . Choose each slice of ⌦(1)
,⌦(2)

5: if a then

6: . Use Equation (1) for active sampling
7: S

(1)  ⌦⇤(X̂; k(1)) ⇢ [N ]
8: else

9: S
(1) ⇠ Unif(C(N, k

(1)))
10: end if

11: S
(2) ⇠ Unif(C(N, k

(2)))
12: . Add the slices to ⌦(1)

,⌦(2)

13: ⌦(1)  ⌦(1) [ (S(1) ⇥ {m})
14: ⌦(2)  ⌦(2) [ (S(2) ⇥ {m})
15: end for

16: return ⌦(1)
,⌦(2)

17: end function

9). The first regression (line 2), which fits W̃ , can be
done separately for each column. The second regres-
sion, which fits X (line 9), can be performed in an
online manner. Two possible options are to perform
least squares recursively (which gives exactly the same
result as doing a batch linear least squares), or to do
gradient descent (which is more practical). Both of
these options process one column at a time (instead
of processing it as a block as in Lines 15 and 16 in
Algorithm 1), and lead to time and space complexity
that is linear in the block size M .

Active Sampling Our proof naturally leads to an
active sampling strategy that can help subspace recov-
ery, as confirmed in our experiments. Each iteration
of fitting a W̃ (Line 3 of MedianLS ) is a linear least
squares regression, whose estimation error decreases
as the minimum singular value of the design matrix
increases. Therefore, a good candidate strategy for
Sample is to choose the rows of Xprev to maximize
the minimum singular value of the induced submatrix.
More precisely, for S = {s1, . . . , sk} ⇢ [N ], we define
QS as the operator that projects the N ⇥ r matrix to
a k ⇥ r matrix specified by [QS(X)]ij = Xsi,j . (The
objective in Equation (1) is invariant to the ordering
chosen on S.) Given an estimate X̂, our active sam-
pling chooses

⌦⇤(X; k(1)) = argmax
S⇢[N ],|S|=k(1)

�r(QS(X)), (1)
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Median least squares

Input: Prior estimate X
prev 2 RN⇥r; Partially ob-

servable Y 2 RN⇥t and ⌦(1)
,⌦(2) 2 [N ]⇥[M ] such

that ⌦(1)(Y ) and ⌦(2)(Y ) are observed; M 2 N,
the block size to subdivide into for the median
step; m 2 N, the beginning index of block of
columns of size C

med
MdlogMe; ✏, the desired ac-

curacy
Output: X 2 RN⇥r, a column space estimate
1: function MedianLS(Xprev

, Y,⌦(1)
,⌦(2), M , m,

✏)
2: W̃  argmin

W 02RM⇥r

kP⌦(1)(Y �X
prev(W 0)T )k2

F

3: . QR factorization with added noise for
incoherence

4: Ŵ  SmoothQR (W̃ ,�r(X̊)✏, Cinc logM)
5: L C

meddlogMe
6: for i = 1, . . . , L do

7: . Get the next block of M columns to use
for median

8: Ji  [(m+ (i� 1)M) : (m+ iM � 1)]
9: X̃

(i)  argmin
X02RN⇥r

kP
⌦(2)

Ji

(Y �X
0(Ŵ )T )k2

F

10: end for

11: X̃  elementwise median of {X̃(1)
, . . . , X̃

(L)}
12: X  Orthonormal basis of column space of X̃
13: return X

14: end function

as S
(1) ⇢ [N ]. We will need other samples of rows

of Y to estimate X from this estimated Ŵ , and we
choose these samples randomly, so we can get equal
informations about every row of X, i.e., S(2) is chosen
uniformly at random.

4 Theoretical Results

Budget per column In the following theorems, we
will assume that k(1) � r, and k

(2) � 1. We need k
(1)

to be at least r because we observe k
(1) entries per

column for Line 2 of MedianLS . However, k(2) need
not be as large because as the number of columns tends
to infinity, we will observe at least r entries in each
row. Therefore, the total number of required samples
is only r + 1 per column. But we do not recommend
setting k

(2) as low as 1 in practice, especially without
sample splitting.

Subspace Recovery Metric For our theorem state-
ments, we let U 2 RN⇥r be the matrix whose or-
thonormal columns are the left singular vectors of X̊.
In general, when we compute the SVD of X̊Wt =
Ut⌃tV

T

t
, the resulting Ut might not contain the same

singular vectors as U , but they span the same sub-
space. We use a distance measure on subspaces that

does not depend on such representations, namely the
largest principal angle between subspaces. This can
be defined for two matrices with orthonormal columns
U,X 2 RN⇥r by sin ✓(X,U) = k(IN �XX

T )Uk (Zhu
and Knyazev, 2013). Note sin ✓(U,UO) = 0 for any
orthogonal matrix O 2 Rr⇥r.

Initialization The initialization conditions are quite
stringent in theory, but in practice, as has been empir-
ically2 shown in other optimization approaches, only
mild initialization can su�ce. This is consistent with
our own experiments in Section 5.

Proofs of all theorems are deferred to the extended
version of this paper (Kim and Bayati, 2019). For

ease of notation, we define q
(1) := k

(1)�r+1
r(N�k(1))+k(1)�r+1

.

Note that 1
rN
 q

(1)  k
(1)

r(N�k(1))
, and that k

(1

q(1)
is

a decreasing quantity with respect to k
(1). In order

to simplify our bounds a little, we will additionally

assume that k(1)  N

2 , which implies that q(1)  2k(1)

rN
.

4.1 Active Sampling

Noise in observations presents an obstacle to recover-
ing the column space, and if the noise variance is too
large compared to the r-th singular value of X̊, then it
can drown out this ‘signal’ in the noise when perform-
ing alternating minimization. Therefore, we impose
Assumption 4.1 or 4.5 to ensure that we have enough
signal.

Assumption 4.1 (Size of Noise for Active Sampling).

�Z  1
48

p
q(1)p
k(1)

�r(X̊).

There are two factors that influence the rate of con-
vergence. One factor is that we only have partial ob-
servations. The other factor is that we have noise in
our observations. When �Z is small compared to the
desired accuracy ✏,

�z

p
k(1)  ✏�1(X̊)

p
r, (2)

the e↵ect of having only partial observations domi-
nates. For instance, this is always true when observa-
tions do not contain noise. When �Z is large compared
to the desired accuracy ✏,

�z

p
k(1) � ✏�1(X̊)

p
r, (3)

the e↵ect of noise dominates. Therefore, we prove dif-
ferent convergence rates for each regime.

Theorem 4.2 (Noisy observations, active sampling,
for small �Z/✏). Suppose Assumptions 2.1, 4.1, A.3,

2For much higher sampling complexity and Bernoulli
samples, it has been shown theoretically by Ge et al. (2016)
and Ge et al. (2017).
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A.4, A.6 hold, N/2 � k
(1) � r, k

(2) � 1, 1 � �r(X̊)✏ �
e
�M

M , and Equation (2) holds. Then there exist con-

stants C
init
4.2 , C

iter
4.2 , C

prob
4.2 such that for all ✏ > 0, if we

initialize with Minit columns, where

Minit � C
init
4.2

�1(X̊)6N2(logMinit)
3
r
2

�r(X̊)6(k(1)+k(2))2q(1)
, (4)

and we use s blocks, where

s � log

✓
�r(X̊)

p
q(1)

48
p
r✏

◆
, (5)

and each block has size M , with

M � C
iter
4.2

�1(X̊)6r3N(logM)2

�r(X̊)6k(2)q(1)
+ log

�
1
✏

�
, (6)

then ColumnSpaceEstimate(Yt, k
(1)

, k
(2)

, Minit,

M , s, ✏, True) returns an X̂ such that sin ✓(U, X̂)  ✏

with probability at least 1� 2M�2
init � C

prob
4.2 sM

�2
.

Whenever Theorem 4.2 holds, the sample complexity
grows only logarithmically with ✏

�1, which is a feature
of a matrix completion approach (versus a spectral ap-
proach, which always has a dependence of ✏�2) in the
small �Z/✏ regime.

When the �Z is large compared to the desired accu-
racy ✏, we can get a �Z-dependent bound, with a ✏

�2

dependence on desired accuracy ✏. The initialization
step for this regime consists of Algorithm 1 instead
of a spectral initialization. The full pseudocode for
DoubleColumnSpaceEstimate (Algorithm 2) can
be found in the Appendix.

Theorem 4.3 (Noisy observations, active sampling,
for large �Z

✏
). Suppose Assumptions 2.1, 4.1,A.4, A.6

hold, N/2 � k
(1) � r, k

(2) � 1, 1 � �r(X̊)✏ � e
�M

M .

Let ✏ satisfy equation (3). Then there exist constants

C
init
4.3 , C

iter
4.3 , C

prob
4.3 such that for every ✏ > 0, if we ini-

tialize with Minit columns, where

Minit � C
init
4.3

�1(X̊)6N2(logMinit)
3
r
2

�r(X̊)6(k(1)+k(2))2q(1)

and perform alternating minimization with s1 �

log

✓
�1(X̊)�r(X̊)

p
q(1)

48�Z

p
k(1)

◆
blocks of size

M1 � C
iter
4.2

�1(X̊)6r3N(logM)2

�r(X̊)6k(2)q(1)
+ log

�
1
✏

�
,

followed by alternating minimization with s2 = 1 block

of size

M2 � C
iter
4.3

r
2
�
2
Z�1(X̊)4Nk

(1)(logM)2

�r(X̊)6k(2)q(1)✏2
+ log

�
1
✏

�
,

then DoubleColumnSpaceEstimate(Yt, k
(1)

, k
(2)

,

Minit, M1, M2, s1, s2, ✏, True) returns an X̂ such that

sin ✓(U, X̂)  ✏ with probability at least 1 � 2M�2
init �

C
prob
4.2 s1M

�2
1 � C

prob
4.3 M

�2
2 .

Comparison with ScaledPCA We compare with
the theoretical results from using the ScaledPCA ap-
proach with Proposition 3 from Lounici et al. (2014),
as Gonen et al. (2016) prove bounds for a quantity
(h⇧̂ � ⇧,�Ci in their notation) that is weaker (i.e.,
sin ✓(X̂, U)  ✏ implies their quantity is less than ✏,
but not vice versa), and they only prove bounds in
expectation. For simplicity, we will omit dependence
on the condition number (assume �1(X̊) = �r(X̊) = 1)
and assume that k(1) = k

(2) =: k . When �Z/✏ is small
(Equation (2)), Theorem 4.2’s logarithmic dependence
on ✏

�1 is better than the ✏
�2 dependence of Lounici

et al. (2014), but the dependence on r and k is worse,
by r

3
k. When �Z/✏ is large (Equation (3), Theorem

4.3), our sample complexity needs Õ(rk/N) as many
samples as Lounici et al. (2014), which can be fairly
small.

4.2 Uniformly random sampling

When we use random sampling, there is a chance per
column that we might choose a “bad” subset, which
is small with respect to N , but does not change with
respect to M . Since we need to avoid “bad” subsets
for all M columns, in the regime of M � N , this
would give us an unacceptable probability of failure
in theory, though in practice, this probably does not
occur. Therefore, we assume that the true X̊ has no
“bad” subsets and use a longer initialization period to
ensure that our X̂ also has no “bad” subsets. When
X̊ 2 RN⇥r has rank r (which is true by Assumption
A.4), the assumption about the absence of “bad” sub-
sets is equivalent to the k-isomeric condition by Liu
et al. (2017).

Definition 4.4 (k-isomeric (Liu et al., 2017)). A ma-

trix X 2 RN⇥r
is called k-isomeric if and only if any

k rows of M can linearly represent all rows in X.

We define the smallest singular value of any k
(1) rows

of a matrix X 2 RN⇥r, which is the opposite of the
desired criterion in Equation (1).

�⇤(X; k(1)) := min
S⇢[N ],|S|=k

�r(QS(X̊)) (7)

Assuming that U has rank r, if X̊ is k
(1)-isomeric,

�⇤(U ; k(1)) > 0.

We note that every N ⇥ r matrix X with orthogo-
nal columns has �⇤(X; k(1)) 

p
p(1) (Kim and Bay-

ati, 2019), and in fact, �⇤(X; k(1)) could be arbitrarily
small. For random sampling, �⇤(U ; k(1)) will play (up

to a constant term) the same role as
p
q(1) in active

sampling, for instance, in the bound on the noise vari-
ance.

Assumption 4.5 (Size of Noise for Random Sam-

pling). �Z  1
96

�⇤(X̊;k(1))p
k(1)

�r(X̊).
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The di↵erence in sampling complexity in active
versus random sampling is the di↵erence between
(�⇤(U ; k(1)))2 and q

(1). Theorems 4.2 and 4.3 still
hold with exactly the same proof if we replace q(1) with
(max|S|=k(1) �r(US))2. With this replacement, the cor-
responding bound for the active learning case will al-
ways be better than the bound for the noisy case. For
instance, because there is, in general, no lower bound
for �⇤(U ; k(1)), we cannot give an upper bound on the
initialization step of random sampling that holds inde-
pendent of X̊, which is something we can do in the case
of active sampling. The full statements and proofs for
the theorems for the uniformly random sampling case
(Theorems B.1 and B.2) can be found in the Appendix.

5 Experiments

Synthetic data For the simulated data experi-
ments, we use the model from Assumption 2.1 with
i.i.d. Gaussian columns. That is, for each simulation,
we generate a fixed X̊ 2 RN⇥r, and we generate the
t-th column by X̊wt + zt, where wt, zt 2 Rr⇥1 and
wt ⇠ N (0, Ir), zt ⇠ N (0,�2

Z
Ir). Since we do not re-

quire X̊ to be incoherent (which would result from
light tailed distributions), we use a heavy tailed distri-
bution (specifically the standard Cauchy distribution)
to generate each entry of X̊ independently. We set
�
2
Z
= 0.1, N = 50, and r = 6.

MIMIC data For our real data experiments, we
use the MIMIC II dataset, which contains data for
ICU visits at Beth Isreael Deaconess Medical Center
in Boston, Massachusetts between 2001 and 2008 (Lee
et al., 2011). We focused on patients aged 18-89 (in-
clusive) who were having their first ICU visit, and who
stayed in the ICU for at least 3 days. For these patients
(columns), we took 1269 features which mostly include
lab test results. Because the data has many missing
entries, we restricted the data to those columns and
rows that had less than 50% missing entries, which led
to 115 covariates (rows) and 14584 patients (columns).
Then, for each run, we randomly chose a submatrix of
N = 50 covariates and t = 5100 patients, and we use
r = 6 as in the simulated data. To evaluate column
space recovery , we estimated a “ground truth” X̊ us-
ing SVD on our data, with missing values replaced by
zeros. However, when evaluating Yt recovery, we only
measure error on the non-missing values (i.e., those
that were present in the data, which is a strict super-
set of those that were observed by the algorithms).

Approximately active greedy sampling We
choose a fixed number k = k

(1) + k
(2) to sample per

column. For active sampling, we set k
(1) = k

(2) = 6,
and for random sampling, we set k = 12, so that
both strategies observe the same number of samples

per column. Ideally, our active sampling method
would choose the subset S

(1) of size k
(1) that

satisfies Equation (1). However, since exhaustive
search is computationally infeasible, we use an e�-
cient method that approximates this optimization,
namely, Algorithm 1 from Avron and Boutsidis
(2013) . This algorithm produces an S

(1) such that
k(QS(1)(Xprev)TQS(1)(Xprev))�1QS(1)(Xprev)T k 
1/

p
q̃(1), where q̃

(1) = k
(1)�r+1

r(N�r+1) . q̃
(1) is greater than

q
(1), but has a similar behavior as q

(1) for small
k
(1). Analogues of Theorems 4.3 and 4.2, with q

(1)

replaced by q̃
(1), hold when we use this approximation

algorithm for active sampling.

Deviation from theoretical assumptions Our re-
covery methods operate in a more practical setting
than our theory requires. For alternating minimiza-
tion, the initialization uses much fewer columns than
our theorems require, we do not do sample splitting,
we do not fix the time horizon beforehand, and we
update X̂ as we partially observe each column. This
continual updating means that even if we chose S(1) at
time t0 such that QS(1)(X̂t0) was large, when we use it
at some timestep t1 > t0, QS(1)(X̂t1) may not be large.
We also skip the SmoothQR and Median steps and add
L2 regularization with � = 0.05 for stabilization.

Matrix recovery In many cases, the reason that
we care about recovering subspaces accurately is so
that we can recover the original matrix Yt accurately.
Therefore, we also measure matrix recovery. Given an
estimate of the column subspace X̂, the correspond-
ing estimate Ŷt is computed by imputing the missing
entries by taking the best regularized least-squares fit
over the observed entries: P⌦C

[1:t]
(Ŷt) = P⌦C

[1:t]
(X̂�

⇤),

where �
⇤ = argmin

�

kP⌦[1:t]
(X̂� � Yt)kF + 0.05k�k2

F
.

The algorithms do not have to fit the entries that it
has observed, i.e., P⌦[1:t]

(Ŷt) = P⌦[1:t]
(Yt).

5.1 Results

Figure 1 shows the results of our simulations, aver-
aged over 50 runs. Our active sampling method sam-
ples k(1) entries as described above (approximately ac-
tive greedy sampling) and k

(2) samples uniformly at
random. We compare three methods: ScaledPCA
(green), alternating minimization with uniformly ran-
dom sampling (orange), and alternating minimization
with active sampling (blue). We denote by X̂t and
Ŷt the estimates of X and Y after observing t (to-
tal) columns. We perform the initialization step with
100 columns, and plot the error as additional columns
are observed, for 1000 additional columns for the simu-
lated data and 5000 additional columns for the MIMIC
II data. We indicate standard error through shad-
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(a) Simulated data, X recov-
ery

(b) Simulated data, Y recov-
ery

(c) MIMIC II data, X recov-
ery

(d) MIMIC II data, Y recov-
ery

Figure 1: Error versus number of columns t

ing. In Figures 1a and 1c, the error is the sine of the
largest principal angle between two subspaces, as dis-
cussed in Section 4, and in Figures 1b and 1d, we use
the normalized matrix recovery error, which is given

by kŶt�YtkF

kYtkF
, for the simulated data. Since we do not

know all the entries of the MIMIC II dataset, we use
kP⌦0

[1:t]
(Ŷt�Yt)kF

kP⌦0
[1:t]

(Yt)kF
, where ⌦0 consists of the entries for

which we have ground truth in the dataset (many of
which were not observed by the algorithms).

Column space recovery Figures 1a and 1c show
that alternating minimization (both random and ac-
tive sampling) recovers the column space more accu-
rately than ScaledPCA . Furthermore, when using
alternating minimization, using active samples results
in a lower column space recovery error than using uni-
formly random samples.

Matrix recovery In Figures 1b and 1d, we can
see that when algorithms have more accurate column
space estimates, the corresponding matrix estimate Ŷt

also tends to be more accurate. In Figure 1d, for the
first few hundred columns, alternating minimization
with random sampling has a less accurate matrix es-
timate Ŷt than ScaledPCA . However, this is only
when alternating minimization with random sampling
has a poor column space estimate (though still slightly
better than that of ScaledPCA ). Moreover, the rela-
tive performance of alternating minimization with ran-
dom sampling improves (both for matrix and column
space recovery) as the number of observed columns
grows, which is the setting of our theoretical results.
Also, note that alternating minimization with active
sampling always performs better than ScaledPCA .

6 Ideas of the Proof

Each iteration of alternating minimization involves op-
timizing Ŵ 2 RM⇥r given a fixed X̂

prev 2 RN⇥r, and
then optimizing X̂ given this Ŵ .

Jain et al. (2013) and Hardt (2014) argue that each
minimization step is similar to performing a step in in
the power method (e.g., finding the top eigenvector of a
symmetric matrix A by setting xt+1 = Axt/kAxtkF ).
In their setting, tan ✓(Ŵ , V )  tan ✓(X̂prev

, U) and
tan ✓(X̂, U)  tan ✓(Ŵ , V ), leading to successively
better estimation, tan ✓(X̂, U)  tan ✓(X̂prev

, U), with
each iteration. (Here, U and W represent the row sub-
space and column space, respectively, of the de-noised
version of Y .)

In our setting, because of the asymmetry between
N and M , tan ✓(Ŵ , V )  tan ✓(X̂prev

, U) no longer
holds. However, it remains true that tan ✓(X̂, U) 
tan ✓(Ŵ , V ). Furthermore, it turns out that by ad-
justing the block size M appropriately, we can make
this decrease be large enough to compensate for the in-
crease from tan ✓(X̂prev

, U) to tan ✓(Ŵ , V ). In a way,
this is in the spirit of averaging multiple estimates of
the column subspace, by first passing through Ŵ , and
collecting information from enough columns of Ŵ to
gain a more accurate estimate.

In the small �z/✏ regime, this decrease from
tan ✓(X̂, U) to tan ✓(X̂prev

, U) is actually multiplica-
tive, leading to exponential convergence in the number
of iterations.

7 Conclusion

In this work, we proved that an alternating minimiza-
tion approach to estimating the column subspace of
a partially observed matrix succeeds – as the number
of columns grows, we can estimate the column space
to any given accuracy with probability tending to 1.
We showed theoretically and experimentally that this
approach works better than the naive one that per-
forms PCA on the elementwise rescaled empirical co-
variance matrix. We also showed that using some num-
ber k(1) � r of actively chosen samples in addition to
random samples outperforms random sampling.
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