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Abstract

We propose a new and general approach to
learn deep generative models. Our approach
is based on a new observation that the impor-
tance weighted autoencoders (IWAE, Burda
et al.|[2015]) can be understood as a procedure
of estimating the MLE with an EM algorithm.
Utilizing this interpretation, we develop a new
learning algorithm called importance weighted
EM algorithm (IWEM). IWEM is an EM al-
gorithm with self-normalized importance sam-
pling (snIS) where the proposal distribution is
carefully selected to reduce the variance due to
snlS. In addition, we devise an annealing strat-
egy to stabilize the learning algorithm. For
missing data problems, we propose a modified
IWEM algorithm called miss-IWEM. Using
multiple benchmark datasets, we demonstrate
empirically that our proposed methods out-
perform IWAE with significant margins for
both fully-observed and missing data cases.

1 Introduction

Probabilistic generative models with deep neural net-
works have achieved tremendous success for modeling
high dimensional data due to the development of the
variational autoencoding framework (VAE, |Kingma
and Welling) 2013| Rezende et al.| 2014]). VAE models
the distribution of an observable random vector x of
high dimension by introducing a lower dimensional la-
tent vector z such that p(x;0) = [ p(x|z; 0)p(z; 0)dz,
where 6 is the parameter of the model. Instead of
maximizing the marginal log-likelihood which is com-
putationally infeasible, VAE utilizes the lower bound
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of the marginal log-likelihood, called ELBO, which is
more tractable to compute.

Various more tight but still tractable lower bounds
than ELBO have been proposed by Burda et al.[2015],
Cremer et al.| [2017], [Kingma et al.| [2016], Rezende
and Mohamed, [2015], [Salimans et al.| [2015],|S¢ nderby
et al. [2016]. Especially, the importance weighted au-
toencoders (IWAE, [Burda et al.| [2015]) use multiple
samples from the variational distribution to construct
a lower bound, which improves VAE significantly.

In this paper, we propose a new learning algorithm
for probabilistic generative models based on the
expectation-maximization (EM) algorithm which tries
to maximize the marginal log-likelihood directly in-
stead of pursuing a tighter lower bound. The proposed
learning algorithm is motivated by uncovering the rela-
tion between IWAE and the EM algorithm. We first
show that IWAE can be understood as a version of the
(generalized) EM algorithm with self-normalized im-
portance sampling (snlS). That is, in fact IWAE tries
to estimate the maximum likelihood estimate (MLE)
directly. This new perspective explains partly the su-
periority of IWAE since learning methods based on
ELBO have suffered from sub-optimality of their esti-
mates due to inevitable discrepancy between the model
posterior and the variational distribution.

Based on this new interpretation of IWAE, we pro-
pose an EM algorithm called importance weighted EM
(IWEM) algorithnﬂ which improves IWAE. The main
idea of IWEM is to use snlS to approximate the E-step
with a carefully selected proposal distribution to reduce
the variance raised by snlS. In addition, we devise an
annealing strategy to stabilize the EM algorithm in
early learning phases.

An appealing feature of IWEM is that it can be modi-
fied easily for a nonstandard case. For example, IWEM
can be applied to missing data problems by modify-
ing the selection of the proposal distribution in snIS

'Code available at https://github.com/dongha0718/
IWEM
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slightly.

By conducting test log-likelihood comparisons for mul-
tiple benchmark datasets, we show empirically that
IWEM outperforms IWAE with large margins, and is
also superior to other recent methods. Particularly for
missing data scenarios, we observe that the margin be-
tween IWEM and IWAE becomes larger as the missing
rate increases.

There are some similar methods to IWEM. MCEM
[Song et al., [2016] is a method of using Monte Carlo
method in E-step as IWEM does. While we focus to
E-step and P-step by reducing variance due to snlS,
MCEM mainly modified M-step by introducing auxil-
iary random variables. Dieng and Paisley| [2019] have
also improved IWAE by the idea of re-interpreting
IWAE as an EM algorithm with snIS. They exploited
the inclusive KL divergence and hyperproposal in order
to induce a good proposal. In contrast, we stick to use
the same divergence as the one used in IWAE. More-
over, we provide a theoretical justification of using the
divergence in IWAE

The paper is organized as follows. In Section [2] we
provide brief explanations of related works, and the de-
tailed descriptions of our methods are given in Section[3]
Application of IWEM for missing data case is described
in Section [4] and results of numerical experiments in-
cluding test log-likelihood performance analysis are
presented in Section |5l Lastly final conclusions follow
in Section [Gl

2 Related Work

2.1 EM algorithm

The EM algorithm is an efficient iterative method to
compute the MLE in the presence of missing data or
latent random variable. Let x be an observable ran-
dom vector and z be a missing or latent random vec-
tor. To maximize the marginal log-likelihood function
log p(x; 6) which is parametrized by 6, EM algorithm
alternates the following two steps iteratively: E-step
and M-step.

Let 0() be the current estimate of @ at iteration ¢. In
E-step, we define Q(|6("); x) as the expected value of
the joint log-likelihood function p(x,z; @) with respect
to the current conditional distribution p(z|x; () given
as

Q0]6");x) := /p(ZIX;W)) log p(x,z;0)dz. (1)

In M-step, we update the current estimate §(*+1) by
maximizing Q(A|0™); x) with respect to 6. Tt is also pos-
sible to choose #(*+1) which simply increases Q(#]0®); x)

so that Q(O®+1|9®); x) > Q(0®|9"); x). This kind of
the modified algorithm is called a generalized EM algo-
rithm. Hereafter we use the two terms "EM algorithm"
and "generalized EM algorithm" interchangeably if
there is no confusion.

When it is intractable to calculate (1)), one may use
snlS to approximate by introducing a proposal
distribution ¢(z|x; ¢) parametrized by ¢, which is given
as

Q0109 ¢;x) logp(x, 213 0),  (2)

Z Zk/ Wy

where z;, ~ q(z|x; $) and wy, = p(x, z1; 0V) /q(z|x; ¢)
for k = 1,..., K. If necessary, one also updates ¢ to
encourage q(z|x;¢) to be a good proposal distribution.
In this study we call this procedure the proposal step
(P-step).

The EM algorithm has not been used popularly for
learning probabilistic generative models since the choice
of the proposal distribution is not easy and thus vari-
ance in IS (or snlS) is rather large [Bengtsson et al.l
2008, |[Dowling et al.l |2018, | Tokdar and Kass, 2010|. In
this paper, we propose an efficient way of selecting the
proposal distribution in P-step.

2.2 Variational autoencoders

Variational autoencoder (VAE, |Kingma and Welling),
2013, |[Rezende et al., [2014]) maximizes the lower bound
of the marginal log-likelihood, called evidence lower
bound (ELBO) with respect to a variational distribu-
tion q(z|x; ¢) parametrized by ¢ given as

oo S5

S

LYAE(0, ¢ x).

logp(x;0) =

V

In practice VAE approximates ELBO by using the
Monte Carlo method,

EVAE log (
Z (zi]x; 9)
where z; ~ q(z|x; ¢) for I =1, ...,
with respect to 6 and ¢.

p(x, z; )) (3)

L, and maximizes

2.3 Importance weighted autoencoders

Importance weighted autoencoder (IWAE) of [Burda
et al.| [2015] is a variational inference strategy capable
of producing arbitrarily tight lower bounds. For a given
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Algorithm 1: IWAE as EM algorithm

Require: Train dataset: D = {x1,...,X,}

Require: Model architectures: p(x,z;6) and
q(z|x; ¢)

Require: Initial parameters: #() and ¢V

Require: SGD based optimization algorithm:
L(loss, params, current _params)

Initialization: Parameters 6" and ¢

Initialization: t « 1

while 6®*) "not converge" do

E-step Calculate ) ;" ; LWAE (g 6(®): x;) in

[@.
M-step Update #(¢+1):

o+ L ( > LWAE(G, 1 x;), 6, 9<t>> .

i=1

P-step Update ¢(t+1):

P, ( SOEWAB(RED gix,), 6, ¢<t>> -

=1

end

x, IWAE maximizes the following function

p(x, 23 0)
Ea, ... zx~a(alxie) [log (K (ZMX@)]

which uses multiple samples (i.e. K many samples)

from the variational distribution ¢(z|x;¢). In practice,

IWAE uses an approximated version of the above lower
bound by utilizing the Monte Carlo method which is
given as

X zka

K
TIWAE ) 2
LIWAR(9, ;%) := log (K Z ERS ) (4)
where z, ~ q(z|x;¢) for k=1, ..., K.

3 Proposed method

3.1 IWAE as EM algorithm

As mentioned in Section [I] our method is motivated
by close investigation of relation between IWAE and
the EM algorithm. The following proposition is a key
result to interpret IWAE as an EM algorithm whose
proof is in the supplementary material.

Proposition 1 The following equality holds for any
o'

VoLIAE0, 63|, _,, = VoR(616',9:%)

0=6"

Proposition [I] implies that IWAE is equivalent to the
EM algorithm for learning 6 if we use a gradient based
optimization algorithm. The step of updating ¢ in
IWAE can be understood as P-step. Consequently, we
can conclude that IWAE is a method trying to find the
MLE directly. We summarize this new interpretation
of IWAE in Algorithm [I]

Conceptually, for given 6, P-step is to find ¢ such
that ¢(z|x; @) is as close to p(z|x;0) as possible. Note
that the objective function of P-step in Algorithm [T is
equivalent to

K p(z|x; 0 t+1))
log( Z Zk|X ¢) (5)

since p(x; 0¢+1) is irrelevant to ¢, and (5)) is an unbi-
ased estimate of

» zk|x 9(t+1))
Ez1,...,ZKNQ(z|x5¢) [ log (K Z zk|X (b . (6)

Thus we can say that IWAE encourages the pro-
posal distribution ¢(z|x;$) to be similar to the cur-
rent model posterior p(z|x; (1)) and the similarity
is measured by @ When K =1, @ becomes the
standard Kullback-Leibler (KL) divergence. When
K > 1, however, @ seems to be a new but inter-
esting divergence. Of course @ is minimized when

q(z|x; ¢) = palx; 00+D).

3.2 Theoretical analysis of @

Dieng and Paisley| [2019] pointed out that (@ does not
correspond to minimizing any divergence, leading to
the poor proposal distribution. Here, we provide a
theoretical justification of using @ as a divergence.

Proposition 2 For any two density functions p(z)
and q(z), consider the new divergence

K
DIW(q||p) = —Ey,... zr~q [log ( Z )]

If p/q is bounded, then we have

Jim 2K - D™ (qllp) = x*(pll9),

—o0

where x2(p||q) is the Chi-squared distance between p
and q.

The proof is in the supplementary material. Proposi-
tion implies that minimizing @ enforces the proposal
distribution to be similar to the model posterior in the
sense of the Chi-square distance.
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3.3 IWEM

In this section we propose IWEM which adds two new
techniques to the interpretation of IWAE as an EM
algorithm.

3.3.1 Optimal P-step

Using Q(016®), 6®;x) in (2) as the objective function
instead of Q(|6);x) in (1)) inevitably causes addi-
tional variance. Thus we need to find a good proposal
distribution which yields the additional variance as
small as possible.

It is well known [Owenl, 2013| that the optimal proposal
distribution, which minimizes the variance due to IS,
is given by the following form

*'(z) o |logp(x,z; 0| - p(x,z; 0¢FD)
= Bz 00D).

Recall that IWAE finds the proposal distribution simi-
lar to p(z|x; 04+ o p(x, z; 0¢+1), which means that
P-step of IWAE may not be optimal for the EM algo-
rithm with IS.

By adopting the results of [(Owen| [2013| and Proposition
we propose a new P-step by replacing L'VAE to

Zp (2]%; 00+)

q(z;|x; @)

LoPHOUHD) | i x) = log , (7)

where J is the number of samples from g(z|x; ¢+1).
We call this modification optimal P-step. It helps the
proposal distribution to be similar to ¢°P*(z) and does
leads to yield small variance due to IS. The effectiveness
of optimal P-step is illustrated in Figure [T}

Remark Since we use snlS, not the vanilla IS, the

optimal proposal density [Owenl, [2013| should be

¢ (z) o |logp(x,z; 0" FY) — Q(é’(t“)I@““)ﬁ;X)‘
xp(x,z;ﬁ(tﬂ)).

But it would not be possible to calculate the term
Q@ exactly, and therefore we use as the objective
function in P-step.

3.3.2 Annealing strategy

The idea is motivated from the comparison of vari-
ances between and . Note that ELBO in is
equivalent to

L

1

7 E log p(x, 215 60),
=1

9.5
—— w/ opt. P-step

9.0 wio opt. P-step
B5
8.0
15
70
65
6.0

1 2 3 3 5

Epoch

Figure 1: Variance of (2)) with (blue) and without (or-
ange) optimal P-step. For each method, we calculate
100 many values of by applying 100 IS at each
training epochs of the static biMNIST dataset, and
obtain the corresponding variance. The values in the
plot are the averages of the variances of for all the
train samples.

when we update 6. We can easily notice that, to approx-
imate each expected joint log-likelihood, utilizes
the snlS while utilizes the Monte Carlo method.

At initial learning stage there is a large discrepancy
between p(z|x; 0) and ¢(z|x; ¢). It leads to large vari-
ance of , which may hamper the learning procedure.
However this discrepancy does not affect the variance
of , which is empirically illustrated in Figure

Based on the above observation, we propose to apply
the idea of warm-up [Bowman et al. [2015] to IWEM
in order to reduce the variance at early learning stages.
We devise a technique, called annealing strategy to
modify the E-step by taking a convex combination
with and which is formulated as

QU010 6M;x) = a QB8N ¢M;x)

+(1—a)-LVAE(9, ¢V x),
8)

where a € [0,1] is called annealing controller. We
assign «a to zero in the initial stage and increase it
incrementally up to one as the learning iteration pro-
ceeds. Annealing strategy reduces the variance of the
objective function in E-step at early learning stages
and thus stabilizes the overall learning procedure.

The algorithm of IWEM, which uses optimal P-step
and annealing strategy, is summarized in Algorithm [
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Figure 2: Boxplots of variances of the approximated
expected joint log-likelihoods and for VAE and
EM, respectively on the static BIMNIST dataset with
the same values of 6 and ¢.

4 TIWEM for missing data

An appealing advantage of IWEM is that it can be
modified easily for a nonstandard case whenever the
EM algorithm can be so. For illustration, in this section,
we propose a modification of IWEM for missing data,
called miss-IWEM.

Suppose that a given datum x is decomposed as x =
(x(©), x("™))where we observe x(°) but not x(™). Then
p(x(©);0) = fp(x(o),x(m),z; 0)dzdx™ is the marginal
likelihood of an observed variable x(°). For simplicity,
we assume that xs are independent conditional on z,
that means x(©) and x(") are independent given z.

4.1 Choice of Proposal Distribution
When there are missing data, we propose to use the

following proposal distribution in P-step of miss-IWEM,
which is formulated as

g(x™,2|x);0,0) := p(x\"™)2;0) - q(z]%; 9),

where x = (x(°), %("™)) is a completion of the vector x
for some reasonably imputed value x(™ of x("™) and
q(z]x; ¢) has the same distribution as ¢ in IWEM. In
miss-IWEM, we generate x(™) as follows:

e Draw z from the distribution ¢(z|Xo; ¢),

e and draw x(") from the distribution p(x(™|z; ),

where %o = (x(?),0) and 0 is the 0-vector of dimension
equal to that of x(™).

Algorithm 2: IWEM

Require: Train dataset: D = {x1,...,X,}

Require: Model architectures: p(x,z;6) and

q(z[x; ¢)

Size of samples: L, K and J

Size of mini-batch: m

SGD based optimization algorithm:

L(loss, params, current _params)

Require: Increment ¢ > 0 and number of update
criteria n,,

Initialization: Parameters 01 and ¢()

Initialization: t « 1

Initialization: Annealing controller a < 0

while () "not converge" do
Sample x1, ..., X,, from D

E-step Calculate the sum of for
mini-batch:

Require:
Require:
Require:

QU(010M, ¢(1)) :=>"Q(0]0"), 6"; %,).
=1
M-step Update #(t+1):
6D £ (=080, 6),0,0) .

P-step Calculate the sum of for
mini-batch and update ¢(*+1):

¢ L (— D LY, 41 %), 6, ¢><t>> :
=1

After every n, updates, @ + min(a + ¢, 1)
end

4.2 miss-IWEM

In E-step, likewise IWEM, we consider annealing strat-
egy with an annealing controller a and calculate the
following objective function:

Af;l(g“g(t)7 ¢(t); x(")) — - @m(0|9(t)7 ¢(t); X(0))
+(1 —a) - LYAE(9, M) x(9).

9)

Here we define

K
A Wk m
Qm<9|9(t), ¢(t); X(O)) — Z W logp(x(o), Xi; )’ 71 9),
k=1 &k’ UK

where (x,(ﬂm), zi,) ~ q(x("™), z|x(2): 91 H®)),

p(x@ x(™ 2;00)  p(x©),z;0)

W ‘= — -
a(x"™ 2 |x©@; 00 1) a(zk]%;00)
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for k=1,..., K, and

LYAB(g, 60 x(0))

p(x(©) zl,9)>

ZZ|X7 ) t))

Zlog(

where z; ~ q(z|%; ")) for I =1, ..., L.

After updating 6 to 1) with the objective function
@, we also apply optimal P-step technique. The ob-
jective function of P-step is written as
o (0, 1)
J oz (m)
1 p(x;
=log | 7 > (=™
Wi 3

j=1 4\X

7, |x(©); g(t+1))
2;[x(9); 041, ¢)

(10)

where (xg.m),zj) ~ q(x(™) z|x(2);9t+D) @) for j =

.,J and
p(x™ z|x(@;0¢)) o [logp(x(9), x(™) z; 94+
xp(x(o) x(™) gz, 9(t+1)),

By canceling out the term p( |z o+ 1' can
be rewritten as

e+

log li |log p(x'”), x{"™, 23 |
J = q(z;|%; ¢)

The pseudo algorithm of miss-IWEM is summarized in
Algorithm [3]

5 Empirical analysis
5.1 Experimental setup

Datasets We carry out various experimental anal-
yses to assess the performances of IWEM and miss-
IWEM in comparison to other learning methods by ana-
lyzing four image datasets: static biMNIST |Larochelle
and Murrayl, [2011], dynamic biMNIST [Salakhutdinov
and Murray|, [2008], Omniglot [Lake et al., 2015] and
Caltech 101 Silhouette |[Marlin et al., 2010]. For miss-
ing data experiments, we additionally analyze four UCI
datasets: Bank, Breast, Red and White.

Model architectures For image datasets,
we consider MLP and CNN architectures for
(p(x|z;0), q(z|x; ¢)) and use the Gaussian distribution
for the proposal family. We exploit the same settings
implemented in [Tucker et al.|[2018] for MLPs and refer
to |Tomczak and Welling| [2017] for the details of CNNs.
We use the Gaussian distribution for the proposal
distribution family. For UCI datasets, we consider
MLPs with 3 hidden layers (with 128 hidden units)
and tanh activations which are used in Mattei and
Frellsen| [2018]. We also use the Gaussian distribution
for the proposal distribution family.

p(x,25;0*Y) >

Algorithm 3: miss-IWEM

Require: Train dataset: D = {xgo), e x;‘))}

Require: Other requirements are same as
Algorithm 2]

Initialization: Same as Algorithm

while 6®*) "not converge" do

Sample x( °) ...7§<$$) from D
E-step Calculate the sum of @ for
mini-batch:

m

(9|9(t) oM Z

50100, 605 %().

M-step Update 9(t1):
0D £ (~Qu010,0),0,0)).

P-step Calculate the sum of ([10] . ) for
mini-batch and update ¢(*+1):

¢t £ (— SOLp (0, 6:%(), 6, ¢><t>> :

i=1

After every n, updates, o < min(a + ¢, 1)
end

Implementation details IWEM has the three tun-
ing parameters, L, K and J. We find in practice that
L does not affect the performances seriously and thus
we fix L to be 1 for computational efficiency. We
choose the optimal K and J using validation datasets.
For the annealing scheme, we start with the annealing
controller a being zero and increase it by 0.01 after
every epoch of the training phase up to 1. For the
optimization algorithm, the Adam algorithm |[Kingma
and Bal, [2014] is used with the learning rate 5-10~*
and mini-batches of size 100. The initial values of the
parameters of the generative and proposal models are
designed according to |Glorot and Bengio, 2010].

5.2 Complete data analysis

Results We consider three algorithms: 1) IWEM
without optimal P-step (IWEM-woo), 2) IWEM with-
out annealing strategy (IWEM-woa) and 3) IWEM. We
conduct the test log-likelihood comparisons which are
calculated by the same way used in [Burda et al.|[2015],
Rezende et al. [2014], Tomczak and Welling| [2017]. We
train each model 5 times, take average of the test log-
likelihood values and compare ours with other methods
including STL [Roeder et al.| [2017] and DReG |Tucker
et al., [2018], which are summarized in Table

Using optimal P-step or annealing strategy improves
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Table 1: Test log-likelihood for diverse learning meth-
ods. (STL and DReG are implemented with the public
github code of DReG paper.)

Table 2: Test log-likelihood of static biMNIST for
various values of K and J. The other parameters on
each case is fixed to the optimal value.

MLP ‘ s.MNIST d.MNIST Omni. Caltech. K 1 5 10 20 50 70

IWAE -88.86 -87.64 -107.23 -124.31 LL | -89.38 -87.30 -87.13 -87.14 -87.11 -87.16

STL - -87.43 -106.40 - J 1 5 10 20 50 70

IWAE-DReG - -87.76  -106.70 - LL | -90.31 -88.16 -87.76 -87.34 -87.11 -87.20

IWEM-woo -87.97 -86.99 -106.59  -123.66

IWEM-woa -87.59 -86.61 -106.5 -124.19

IWEM -87.71 -86.68 -106.20 -123.50

ONN | SMNIST dMNIST  Ommi.  Caltech, nario where one (?bs.erve.:s pixels of images un.lformly
at random. But it is difficult to assess relative per-

X}?UEE :§§gi :211122 jgégi jgggi fo'rm.ances" of competing methqu because images Wi.th

IWEM-woo | -83.84 81.32 10024 -106.65 missing pixels generated by this manner are still easily

IWEM-woa | -83.32 -81.07  -100.15 -106.19 recognizable. In this study we consider a more difficult

IWEM _83.77 -81.28 -100.39 -106.05 scenario, that is, we only observe patch-wise-removed

IWAE and either IWEM or IWEM-woa always achieves
the highest test log-likelihood values for all considering
cases. These results suggest that optimal P-step and
annealing strategy are helpful to reduce the variance
of the objective function in E-step, leading to better
performance.

We observe that annealing strategy is not always com-
patible with optimal P-step. One of possible explana-
tions would be due to the bias raised by the ELBO
function. The objective function Q% in has small
variance but has large bias at early learning stages.
And this large bias may prevent the learning algorithm
from searching a good solution. However, in the next
section, we will demonstrate that annealing strategy is
essential for missing data cases, which is partly because
the variance of Q% is quite large even at early learning
stages.

Ablation study We conduct an ablation study to
investigate the sensitivity of performances with respect
to the choices of K and J. The results are reported in
Table |2l K does not affect to the performances much
unless it is too small. In contrast, the performances are
sensitive to the choice of J. The log-likelihood values
keep increasing until J reaches 50. This observation
indicates that the new divergence works well for a
relatively large J.

We verify whether the deep generative model trained
by IWEM generates realistic images whose results are
depicted in the supplementary material. The figure
illustrates that IWEM is also good at image generation.

5.3 Incomplete data analysis

Incomplete data generation strategy For image
analysis, Mattei and Frellsen| [2018] considered the sce-

images. We generate incomplete images as follows
(Figure [3| visualizes this procedure more clearly.):

e Divide an image into nine equal patches,

e and generate an incomplete image by removing
the predefined number of patches randomly.

For UCI datasets, we corrupt each data by removing
half of the features uniformly at random as is done by
Mattei and Frellsen| [2018].

Results We consider two algorithms: 1) miss-IWEM
and 2) miss-IWEM without annealing strategy (miss-
IWEM-woa). We compute the test log-likelihood values
over the static biIMNIST dataset and the mean-squared
errors for imputation of features for UCI datasets. We
compare our proposed methods with missIWAE [Mattei
and Frellsen| 2018]. For all cases we estimate each
model 5 times, take average the resulted values and
compare our methods with missIWAE |[Mattei and
Frellsen) |2018|, which are reported in Table [3[ and

Our proposed methods consistently outperform missl-
WAE for all cases. Moreover as can be seen in Table
the margins between ours and missIWAE become
larger as the number of cropped patches increases.

We also want to stress that annealing strategy for miss-
IWEM is always helpful, which contrasts sharply to the
complete cases in Section [5.2) where annealing strategy
is not must. This result would be because of larger
variance due to missing data. In missing data case we
need to sample the missing vector x(") as well as the
latent vector z to approximate the objective function
in the E-step, and this additional procedure increases
the variance of snlIS. And the variance is expected to
become larger as the missing rate increases, which is
empirically confirmed in Figure[d] Thus utilizing the
ELBO function to reduce the variance is necessary
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Figure 3: Example of (left) an original image, (mid-
dle ) 4 randomly cropped patches coloured black and
(right) the resulted incomplete image.

Table 3: Test log-likelihood values for various missing
scenarios on the static biMNIST.

7 of cropped || L IWAE  miss IWEM-woa  missTWEM
patches

3 -90.29 89.79 -89.71

4 92.07 -90.97 -90.76

5 -95.54 93.33 -92.23

6 -102.26 -97.66 -95.18

to stabilize the learning procedure at early iterations
despite of adding some biases.

Ablation study We also visualize the power of miss-
IWEM for completion of missing data. After com-
pleting the learning procedure of # and ¢ with static
biMNIST dataset, we impute missing patches by use
of the imputation technique described in Section
Figure [5] shows that miss-IWEM also works well in
image completion task.

6 Conclusion

In this study we proposed a new and general ap-
proach to learn deep generative models, called IWEM,
which improves IWAE. Based on the interpretation
that IWAE can be understood as an EM algorithm, we
devised two new techniques to reduce the variance due
to snlS in E-step. In addition we modified IWEM for
missing data, called miss-IWEM. We demonstrated em-
pirically that our methods are superior in terms of the
test log-likelihood compared to the recent methods as
well as IWAE, for both fully-observed data and missing
data scenarios. Especially we observed that the margin
of miss-IWEM compared to missIWAE becomes larger
as the missing rate increases.

Miss-IWEM can be applied to the case where the num-
ber of cropped patches are different in each images.
One important application is to train a deep generative
model based on image data with different resolutions
whose results will be reported elsewhere soon.

It is an interesting future work to apply IWEM to
the disentanglement problem |Achille and Soatto, |2018],

Table 4: Mean-squared errors for imputation for various
UCIT datasets.

‘Bank Breast Red White
missIWAE 0.598 0.351 0.537  0.566
miss-IWEM | 0.465 0.346 0.483 0.479

140 2

120 8

[#]

100

)

= -

0 1

J1T T T 1
" :

number of cropped patches

Figure 4: Boxplots of variances of @g] in @) with o =1
for various numbers of cropped patches.

7
?

Figure 5: Completion of 3 incomplete images, which
are obtained by cropping 6 patches at random, by
miss-IWEM. (1st column) Observed incomplete im-
ages, (2nd column) ground-truth images and (3rd
column) imputed images.

Chen et al., |2018] [Higgins et al., 2017, [Kim and Mnih
2018|. We expect that replacing the reconstruction loss
in the variational based methods by the E-step loss
function in IWEM would result in a better trade-off
between density estimation and disentanglement.
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