
Supplementary Material: Lipschitz Continuous Autoencoders in

Application to Anomaly Detection

In this supplementary material, we provide proofs for Propositions, Theorems, and Lemma in the manuscript
in Appendix A, implementation details in Appendix B. Results of ablation study on KDD99 are provided in
Appendix C, and experiment results on MNIST and Fashion-MNIST are provided in Appendix D.
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A Proofs

Proof of Proposition 1. By definition of Tc(·, h), Tc(νδx+(1−ν)P
(0)
X , h) is equal to νTc(δx, h)+(1−ν)Tc(P

(0)
X , h)

for all ν ∈ (0, 1] and h ∈ H. By rearranging terms, we conclude the proof.

Proof of Proposition 2. Since T is the expected negative log-likelihood and H is the set of all probability density
functions defined on X , the objective function for a distribution P can be expressed as TL(P, h) = DKL(P||H)+

S(P), where H is a distribution function associated to h. Thus, the optimizer for normal data is h(0) = dP
(0)
X /dx.

The assumption S(P
(1)
X ) ≥ S(P

(0)
X ) can be expressed as

∫

X

log(dP
(1)
X (x)/dx)dP

(1)
X (x) ≤

∫

X

log(dP
(0)
X (x)/dx)dP

(0)
X (x), (1)

and the assumption DKL(P
(1)
X ||P

(ν)
X ) > DKL(P

(0)
X ||P

(ν)
X ) can be expressed as

∫

X

log
dP

(0)
X (x)/dx

dP
(ν)
X (x)/dx

dP
(0)
X (x) <

∫

X

log
dP

(1)
X (x)/dx

dP
(ν)
X (x)/dx

dP
(1)
X (x). (2)

Then, adding (1) and (2) gives
∫

X
− log(dP

(ν)
X (x)/dx)dP

(0)
X (x) <

∫

X
− log(dP

(ν)
X (x)/dx)dP

(1)
X (x), which is equiv-

alent to
∫

X
− log(dP

(ν)
X (x)/dx)dP

(0)
X (x) <

∫

X
− log(dP

(ν)
X (x)/dx)dP

(ν)
X (x) since dP

(ν)
X (x) = (1 − ν)dP

(0)
X (x) +

νdP
(1)
X (x). Thus, TL(P

(0)
X , h(ν)) < TL(P

(ν)
X , h(ν)) where h(ν) := dP

(ν)
X /dx ∈ argminh∈H TL(P

(ν)
X , h). By definition

of h(0) and h(ν), we have TL(P
(0)
X , h(0)) ≤ TL(P

(0)
X , h(ν)) and TL(P

(ν)
X , h(ν)) ≤ TL(P

(ν)
X , h(0)), which concludes the

proof.

Proof of Proposition 3. By definition of Tc(·, h), we have Tc(νP
(1)
X + (1 − ν)P

(0)
X , h) = νTc(P

(1)
X , h) + (1 −

ν)Tc(P
(0)
X , h) for all ν ∈ (0, 1] and h ∈ H. Hence, it implies Tc(νP

(1)
X +(1−ν)P

(0)
X , h)−Tc(P

(0)
X , h) = ν(Tc(P

(1)
X , h)−

Tc(P
(0)
X , h)) and the positiveness of ν concludes the proof.

Proof of Example 1. For any h ∈ H, the hidden layer has one node, so the output for input x can be expressed
as Ax+b where A is 2×2 matrix with rank 1 and b ∈ R2. Since the rank of A is 1, A can be expressed as A = uvT

for some u, v ∈ R2. Since X(0) has mean and variance of 02 and I2, respectively, EX∼P
(0)
X

(||X− (uvTX+ b)||22) =

1 + ((vT v)(uTu) − 2vTu + 1) + bT b ≥ 1. For any a such that aTa = 1, an autoencoder ha(x) := aaTx is in H

and has the reconstruction error of 1, so Tc(P
(0)
X , ha) ≤ Tc(P

(0)
X , h) for all h ∈ H. However, the reconstruction

error of ha on P
(1)
X , Tc(P

(1)
X , ha) is equal to 1 + µT (I2 − aaT )µ, so the anomaly detection algorithm equipped

with Tc and H is not admissible when µ is proportional to a. Since a can be any vector satisfying aTa = 1, it
concludes the proof.

Lemma 1. Let P,Q be two probability measures defined on X . For 0 ≤ β ≤ α ≤ 1, set convex combinations of
the two probability measures, αP+ (1− α)Q and βP+ (1− β)Q. Then,

γF (αP+ (1− α)Q, βP+ (1− β)Q) = (α− β)γF (P,Q).

Proof. Note that the definition of IPM is given by

γF (αP+ (1− α)Q, βP+ (1− β)Q) = sup
f∈F

∣

∣

∣
EX∼αP+(1−α)Q[f(X)]− EX∼βP+(1−β)Q[f(X)]

∣

∣

∣
.

We have

EX∼αP+(1−α)Q[f(X)]− EX∼βP+(1−β)Q[f(X)]

= {αEX∼P[f(X)] + (1− α)EX∼Q[f(X)]} − {βEX∼P[f(X)] + (1− β)EX∼Q[f(X)]}

= (α− β){EX∼P[f(X)]− EX∼Q[f(X)]}.

2



Hence,

γF (αP+ (1− α)Q, βP+ (1− β)Q) = (α− β) sup
f∈F

∣

∣EX∼P[f(X)]− EX∼Q[f(X)]
∣

∣

= (α− β)γF (P,Q).

This concludes the proof.

Proof of Theorem 1. Since γF is a metric on ΠX , it obeys a triangle inequality. Hence, for all g ∈ H
(K)
F

, we
have

γF (P
(ν)
X , g#P

(ν)
X ) ≥ γF (P

(ν)
X ,P

(0)
X )− γF (g#P

(ν)
X , g#P

(0)
X )− γF (g#P

(0)
X ,P

(0)
X )

= νγF (P
(1)
X ,P

(0)
X )− νγF (g#P

(1)
X , g#P

(0)
X )− γF (g#P

(0)
X ,P

(0)
X )

≥ ν(1−K)γF (P
(1)
X ,P

(0)
X )− γF (g#P

(0)
X ,P

(0)
X )

for all ν ∈ (0, 1]. The first inequality follows from triangle inequality and the first equality follows from Lemma

1. The second inequality follows due to g ∈ H
(K)
F

. Let h(0) be a function satisfying TF (P
(0)
X , h(0)) ≤ TF (P

(0)
X , g)

for all g ∈ H
(K)
F

. Then, by the assumption TF (P
(0)
X , h) < ǫγF (P

(0)
X ,P

(1)
X ) for some ǫ < (1 − K)/2, we have

TF (P
(0)
X , h(0)) < ǫγF (P

(0)
X ,P

(1)
X ). Thus, we have

ν(1−K)γF (P
(1)
X ,P

(0)
X )− γF (h

(0)#P
(0)
X ,P

(0)
X )

= γF (h
(0)#P

(0)
X ,P

(0)
X ) + ν(1−K)γF (P

(1)
X ,P

(0)
X )− 2γF (h

(0)#P
(0)
X ,P

(0)
X )

> γF (h
(0)#P

(0)
X ,P

(0)
X ) + (ν(1−K)− 2ǫ)γF (P

(1)
X ,P

(0)
X ).

This concludes the second statement of Theorem 1. The first statement, the admissibility of anomaly detection
algorithm, is followed by well choosing ν∗ such that 1 ≥ ν∗ > 2ǫ/(1−K).

Proof of Example 2. Sketch of Proof: For any a ∈ R2 such that aTa = 1, an autoencoder ha,K(x) := KaaTx

is in H
(K)
F

, and satisfies the assumption of Theorem 1, TF (P
(0)
X , ha,K) < (1−K)γF (P

(0)
X ,P

(1)
X )/4 when ||µ||2 >

4
√

1 + (1−K)2/(1−K).

First, we prove that ha,K ∈ H
(K)
F

. For any two probability measures P and Q, we denote the set of all
couplings of P and Q by Π(P,Q). For any x1 and x2 in R2, ||ha,K(x1) − ha,K(x2)||2 = K|aT (x1 − x2)| ≤

K
√

(aT a)(x1 − x2)T (x1 − x2) = K||x1 − x2||2 holds, so ha,K is K-Lipschitz continuous w.r.t. d. Since F
is Fd, γF is the 1-Wasserstein distance w.r.t. d, and by the Kantorovich-Rubinstein duality (Villani, 2008),

γF (h#P, h#Q) ≤ infπ∈Π(P,Q)

∫

X×X
||h(x1)−h(x2)||2dπ(x1, x2) for all h ∈ H

(K)
F

. Thus, infπ∈Π(P,Q)

∫

X×X
||ha,K(x1)−

ha,K(x2)||2dπ(x1, x2) ≤ infπ∈Π(P,Q)

∫

X×X
K||x1 − x2||2dπ(x1, x2) = KγF (P,Q) implies that ha,K is in H

(K)
F

.

Next, we provide an upper bound of TF (P
(0)
X , ha,K) and a lower bound of γF (P

(0)
X ,P

(1)
X ). Since X(0) ∼

N2(02, I2) and ha,K(X(0)) ∼ N2(02,K
2aaT ), we can apply the closed form of 2-Wasserstein distance between

two Gaussian random variables (Givens et al., 1984). This gives the 2-Wasserstein distance of
√

1 + (1−K)2,

which is an upper bound of the 1-Wasserstein distance between P
(0)
X and ha,K#P

(0)
X , i.e., TF (P

(0)
X , ha,K). For

any two random variables X and Y , E||X − Y ||2 ≥ ||E[X − Y ]||2 by Jensen’s inequality, so γF (P
(0)
X ,P

(1)
X ) has

a lower bound of ||µ||2. Thus, by the above bounds, ||µ||2 > 4
√

1 + (1−K)2/(1−K) implies TF (P
(0)
X , ha,K) <

(1−K)γF (P
(0)
X ,P

(1)
X )/4.

Proof of Theorem 2. By triangle inequality of γF ,K-Lipschitz continuity w.r.t. γF , and the assumption TF (P
(0)
X , h(0)) <

ǫγF (P
(0)
X ,P

(1)
X ), we have

γF (δx′ , h(0)#δx′) ≤ γF (δx′ ,P
(0)
X ) + γF (P

(0)
X , h(0)#P

(0)
X ) + γF (h

(0)#P
(0)
X , h(0)#δx′)

≤ (1 +K)γF (δx′ ,P
(0)
X ) + γF (P

(0)
X , h(0)#P

(0)
X )

< (1 +K)γF (δx′ ,P
(0)
X ) + ǫγF (P

(0)
X ,P

(1)
X )

< (1 +K)γF (δx′ ,P
(0)
X ) + (1−K)γF (P

(0)
X ,P

(1)
X )/2.
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Similarly, we obtain

γF (δx, h
(0)#δx) ≥ γF (δx,P

(0)
X )− γF (P

(0)
X , h(0)#P

(0)
X )− γF (h

(0)#P
(0)
X , h(0)#δx)

≥ (1−K)γF (δx,P
(0)
X )− γF (P

(0)
X , h(0)#P

(0)
X )

> (1−K)γF (δx,P
(0)
X )− ǫγF (P

(0)
X ,P

(1)
X )

> (1−K)γF (δx,P
(0)
X )− (1−K)γF (P

(0)
X ,P

(1)
X )/2.

Since

γF (δx,P
(0)
X ) > (1 +K)/(1−K)γF (δx′ ,P

(0)
X ) + γF (P

(0)
X ,P

(1)
X )

⇐⇒(1−K)γF (δx,P
(0)
X ) > (1 +K)γF (δx′ ,P

(0)
X ) + (1−K)γF (P

(0)
X ,P

(1)
X )

⇐⇒(1−K)γF (δx,P
(0)
X )− (1−K)γF (P

(0)
X ,P

(1)
X )/2 > (1 +K)γF (δx′ ,P

(0)
X ) + (1−K)γF (P

(0)
X ,P

(1)
X )/2,

we have TF (δx, h
(0)) > TF (δx′ , h(0)).

Proof of Proposition 4. By the definition of IPM,

γF (νδx + (1− ν)P
(0)
X , νh#δx + (1− ν)h#P

(0)
X )

= sup
f∈F

∣

∣

∣
ν
(

f(x)− f(h(x))
)

+ (1− ν)
(

E
X∼P

(0)
X

f(X)− E
X∼P

(0)
X

f(h(X))
)

∣

∣

∣
.

Then, the triangle inequality w.r.t. |·| implies

sup
f∈F

∣

∣

∣
ν
(

f(x)− f(h(x))
)

+ (1− ν)
(

E
X∼P

(0)
X

f(X)− E
X∼P

(0)
X

f(h(X))
)

∣

∣

∣

≤ ν sup
f∈F

∣

∣f(x)− f(h(x))
∣

∣+ (1− ν) sup
f∈F

∣

∣

∣
E
X∼P

(0)
X

f(X)− E
X∼P

(0)
X

f(h(X))
∣

∣

∣
,

which concludes the proof.
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B Implementation details

B.1 Dataset description and preprocessing

KDD99: A large-scale network-traffic records dataset. We use KDD99 10 percent dataset that consists of
494,021 network-traffic records with 41 attributes. One-hot encoding is applied, and the last dimension of each
encoded vector is dropped, yielding 115-dimensional input data. After that, the dataset is rescaled to [−1, 1] by
min-max scaling.

MNIST: An image dataset consists of 70,000 images of handwritten digits in 28× 28 gray-scale, and each
image is labeled among one of 10 classes of digits. The resolution is resized to 32× 32. The dataset is rescaled
to [0, 1] by min-max scaling.

Fashion-MNIST: An image dataset consists of 70,000 images of fashion products in 28 × 28 gray-scale,
and each image is labeled among one of 10 classes of product type such as dress and coat. The resolution is
resized to 32× 32, and the dataset is rescaled to [0, 1] by min-max scaling.

CelebA: A large-scale image dataset consists of 202,599 celebrity face images, and each image has 40 binary
attribute annotations about appearance such as wearing eyeglasses. We use randomly sampled 25,000 images
of male celebrities. For each image, we first cropped the 140 × 140 pixels on the center part and then resized
into 64× 64. The dataset is rescaled to [−1, 1] by min-max scaling.

B.2 Network configuration

In this subsection, we provide a detailed configuration of network architecture and hyperparameters. For
all methods, the batch size is 50 for KDD99 and 100 for MNIST, Fashion-MNIST, and CelebA. The number
of epochs is 200 for KDD99, 50 for MNIST and Fashion-MNIST, and 100 for CelebA. The early stopping with
ten patience is applied.

Table 1: The architecture of the proposed method for KDD99.
Operation Input unit Output unit

Encoder
Dense-ReLU 115 30

Dense 30 5
Decoder

Dense-ReLU 5 30
Dense-Tanh 30 115

Optimizer Adam(β1=0.9,β2=0.999)
Latent dimension 5
Learning rate 2×10−4

Proposed method: We use the kernel k(x, y) =
∑

c∈C 2dzc/(2dzc + ||x − y||22) where dz is the dimension
of the latent space and C = {0.2, 0.5, 1, 2, 5}. The PZ is set to standard Gaussian distribution with dimension
dz. We set (λ, φ,K) to be (0.0, 10.0, 0.7) for KDD99 and (2.0, 2.0, 0.8) for other datasets. Table 1 and Table 2
presents architectures for KDD99 and other datasets, respectively.

Deep SVDD: For KDD99 and CelebA, the architecture of deep SVDD is the same as the encoder part
of the proposed method. For MNIST and Fashion-MNIST, we utilize the architecture and hyperparameters
suggested by the Ruff et al. (2018). For CelebA, we use parameters used in MNIST and Fashion-MNIST.

ALAD: For KDD99, the suggested architecture and hyperparameters on Zenati et al. (2018) are used. Table
3 shows the architecture for MNIST and Fashion-MNIST, and Table 4 shows the architecture for CelebA. For
CelebA, we use parameters used in MNIST and Fashion-MNIST.
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Table 2: The architecture of the proposed method for MNIST, Fashion-MNIST, and CelebA.
re height Operation Kernel Strides Filter size Batch normalization
Encoder

Conv-ReLU 5×5 1×1 F X

Conv-ReLU 5×5 2×2 2F X

Conv-ReLU 5×5 2×2 4F X

Conv-ReLU 5×5 2×2 8F X

Dense ✗

Decoder
Dense ✗

Transpose Conv-ReLU 5×5 2×2 8F X

Transpose Conv-ReLU 5×5 2×2 4F X

Transpose Conv-ReLU 5×5 2×2 2F X

Transpose Conv* 5×5 1×1 F
Optimizer Adam (β1=0.9,β2=0.999)
Learning rate 2×10−4

Latent dimension MNIST/Fashion-MNIST: 8
CelebA: 64

Filter size MNIST/Fashion-MNIST: F=16
CelebA: F=64

Transpose Conv* MNIST/Fashion-MNIST: Transpose Conv-Sigmoid
CelebA: Transpose Conv-Tanh

Table 3: The architecture of ALAD for MNIST and Fashion-MNIST.
Operation Kernel Strides Filter size Batch normalization

Encoder
Conv-LReLU 5×5 2×2 64 ✓

Conv-LReLU 5×5 2×2 128 ✓

Conv-LReLU 5×5 2×2 256 ✓

Conv 4×4 1×1 8 ✗

Generator
Transpose Conv-ReLU 8×8 2×2 256 ✓

Transpose Conv-ReLU 5×5 2×2 128 ✓

Transpose Conv-ReLU 5×5 2×2 64 ✓

Transpose Conv-Tanh 5×5 1×1 3 ✓

Discriminator for (X,Z)
only on X Conv-LReLU 4×4 2×2 64 ✗

Conv-LReLU 4×4 2×2 128 ✓

Conv-LReLU 4×4 2×2 256 ✓

only on Z Conv-LReLU 1×1 1×1 256 ✗

Conv-LReLU 1×1 1×1 256 ✗

concat outputs Conv-LReLU 1×1 1×1 512 ✗

Conv-LReLU 1×1 1×1 1 ✗

Discriminator for (X,X ′)
concat X, X ′ Conv-LReLU 5×5 2×2 32 ✗

Conv-LReLU 5×5 2×2 64 ✗

Dense 1 ✗

Discriminator for (Z,Z ′)
concat Z, Z ′ Dense-LReLU 32 ✗

Dense-LReLU 16 ✗

Dense-LReLU 1 ✗
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Table 4: The architecture of ALAD for CelebA.
Operation Kernel Strides Filter size Batch normalization

Encoder
Conv-LReLU 5×5 2×2 64 ✓

Conv-LReLU 5×5 2×2 128 ✓

Conv-LReLU 5×5 2×2 256 ✓

Conv-LReLU 5×5 2×2 512 ✓

Conv 4×4 1×1 64 ✗

Generator
Transpose Conv-ReLU 8×8 2×2 512 ✗

Transpose Conv-ReLU 5×5 2×2 256 ✓

Transpose Conv-ReLU 5×5 2×2 128 ✓

Transpose Conv-ReLU 5×5 2×2 64 ✓

Transpose Conv-Tanh 5×5 1×1 3 ✓

Discriminator for (X,Z)
only on X Conv-LReLU 4×4 2×2 128 ✗

Conv-LReLU 4×4 2×2 256 ✓

Conv-LReLU 4×4 2×2 512 ✓

only on Z Conv-LReLU 1×1 1×1 512 ✗

Conv-LReLU 1×1 1×1 512 ✗

concat outputs Conv-LReLU 1×1 1×1 1024 ✗

Conv-LReLU 1×1 1×1 1 ✗

Discriminator for (X,X ′)
concat X, X ′ Conv-LReLU 5×5 2×2 64 ✗

Conv-LReLU 5×5 2×2 128 ✗

Conv-LReLU 5×5 2×2 256 ✗

Dense 1 ✗

Discriminator for (Z,Z ′)
concat Z, Z ′ Dense-LReLU 64 ✗

Dense-LReLU 32 ✗

Dense-LReLU 1 ✗
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C Detailed results of ablation study

Table 5: Average AUCs on KDD99 of the proposed method for various λ, φ, and K are provided in % with
standard deviation. The number of replication is 10. For each level of λ, the row where φ is 0 presents the
baseline performance when Lipschitz continuity is not enforced.
φ K

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
λ = 0
0 98.6±0.6 98.6±0.6 98.6±0.6 98.6±0.6 98.6±0.6 98.6±0.6 98.6±0.6 98.6±0.6 98.6±0.6
5 98.9±0.2 99.0±0.4 99.0±0.2 99.1±0.3 99.1±0.2 99.2±0.1 99.3±0.1 99.3±0.1 98.1±1.1
10 99.1±0.2 99.1±0.3 99.0±0.3 99.1±0.3 99.2±0.3 99.2±0.1 99.4±0.1 96.9±1.3 95.3±2.4
20 98.7±0.2 98.8±0.2 99.1±0.2 99.2±0.9 99.2±0.2 96.6±0.6 89.4±1.6 91.9±0.3 96.8±1.8
λ = 5
0 98.2±1.0 98.2±1.0 98.2±1.0 98.2±1.0 98.2±1.0 98.2±1.0 98.2±1.0 98.2±1.0 98.2±1.0
5 98.7±0.6 98.2±0.6 98.8±0.4 98.5±0.6 99.1±0.4 98.3±1.1 98.8±0.3 98.6±0.4 97.6±1.5
10 98.3±0.3 98.7±0.4 98.7±0.5 98.6±0.3 98.7±0.4 98.9±0.5 98.7±0.4 96.4±2.1 97.3±2.1
20 98.6±0.4 98.9±0.4 98.7±0.3 98.8±0.3 98.6±0.4 95.9±2.2 92.9±3.9 94.9±3.2 97.0±5.4
λ = 10
0 97.2±1.1 97.2±1.1 97.2±1.1 97.2±1.1 97.2±1.1 97.2±1.1 97.2±1.1 97.2±1.1 97.2±1.1
5 98.6±0.6 98.9±0.7 98.4±1.3 98.7±0.6 98.2±0.5 98.5±0.4 98.8±0.5 98.3±1.3 97.4±1.9
10 98.4±0.4 98.7±0.5 98.9±0.5 98.8±0.4 98.6±0.4 98.7±0.3 98.7±0.4 97.2±1.3 96.5±2.0
20 98.6±0.2 98.7±0.3 98.8±0.2 99.0±0.2 98.7±0.4 96.8±1.1 93.3±4.2 94.1±3.3 97.4±1.6

Table 5 and 6 shows AUCs and AUPRCs, respectively, of ablation study to evaluate the effect of Lipschitz
continuity imposed on autoencoders. The penalty term to enforce Lipschitz continuity has hyperparameter K
with a coefficient φ, and the level of enforcement increases as φ increases or K decreases. The ablation study is
conducted with the uncontaminated dataset. Compared with the baseline model, a moderate level of Lipschitz
continuity significantly enhances the performance for every λ. For λ = 0, the mean AUC and AUPRC is 98.6
with std of 0.6 and 93.0 with std of 2.6 from the baseline model and increases to 99.4 with std of 0.1 and 96.4
with std of 0.3, respectively. For λ = 5, the mean AUC and AUPRC is 98.2 with std of 1.0 and 91.3 with std
of 3.2 from the baseline model and increases to 99.1 with std of 0.4 and 94.0 with std of 2.2, respectively. For
λ = 10, the mean AUC and AUPRC is 97.2 with std of 1.1 and 88.0 with std of 3.1 from the baseline model
and increases to 99.0 with std of 0.2 and 92.8 with std of 2.4, respectively.
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Table 6: Average AUPRCs on KDD99 of the proposed method for various λ, φ, and K are provided in % with
standard deviation. The number of replication is 10. For each level of λ, the row where φ is 0 presents the
baseline performance when Lipschitz continuity is not enforced.
φ K

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
λ = 0
0 93.0±2.6 93.0±2.6 93.0±2.6 93.0±2.6 93.0±2.6 93.0±2.6 93.0±2.6 93.0±2.6 93.0±2.6
5 94.5±0.9 94.6±1.8 94.9±1.3 95.3±1.8 95.3±0.9 95.4±0.8 96.2±0.8 95.8±0.8 92.8±2.3
10 95.1±0.9 94.8±1.9 94.8±1.8 94.9±1.4 95.4±1.4 95.6±0.6 96.4±0.3 89.6±2.4 88.0±4.4
20 92.2±1.6 93.4±1.3 94.9±1.4 95.6±0.9 95.4±1.2 86.5±1.9 73.8±3.8 81.0±0.8 89.9±3.1
λ = 5
0 91.3±3.2 91.3±3.2 91.3±3.2 91.3±3.2 91.3±3.2 91.3±3.2 91.3±3.2 91.3±3.2 91.3±3.2
5 92.6±2.9 90.6±2.2 92.8±2.1 91.2±3.0 94.0±2.2 91.1±3.8 92.7±1.2 91.3±2.2 89.1±3.7
10 90.4±1.9 92.2±2.4 92.1±2.7 91.8±1.7 92.2±1.8 93.2±2.5 92.2±2.2 86.5±4.8 89.5±4.7
20 91.8±1.7 92.6±2.0 92.2±1.8 92.9±2.0 91.8±1.9 84.1±5.1 80.4±8.3 84.7±7.0 89.0±5.4
λ = 10
0 88.0±3.1 88.0±3.1 88.0±3.1 88.0±3.1 88.0±3.1 88.0±3.1 88.0±3.1 88.0±3.1 88.0±3.1
5 91.9±2.5 93.2±3.5 91.9±3.3 92.1±2.8 89.8±2.6 91.1±2.6 92.8±2.4 91.7±3.2 90.0±5.4
10 90.5±2.0 91.9±2.6 92.8±2.4 92.1±2.0 91.4±2.0 92.3±1.6 92.4±1.9 87.7±3.2 87.7±4.9
20 91.6±1.4 91.5±2.0 92.2±1.4 94.0±1.3 92.2±2.3 85.2±3.9 80.4±9.0 82.8±7.4 89.2±3.5

D Experiment results on MNIST and Fashion-MNIST

Table 7: Average AUCs of deep SVDD, ALAD, and the proposed method are provided in % with standard
deviation. The number of replication is 10.

Dataset Normal class
Uncontaminated Training Set Contaminated Training Set

deep SVDD ALAD Proposed deep SVDD ALAD Proposed

MNIST

(32x32)

Digit 0 97.90±0.8 98.83±0.7 98.86±0.2 94.40±2.0 95.50±2.0 96.64±0.4

Digit 1 99.47±0.2 99.22±0.4 99.68±0.1 98.76±0.3 99.12±0.5 99.52±0.1

Digit 2 87.23±2.2 79.79±10.1 90.45±1.6 82.65±3.3 73.25±13.3 84.30±2.4

Digit 3 89.91±1.7 85.32±3.2 93.44±0.7 86.72±2.9 82.09±3.8 88.25±2.3

Digit 4 93.06±1.4 91.4±2.3 95.70±0.6 90.04±1.5 89.37±2.6 92.83±0.8

Digit 5 88.31±2.1 83.18±11.1 94.54±1.3 83.13±1.9 83.61±2.6 90.56±1.8

Digit 6 98.17±0.5 93.81±11.8 98.43±0.5 95.07±1.1 96.55±2.5 96.28±0.8
Digit 7 93.98±1.5 94.38±1.3 96.39±0.8 90.77±1.8 92.53±2.3 94.25±0.5

Digit 8 89.94±1.9 86.38±5.1 89.81±1.4 87.33±2.6 88.10±2.7 83.75±2.4
Digit 9 96.05±0.6 95.49±1.4 95.67±0.6 93.94±0.6 94.79±1.2 94.28±1.1

Fashion-
MNIST

(32x32)

T-shirt/top 90.66±0.9 89.45±9.0 92.73±0.5 86.94±2.0 87.33±1.2 88.04±1.2

Trouser 98.65±0.1 98.47±0.2 98.52±0.2 97.57±0.3 90.35±21.8 97.38±0.3
Pullover 86.22±2.9 89.62±0.9 89.72±0.6 83.90±2.4 86.07±1.7 85.95±1.0
Dress 92.62±1.3 58.01±23.6 94.47±0.3 90.17±1.3 67.11±24.7 91.18±1.3

Coat 89.31±2.6 89.62±1.5 91.41±0.3 87.34±1.7 87.96±0.8 88.15±0.7

Sandal 90.03±1.1 23.07±9.1 91.54±0.3 81.13±1.5 24.41±9.9 83.44±2.0

Shirt 80.62±1.9 84.10±0.6 84.80±0.6 79.14±1.2 80.44±1.4 79.94±1.4
Sneaker 98.48±0.1 27.56±24.7 98.50±0.1 97.13±0.5 50.95±37.6 97.43±0.4

Bag 92.06±2.9 85.05±3.0 90.59±1.3 83.72±2.4 83.75±2.4 77.73±2.1
Ankle boot 98.28±0.3 92.39±2.3 98.12±0.2 94.52±1.2 83.58±13.6 92.87±1.5

Table 7 and Table 8 shows AUCs and AUPRCs of various methods on MNIST and Fashion-MNIST
dataset, respectively. All the mean and standard deviation values are based on 10 runs. In each table, we mark
the highest value in bold for both uncontaminated and contaminated training set cases.
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Table 8: Average AUPRCs of deep SVDD, ALAD, and the proposed method are provided in % with standard
deviation. The number of replication is 10.

Dataset Normal class
Uncontaminated Training Set Contaminated Training Set

deep SVDD ALAD Proposed deep SVDD ALAD Proposed

MNIST

(32x32)

Digit 0 99.73±0.1 99.84±0.1 99.84±0.0 99.17±0.3 99.42±0.3 99.50±0.1

Digit 1 99.91±0.0 99.87±0.1 99.95±0.0 99.75±0.1 99.85±0.1 99.92±0.0

Digit 2 98.22±0.3 96.93±2.1 98.66±0.3 97.47±0.6 95.73±3.0 97.77±0.3

Digit 3 98.59±0.3 97.92±0.5 99.08±0.1 98.06±0.4 97.41±0.5 98.31±0.3

Digit 4 99.15±0.2 98.95±0.3 99.45±0.1 98.62±0.3 98.68±0.4 99.07±0.1

Digit 5 98.48±0.4 97.70±1.9 99.30±0.2 97.71±0.2 97.84±0.5 98.80±0.2

Digit 6 99.76±0.1 98.97±2.2 99.78±0.1 99.29±0.2 99.51±0.4 99.47±0.1
Digit 7 99.18±0.2 99.26±0.2 99.52±0.1 98.60±0.3 99.01±0.3 99.20±0.1

Digit 8 98.66±0.3 97.96±0.8 98.64±0.2 98.26±0.4 98.11±0.6 97.77±0.4
Digit 9 99.47±0.1 99.37±0.2 99.37±0.1 99.13±0.1 99.25±0.2 99.15±0.2

Fashion-
MNIST

(32x32)

T-shirt/top 98.75±0.1 98.28±1.9 99.01±0.1 98.04±0.3 97.97±0.2 98.01±0.2
Trouser 99.83±0.0 99.79±0.0 99.77±0.0 99.62±0.0 97.8±5.5 99.58±0.1
Pullover 98.32±0.4 98.76±0.1 98.74±0.1 97.88±0.3 98.14±0.3 97.86±0.2
Dress 99.05±0.2 91.42±5.2 99.29±0.0 98.55±0.4 93.44±5.5 98.76±0.2

Coat 98.69±0.3 98.70±0.2 98.95±0.0 98.29±0.2 98.31±0.2 98.26±0.1
Sandal 98.88±0.1 82.51±4.4 99.01±0.0 97.38±0.2 83.05±4.6 97.35±0.4
Shirt 97.27±0.3 97.83±0.1 97.91±0.1 96.86±0.3 97.06±0.3 96.74±0.3

Sneaker 99.84±0.0 84.84±5.9 99.83±0.0 99.62±0.1 90.14±8.0 99.65±0.1

Bag 98.92±0.4 97.75±0.4 98.71±0.1 97.55±0.3 97.54±0.4 96.55±0.4
Ankle boot 99.80±0.0 99.08±0.3 99.78±0.0 99.23±0.1 97.48±2.6 98.9±0.2
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