Supplementary Material: Lipschitz Continuous Autoencoders in
Application to Anomaly Detection

In this supplementary material, we provide proofs for Propositions, Theorems, and Lemma in the manuscript
in Appendix A, implementation details in Appendix B. Results of ablation study on KDD99 are provided in
Appendix C, and experiment results on MNIST and Fashion-MNIST are provided in Appendix D.



A Proofs

Proof of Proposition 1. By definition of T,.(-, h), Te.(vd, + (1 — I/)]P’()?), h) is equal to vT.(d, h)+ (1 —I/)Tc(]P’g?), h)
for all v € (0,1] and h € H. By rearranging terms, we conclude the proof. O

Proof of Proposition 2. Since T is the expected negative log-likelihood and H is the set of all probability density
functions defined on X, the objective function for a distribution P can be expressed as T1,(P, h) = Dk, (P||H) +

S(P), where H is a distribution function associated to h. Thus, the optimizer for normal data is h(®) = d]P’g?) /dx.
The assumption S (Pg)) >S5 (]P’g?)) can be expressed as

/ log(dPY () /d)dPY (z) < / log(dPY (z)/dz)dPY (z), (1)
X X

and the assumption 'DKL(PE;)HPE?) > Dx1, (]PE?)H]PE’;)) can be expressed as

dPQ(z)/dx dPY () /dx
/log 78(/)( )/ d]P’g?)(x) </ log 7&(/)< )/ d]P’gp(a:). (2)
x  dPY(x)/dx x  dPY(x)/dx

Then, adding () and @) gives [, —log(dPg?)(x)/dx)dPg?)(x) < [y— log(dIP’g?) (z)/da)dP (), which is equiv-
alent to [, —log(dPY (z)/dz)dPY (z) < [, —log(dPY (x)/dx)dPY (z) since dPY)(z) = (1 — v)dP' (x) +
VdIP’gg)(a:). Thus, TL(ng), r)Y < TL(IP’g?), h(*)) where h(*) := dIP’g?)/dx € argmingcy TL(IP’g?), h). By definition
of h® and A, we have Tp,(PY, h(©) < Ty, (P, ")) and Ty, (PY), h™)) < Ty, (PY, h(), which concludes the
proof. O

Proof of Proposition 3. By definition of T,(-,h), we have TC(V]P)(;) + (1 - V)Pg?),h) = VTC(P§)7h) + (1 -
TP, h) for all v € (0,1] and h € H. Hence, it implies T,(vPY + (1—v)PY, h) TP, h) = v(T, (P, h)—
Tc(]P’g?), h)) and the positiveness of v concludes the proof. O

Proof of Example 1. For any h € H, the hidden layer has one node, so the output for input = can be expressed

as Ax+b where A is 2x 2 matrix with rank 1 and b € R2. Since the rank of A is 1, A can be expressed as A = uv”

for some u,v € R2. Since X(?) has mean and variance of 05 and I, respectively, E. po(IX = ("X +0)|3) =
X

14 ((vTv)(uTu) — 207w + 1) + b7b > 1. For any a such that a’a = 1, an autoencoder h,(z) := aa” z is in H
and has the reconstruction error of 1, so TC(IP’E?), he) < TC(IP’g?), h) for all h € H. However, the reconstruction

error of h, on ng, TC(]P’g;)7 he) is equal to 1+ u® (Is — aa®)u, so the anomaly detection algorithm equipped

with T, and H is not admissible when g is proportional to a. Since a can be any vector satisfying a’a = 1, it
concludes the proof. O

Lemma 1. Let P,Q be two probability measures defined on X. For 0 < 8 < «a <1, set conver combinations of
the two probability measures, aP + (1 — «)Q and BP + (1 — 8)Q. Then,

V(P + (1 -a)Q, AP + (1 - )Q) = (a = B)y=(P, Q).

Proof. Note that the definition of IPM is given by

yr(aP + (1 —a)Q, BP + (1 - 5)Q) = ;lelg Ex~apt1-a)olf(X)] = Ex~gpra—polf(X)]] .

‘We have
Excap+(1-a)olf (X)] — Ex~ppra-p)alf (X)]

= {aExp[f(X)] + (1 = @)Ex~o[f (X)]} = {BEx~p[f(X)] + (1 = B)Ex~glf(X)]}
= (= AH{Ex~p[f(X)] = Ex~qlf(X)]}-



Hence,

YF(aP+ (1 - a)Q, AP + (1 — B)Q) = (a — B) sup |Ex~p[f(X)] = Ex~olf(X)]]

= (a = P)#(P,Q).
This concludes the proof. O

Proof of Theorem 1. Since ~r is a metric on Ily, it obeys a triangle inequality. Hence, for all g € ’H(FK), we
have

1B g#PY) 2 (B BY)) — v (g#PY, g#P(;?)) — v (g#PY, IP’(O))
= (P PY) — v (g#PY) g#P ) — 17 (g#PY)  PY)
> v(1 - K)yr (B BY)) — 1 (g#PY PY)
for all v € (0,1]. The first inequality follows from triangle inequality and the first equality follows from Lemma
@ The second inequality follows due to g € H(fK). Let A be a function satisfying T;(IP’E?), ROy < T ;(Pg?), 9)
for all g € Hg_-K). Then, by the assumption T;(Pg?),h) < e'y]:(]P’g?),IP’g;)) for some ¢ < (1 — K)/2, we have
Tr(PQ, h®) < ey (P, PY). Thus, we have
v(1 = K)ye(PY PR — e (hO#P Q) PY)
= (RO#PY PY) +v(1 — K)yr(PY,PY) — 297 (hO#PY), PY)
> 1 (RO#PE PY) + (v(1 = K) = 26}y (B, PY)).
This concludes the second statement of Theorem 1. The first statement, the admissibility of anomaly detection

algorithm, is followed by well choosing v* such that 1 > v* > 2¢/(1 — K). O

Proof of Ezample 2. Sketch of Proof: For any a € R? such that a’a = 1, an autoencoder h, x(z) := KaaTx
is in ’H(}-K), and satisfies the assumption of Theorem 1, T}-(IE”()?)7 har) < (1— K)V}-(P()?),IP’&}))/ZL when ||ul|2 >
441+ (1-K)?/(1-K

First, we prove that h, x € Hg_-K). For any two probability measures P and Q, we denote the set of all
couplings of P and Q by II(P,Q). For any x1 and zo in R?, ||he x(21) — ha k(z2)]|2 = Kla® (z1 — 22)| <
K+/(aTa)(z1 — 22)T(x1 — x2) = K||z1 — 22||]2 holds, so h, g is K-Lipschitz continuous w.r.t. d. Since F
is Fq, v is the 1-Wasserstein distance w.r.t. d, and by the Kantorovich-Rubinstein duality (Villani, 2008),
V7 (h#P, h#Q) < infrenp,g) f;mx |[P(21)—h(22)|2dm (1, 2) for all h € HSTK)o Thus, infrenp,g) fXxX |a, i (21)—

ha, i (x2)]|2dm (21, 22) < infrene,q) [y p Kllzr — z2||2dn (21, 22) = Ky#(P, Q) implies that hg g is in HSTK)

Next, we provide an upper bound of T;(Pg?),hm;() and a lower bound of vz (P P P( ). Since X(©) ~
N3(0g, I3) and th(X(O)) ~ N3(0, K2aa™), we can apply the closed form of 2- Wasserstem distance between
two Gaussian random variables (Givens et all, [1984). This gives the 2-Wasserstein distance of /1 + (1 — K2,

which is an upper bound of the 1-Wasserstein distance between IP’E?) and hg, K#Pg?), i.e. T;(]P’g? ,he k). For

any two random variables X and Y, E||X — Y]]z > ||[E[X — Y]||2 by Jensen s inequality, so 'yJ.-(IE”(O) IP’(l)) has
a lower bound of ||p||2. Thus, by the above bounds, ||u|l2 > 44/1 + (1 — K)2/(1 — K) implies T;(ng)), ha k) <
(1— KB, PY)/4. O

Proof of Theorem 2. By triangle inequality of vz, K-Lipschitz continuity w.r.t. vz, and the assumption T]:(IP’S?), h(o)) <
e’y}-(]P’g?), ]P’()P)7 we have
77 (Bar, ROH#Gw) < 15 (00, PY)) + 12 (B hOHPY) + 72 (W O#PY O #3,)
< (L K6 BY)) + 2 (B O #PY)
< (1+ K)yr(0, PQ) + vz (P, PY)
< (L K)yr (0, BY) + (1= K)yr (B BY) 2.



Similarly, we obtain

vF (62, PY) —

> (1 K)yr(6,, PY) — 77 (P, hO#PY)
(1 - K)r(0,,PY) - evf@(;?’,ﬂm(”)
(1 - Kz (0, PY) — (1 - K=Y, PY) /2.

VF (80, RO 30,) >

0
X
O
X

VoV

Since

1 (00, PY) > (14 K) /(1 — K)yr(3 ,P“)) +7(PY PY)
= (1 K)yr(6:,PY) > (1+ K)yr (0, PY) + (1 - K)yr(BY,PY)
=1 - K)yr(0:,PQ) — (1 — K)v(PY,PY)/2 > (1 + K)yr(0a, PY) +
we have Tx (8, h(9) > Tr(6,, h(?).
Proof of Proposition 4. By the definition of IPM,

vEWoy + (1 — P vhits, + (1 — v)h#PY)

17 BQ, RO 4PD) — 42 (hO#PD | HO%5,)

— K79, PY) /2,

= sup v (F(@) = F(a@) + (1= V) By o F(X) = Ey_yo f(B(X))]

Then, the triangle inequality w.r.t. |-| implies

fer

sup |v(f(x) = f(h(x))) + (1 =) (Ey po f(X) = Ey_po f(MX )))’

< vsup |£(2) = S|+ (1= 0) sup [y () = Ex_pip f((X))].

ferF

which concludes the proof.




B Implementation details

B.1 Dataset description and preprocessing

KDD99: A large-scale network-traffic records dataset. We use KDD99 10 percent dataset that consists of
494,021 network-traffic records with 41 attributes. One-hot encoding is applied, and the last dimension of each
encoded vector is dropped, yielding 115-dimensional input data. After that, the dataset is rescaled to [—1, 1] by
min-max scaling.

MNIST: An image dataset consists of 70,000 images of handwritten digits in 28 x 28 gray-scale, and each
image is labeled among one of 10 classes of digits. The resolution is resized to 32 x 32. The dataset is rescaled
to [0, 1] by min-max scaling,.

Fashion-MNIST: An image dataset consists of 70,000 images of fashion products in 28 x 28 gray-scale,
and each image is labeled among one of 10 classes of product type such as dress and coat. The resolution is
resized to 32 x 32, and the dataset is rescaled to [0, 1] by min-max scaling.

CelebA: A large-scale image dataset consists of 202,599 celebrity face images, and each image has 40 binary
attribute annotations about appearance such as wearing eyeglasses. We use randomly sampled 25,000 images
of male celebrities. For each image, we first cropped the 140 x 140 pixels on the center part and then resized
into 64 x 64. The dataset is rescaled to [—1, 1] by min-max scaling.

B.2 Network configuration

In this subsection, we provide a detailed configuration of network architecture and hyperparameters. For
all methods, the batch size is 50 for KDD99 and 100 for MNIST, Fashion-MNIST, and CelebA. The number

of epochs is 200 for KDD99, 50 for MNIST and Fashion-MNIST, and 100 for CelebA. The early stopping with
ten patience is applied.

Table 1: The architecture of the proposed method for KDD99.

Operation Input unit Output unit
Encoder

Dense-ReLLU 115 30

Dense 30 5

Decoder

Dense-ReLU 5 30

Dense-Tanh 30 115
Optimizer Adam($3;=0.9,5,=0.999)
Latent dimension 5
Learning rate 2x1074

Proposed method: We use the kernel k(z,y) = 3 oo 2d.c/(2d.c + ||z — y||3) where d. is the dimension
of the latent space and C' = {0.2,0.5,1,2,5}. The P is set to standard Gaussian distribution with dimension
d,. We set (X, ¢, K) to be (0.0,10.0,0.7) for KDD99 and (2.0, 2.0,0.8) for other datasets. Table [I] and Table
presents architectures for KDD99 and other datasets, respectively.

Deep SVDD: For KDD99 and CelebA, the architecture of deep SVDD is the same as the encoder part
of the proposed method. For MNIST and Fashion-MNIST, we utilize the architecture and hyperparameters
suggested by the [Ruff et al! (2018). For CelebA, we use parameters used in MNIST and Fashion-MNIST.

ALAD: For KDD99, the suggested architecture and hyperparameters on|Zenati et all (2018) are used. Table
Bl shows the architecture for MNIST and Fashion-MNIST, and Table @ shows the architecture for CelebA. For
CelebA, we use parameters used in MNIST and Fashion-MNIST.



Table 2: The architecture of the proposed method for MNIST, Fashion-MNIST, and CelebA.

re height Operation Kernel Strides Filter size Batch normalization
Encoder
Conv-ReLLU 5%x5 1x1 F v
Conv-ReLLU 5x5 2x2 2F v
Conv-ReLLU 5x5 2x2 4F v
Conv-ReLU 5x5 2x2 8F v
Dense X
Decoder
Dense X
Transpose Conv-ReLLU 5x5 2x2 8F v
Transpose Conv-ReLLU 5X5 2x2 4F v
Transpose Conv-ReLU 5%5 2x2 2F v
Transpose Conv* 5x5 1x1 F

Optimizer
Learning rate
Latent dimension

Filter size

Transpose Conv*

Adam (8,=0.9,52=0.999)
2x1074

MNIST /Fashion-MNIST: 8
CelebA: 64
MNIST/Fashion-MNIST: F=16
CelebA: F=64

MNIST/Fashion-MNIST: Transpose Conv-Sigmoid

CelebA: Transpose Conv-Tanh

Table 3: The architecture of ALAD for MNIST and Fashion-MNIST.

Operation Kernel Strides Filter size Batch normalization
Encoder
Conv-LReLLU 5x5 2x2 64 v
Conv-LReLLU 5x5 2x2 128 v
Conv-LReLLU 5x5 2x2 256 v
Conv 4x4 1x1 8 X
Generator
Transpose Conv-ReLLU 8x8 2x2 256 v
Transpose Conv-ReLU 5x5 2x2 128 v
Transpose Conv-ReLLU 5x5 2x2 64 v
Transpose Conv-Tanh 55 1x1 3 v
Discriminator for (X, Z)
only on X Conv-LReLLU 4x4 2x2 64 X
Conv-LReLLU 4x4 2x2 128 v
Conv-LReLLU 4x4 2x2 256 v
only on Z Conv-LReLLU 1x1 1x1 256 X
Conv-LReLLU 1x1 1x1 256 X
concat outputs Conv-LReLLU 1x1 1x1 512 X
Conv-LReLLU 1x1 1x1 1 X
Discriminator for (X, X’)
concat X, X' Conv-LReLLU 5x5 2x2 32 X
Conv-LReLLU 5x5 2x2 64 X
Dense 1 X
Discriminator for (Z, Z")
concat Z, Z' Dense-LReLU 32 X
Dense-LReLLU 16 X
Dense-LReLU 1 X




Table 4: The architecture of ALAD for CelebA.

Operation Kernel Strides Filter size Batch normalization
Encoder
Conv-LReLU 5x5 2x2 64 v
Conv-LReLLU 5x5 2x2 128 v
Conv-LReLU 5x5 2x2 256 v
Conv-LReLLU 5x5 2x2 512 v
Conv 4x4 1x1 64 X
Generator
Transpose Conv-ReLLU 8x8 2x2 512 X
Transpose Conv-ReLLU 5x5 2x2 256 v
Transpose Conv-ReLLU 5x5 2x2 128 v
Transpose Conv-ReLLU 5x5 2x2 64 v
Transpose Conv-Tanh 5x5 1x1 3 v
Discriminator for (X, Z)
only on X Conv-LReLU 4x4 2x2 128 X
Conv-LReLU 4x4 2x2 256 v
Conv-LReLLU 4x4 2x2 512 v
only on Z Conv-LReLU 1x1 1x1 512 X
Conv-LReLU 1x1 1x1 512 X
concat outputs Conv-LReLLU 1x1 1x1 1024 X
Conv-LReLLU 1x1 1x1 1 X
Discriminator for (X, X')
concat X, X' Conv-LReLU 5%5 2x2 64 X
Conv-LReLLU 5x5 2x2 128 X
Conv-LReLLU 5x5 2x2 256 X
Dense 1 X
Discriminator for (Z, Z")
concat Z, 7' Dense-LReLU 64 X
Dense-LReLU 32 X
Dense-LReLLU 1 X




C Detailed results of ablation study

Table 5: Average AUCs on KDD99 of the proposed method for various A, ¢, and K are provided in % with
standard deviation. The number of replication is 10. For each level of A, the row where ¢ is 0 presents the

baseline performance when Lipschitz continuity is not enforced.
10) K

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A=0

0 98.6+£0.6 98.6£0.6 98.6+0.6 98.6£0.6 98.6+0.6 98.6£0.6 98.6£0.6 98.6+£0.6 98.6£0.6
5  98.9+£0.2 99.0£0.4 99.0+0.2 99.1£0.3  99.1+£0.2 99.2+0.1 99.3£0.1 99.3£0.1 98.1£1.1
10 99.1£0.2 99.1+£0.3 99.0+£0.3 99.1+£0.3  99.2+0.3 99.2+0.1 99.4+0.1 96.9£1.3 95.3+2.4
20 98.7£0.2 98.8+0.2 99.1£0.2 99.2+0.9  99.2+£0.2 96.6£0.6 89.4+1.6 91.94+0.3 96.8+1.8

A=5

0 98.2+1.0 98.2£1.0 98.24+1.0 98.2£1.0 98.24+1.0 98.2£1.0 98.2+£1.0 98.2+1.0 98.2£1.0
5 98.7£0.6 98.2£0.6 98.840.4 98.5+£0.6 99.1+0.4 98.3£1.1 98.8+0.3 98.6+£0.4 97.6£1.5
10 98.3£0.3 98.7+£0.4 98.7£0.5 98.6+£0.3 98.7£0.4 98.9+0.5 98.7+0.4 96.4£2.1 97.3+2.1
20 98.6£0.4 98.9+04 98.7£0.3 98.8+0.3  98.6£0.4 95.9£2.2 929439 94.943.2 97.0+54

A=10

0 9r.2+1.1 97.2+1.1 9r.2+1.1 97.2+1.1 97.24+1.1 97.24+1.1 97.2+1.1 97.24+1.1 97.2+1.1
5 98.6+£0.6 98.9£0.7 98.4+1.3 98.7£0.6 98.2+0.5 98.5£0.4 98.8+£0.5 98.3x1.3 97.4£1.9
10 98.4£0.4 98.7+0.5 98.9+0.5 98.840.4  98.6+0.4 98.7+0.3 98.7+0.4 97.2£1.3 96.5+2.0
20 98.6+0.2 98.7£0.3 98.8+0.2 99.0+0.2 98.7+£0.4 96.8+1.1 93.3+4.2 94.1+3.3 97.4+1.6

Table Bl and [6] shows AUCs and AUPRCs, respectively, of ablation study to evaluate the effect of Lipschitz
continuity imposed on autoencoders. The penalty term to enforce Lipschitz continuity has hyperparameter K
with a coefficient ¢, and the level of enforcement increases as ¢ increases or K decreases. The ablation study is
conducted with the uncontaminated dataset. Compared with the baseline model, a moderate level of Lipschitz
continuity significantly enhances the performance for every A. For A = 0, the mean AUC and AUPRC is 98.6
with std of 0.6 and 93.0 with std of 2.6 from the baseline model and increases to 99.4 with std of 0.1 and 96.4
with std of 0.3, respectively. For A = 5, the mean AUC and AUPRC is 98.2 with std of 1.0 and 91.3 with std
of 3.2 from the baseline model and increases to 99.1 with std of 0.4 and 94.0 with std of 2.2, respectively. For
A = 10, the mean AUC and AUPRC is 97.2 with std of 1.1 and 88.0 with std of 3.1 from the baseline model
and increases to 99.0 with std of 0.2 and 92.8 with std of 2.4, respectively.



Table 6: Average AUPRCs on KDD99 of the proposed method for various A, ¢, and K are provided in % with
standard deviation. The number of replication is 10. For each level of A, the row where ¢ is 0 presents the
baseline performance when Lipschitz continuity is not enforced.

¢ K
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A=0

0 93.042.6 93.0+2.6 93.0+2.6 93.042.6 93.042.6 93.0+2.6 93.042.6 93.0£2.6 93.0+2.6

5 945409 94.6+1.8 94.9+1.3 95.3+1.8 95.340.9 95.4+0.8 962408 95.840.8 92.8+2.3

10 95.140.9 94.841.9 948+1.8 94.9+14 954414 95.6+0.6 96.4+0.3 89.6+2.4 88.0+4.4

20 92.241.6 934413 949414 956409 954412 86.5+19 73.843.8 81.0+0.8 89.9+3.1

A=5

0 91.3£32 01.3%32 91.3+32 91.3£3.2 91.343.2 01.3+32 91.3+3.2 91.3£3.2 01.3+3.2

5 92.6£2.9 90.6+2.2 92.8+21 91.243.0 94.0+2.2 91.1+3.8 92.741.2 91.3£2.2 89.1+3.7

10 90.4+1.9 922424 921427 91.8+1.7 922418 932425 922422 86.5+4.8 89.5+4.7

20 91.8+1.7 926420 92.2+1.8 92.9+20 91.8+1.9 841451 80.4+83 84.7+7.0 89.045.4

X =10

0 88.0431 88.0+3.1 880+3.1 88.043.1 88.0+3.1 83.0+3.1 88.043.1 88.0+3.1 83.0+3.1

5 919425 932435 91.943.3 921428 89.842.6 91.142.6 92.842.4 91.743.2 90.0+5.4

10 90.5+2.0 91.942.6 92.842.4 921420 914420 92.3+1.6 924+19 87.7+3.2 87.74+4.9

20 91.6£1.4 91.542.0 92.2+14 94.0£1.3 922423 85.2+39 80.4+9.0 82.8+7.4 89.2+3.5
D Experiment results on MNIST and Fashion-MNIST

Table 7: Average AUCs of deep SVDD, ALAD, and the proposed method are provided in % with standard

deviation. The number of replication is 10.

Uncontaminated Training Set

Contaminated Training Set

Dataset  Normal class deep SVDD ALAD Proposed  deep SVDD ALAD Proposed
Digit 0 97.90+0.8 98.83+0.7 98.86+0.2 94.40+2.0 95.50£2.0 96.64+0.4

Digit 1 99.47+0.2 99.22+0.4 99.68+0.1  98.76+0.3 99.12+0.5  99.52+0.1

Digit 2 87.23+2.2 79.79+£10.1 90.45+1.6 82.65+3.3 73.25+13.3 84.30+2.4

MNIST Digit 3 89.9141.7 85.324+3.2  93.4440.7 86.72+2.9 82.094+3.8 88.25+2.3
Digit 4 93.06+1.4 91.4+2.3 95.70+0.6 90.04+1.5 89.37+2.6 92.83+0.8

(32x32) Digit 5 88.31+2.1 83.18+11.1 94.54+1.3 83.13+1.9 83.61+£2.6 90.56+1.8
Digit 6 98.171+0.5 93.81+11.8 98.43+0.5 95.07+1.1 96.55+2.5 96.28+0.8

Digit 7 93.98+1.5 94.38+1.3  96.39+0.8  90.77+1.8 92.534+2.3  94.2540.5

Digit 8 89.94+1.9 86.38+5.1 89.81+1.4 87.331+2.6 88.10+2.7 83.75+2.4

Digit 9 96.05+0.6 95.49+1.4 95.671+0.6 93.944+0.6 94.79+1.2 94.28+1.1

T-shirt /top 90.66+0.9 89.45+9.0 92.73+0.5 86.94+2.0 87.33+£1.2 88.04+1.2

Trouser 98.65+0.1 98.474+0.2 98.5240.2 97.574+0.3 90.35421.8 97.3840.3

Pullover 86.224+2.9 89.62+0.9 89.72+0.6 83.90+2.4 86.07+1.7 85.95+1.0

Fashion- Dress 92.62+1.3  58.01+23.6 94.47+0.3 90.17+1.3  67.114+24.7 91.18+1.3
MNIST Coat 89.314+2.6 89.624+1.5 91.414+0.3  87.34+1.7 87.96+0.8  88.15+0.7
Sandal 90.03+1.1 23.07+9.1  91.544+0.3 81.13£1.5 24.41+£9.9 83.44+2.0

(32x32) Shirt 80.62+1.9 84.10+0.6 84.80+0.6 79.14+1.2 80.44+1.4 79.944+1.4
Sneaker 98.48+0.1 27.56+24.7 98.50+0.1 97.13+0.5 50.954+37.6 97.43+0.4

Bag 92.06+2.9 85.05+3.0 90.59+1.3 83.72+2.4 83.75+2.4 77.73£2.1

Ankle boot 98.28+0.3 92.39+2.3 98.1240.2 94.52+1.2 83.58+13.6 92.87£1.5

Table [7 and Table [ shows AUCs and AUPRCs of various methods on MNIST and Fashion-MNIST
dataset, respectively. All the mean and standard deviation values are based on 10 runs. In each table, we mark
the highest value in bold for both uncontaminated and contaminated training set cases.



Table 8: Average AUPRCs of deep SVDD, ALAD, and the proposed method are provided in % with standard
deviation. The number of replication is 10.

Uncontaminated Training Set

Contaminated Training Set

Dataset  Normal class deep SVDD ALAD Proposed  deep SVDD ALAD Proposed
Digit 0 99.73+0.1  99.84+0.1 99.84+0.0 99.17+0.3 99.4240.3  99.50+0.1
Digit 1 99.914+0.0 99.87+0.1 99.95+0.0  99.75+0.1 99.85+0.1  99.92+0.0
Digit 2 98.2240.3 96.93+2.1 98.66+0.3  97.47+0.6 95.73+£3.0 97.77+0.3
MNIST D%git 3 98.59+0.3 97.924+0.5 99.08+0.1  98.06+0.4 97.414+0.5 98.31+0.3
Digit 4 99.1540.2 98.954+0.3  99.45+0.1  98.62+0.3 98.68+0.4 99.07+0.1
(32x32) Digit 5 98.48+0.4 97.70+1.9  99.30+0.2  97.71+0.2 97.84+0.5 98.80+0.2
Digit 6 99.7640.1 98.97+2.2  99.78+0.1  99.294+0.2 99.514+0.4  99.47+0.1
Digit 7 99.18+0.2 99.26+0.2  99.5240.1 98.60+0.3 99.01+£0.3  99.204+0.1

Digit 8 98.66+0.3 97.96+0.8  98.64+0.2 98.26+0.4 98.11+0.6  97.77+0.4

Digit 9 99.47+0.1  99.37+0.2  99.37+0.1 99.13+0.1  99.25+0.2  99.15+0.2

T-shirt/top 98.75+0.1 98.28+1.9  99.01+0.1 98.04+0.3 97.97+0.2 98.01+0.2

Trouser 99.83+0.0  99.79+0.0  99.77+0.0  99.62+0.0 97.8+5.5 99.58+0.1

Pullover 98.324+0.4 98.76+0.1  98.7440.1 97.884+0.3 98.14+0.3  97.86+0.2
Fashion- Dress 99.05+0.2 91.42+5.2  99.29+0.0 98.554+0.4 93.44+5.5 98.76+0.2
MNIST Coat 98.69+0.3 98.704+0.2 98.95+0.0 98.29+0.2  98.31+0.2 98.26+0.1
Sandal 98.88+0.1 82.51+4.4 99.01+0.0 97.3840.2 83.05+4.6 97.35+0.4

(32x32) Shirt 97.2740.3 97.83+0.1 97.91+0.1 96.86+0.3 97.06+0.3 96.74+0.3
Sneaker 99.84+0.0 84.844+5.9  99.83+0.0 99.6240.1 90.144+8.0 99.65+0.1

Bag 98.92+0.4 97.75+0.4  98.71+0.1 97.55+0.3  97.544+0.4  96.55+0.4

Ankle boot  99.80+0.0  99.08+0.3 99.78+0.0  99.23+0.1 97.48+2.6 98.9+0.2
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