Multi-level Gaussian Graphical Models Conditional on Covariates

Supplementary Information A: Proofs of theorems

Proof of Theorem 1

Proof. We first define the following quantities.

xsxz*inx +Z(sz + X;x; )

i<J
T T T T
XijXi; = xix< + xjxj — XX — XX
Z T Z Z T T
Xijxij = — 1 X;X (Xin —|—Xin )
1<J 1<j
m 1 m
g xixl-T = - XSXST + E xisz;- From Egs. and @
i i<j

To prove the theorem, we visit each term in the model in Theorem 1, yTAy, x7@y, |A|, and

exp (—fxTGA 1eTx ) and re-write it as follows:
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The equation above on determinants follows from Theorem 3 in Silvester (2000).

Proof of Theorem 2

We first show that the following lemma holds, which is then used to prove Theorem 2.
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Lemma 1. Let K = CtC = CTC*T = K. Then, for ¥ = A™! = [Lnxm @ A + Lyxm ® Q71, we have
KXY = YK.

Proof. Using a block inversion of a matrix, we can show X = I, xm Q E+ 1, xm @ ®, where ® = —A‘lﬂ(mﬂ +
8)~! and E = A~!, and verify this by checking XA = I. K is an orthogonal projection matrix with K;,; =
Ko =Ko =Ksio = % for ¢ € H for outputs with missing individual-level observations. For observed outputs
i€V, K;; =Ko =1, and K, 2; = Ky;; = 0. Then, using the repeat block structure of 3, we define all the
elements of KX and Y¥K:

1
(Kz)zz = (KZ)Z-Q,» = (K2)2zz = (Kz)%,% = 'I’i,i —|— §€i fOI‘ Z - H, and

)

(K2)11 = (KZ)mi = (KE)QZl = (Kz)gijgi = q’i,i + €; fori e V.

)

For (Z,]) S {Z,] ) 75 j,i = 1,...,q,j = 1,...,(]}, (KZJ)W = (KE)Z',QJ‘ = (KE)QW» = (K2)2i’2j = ‘I’i’j. The
elements of XK are identical to those of KX. O

Now we prove Theorem 2.

Proof. From our model in Eq. (2), we derive the probability distribution for the observed outputs. We begin by
re-writing Eq. (2) in the form of Gaussian distribution to make the marginal distribution explicitly represented:

p(y | x;A,0) ~ N(—C,A7'OTx,C,A7C,), (8)

I . . N
where C, = [ quq (1)qu ] . Then, the output sum variables are also Gaussian distributed:
axq  1gxq

p(ys | x;A,0) ~ N(—C,A7'O@Tx, C,ATICT), (9)

where Cs = [I;xq Igxql-

We combine the marginal distributions for the observed output variables in V' from Eq. and for output
variables in H with missing individual-level observations but only with group-level sum data from Eq. @D to
form a joint distribution of the observed variables yZ and y":

p(y?,yV | x;A,0) ~ N(-CA'@Tx,CAICT), (10)

H

given C = % |. CH and CY are the submatrices of C, and C, with only the rows corresponding to the
a

S

C
C
variables in yZ and y". To show the distribution in Eq. is a CGGM, we only need to show Eq. can

be written as

S

P2y | x;A,0) =N (- A'0Tx, A7), (11)

by obtaining the explicit forms of the mean and inverse covariance of the above, since expanding the quadratic
term in this distribution above leads to the CGGM in Theorem 2.

We first show A = [CA~!CT]"! = CtTAC*, where C* is the Moore-Penrose inverse of C, by showing
CA-ICTCHtTACT =1:

CXCTCtTACT = CCTCtTAIACT  from Lemmalil

=cclfctfct
=Ccctcct since CTC is symmetric from the definition of Moore-Penrose inverse
=CCt from CC* =1

=1
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Then the mean of Eq. can be written as

—CA'eTx = -CcCctcAteTx from C = CCTC
= _-CA'CtCcO”x from Lemma/[ll
= -CA'CcTctTe’x from CTC = CTC*T since C*TC is symmetric
=-A1'O0Tx ®—0ect

Thus, we have Eq. (11) with ® = ©C* and A = CtTAC™.

The corollary below follows from the theorem above.

Corollary 2. Learning the collapsed multi-level CGGM in Eq. (3) with randomly missing individual-level output
yi |
Yo

Proof. From Theorem 2, given A = CtTACT and ©7 = CtT@T, we can re-write the log probability as

data is equivalent to learning the full multi-level model with imputed data y = CT

- T
1 H - H - H
logp(y?, vV |xA,0)=—=| Y5 | A|Ys | -xT&| Y5 | —logZ(x
gp(ysy | )=—5| v v v g Z(x)
1 vH r H H
_ _ Ys C+TAc+ Ys _ XT(_)CJr Ys _ log Z(X)
2 yU v y'U
T
1 H H H
I C+ Ys A C+ Ys o XT@ C+ Ys _ log Z(X)
2 y'U v y'U
Lo g
=3y Ay — x* Oy — log Z(x).

O

Supplementary Information B: Details of the Optimization Method for Multi-level
Conditional Gaussian Graphical Models

Alternating Newton coordinate descent

We provide the details of the learning algorithm for our multi-level model, using the representation of the model
in Theorem 1. The L;-regularized negative log-likelihood is given as

1 1 1
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Q-0,A,2,11 m m m

1 1 1 1
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+ el +Aal Al + Al +A=(E],
. . Sx. Sxz
using components of covariances Syw, = [Syx,Syz] and Sy = sTT g |

XZs

In each iteration, we alternately optimize for each of the parameters 2, A, =, and IT by solving the optimization
problem above for each of the parameter given the previous estimates of all the other parameters. We maintain
and update V = Q + %A after each update of € and A in order to avoid repeatedly computing €2 + %A. In
the rest of this section, we write V. = Q + %A whenever this term occurs.
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Algorithm 1: Alternating Newton Coordinate Descent for Multi-level Conditional Gaussian Graphical
Models

Input: Sy, Syx,,Sx,: Ys, Xy, X4, Z, regularization parameters Aq, Amr, A=, and o

Initialize: II,E + 0,92, A < I,

fort=0,1,... do
Determine active sets Sq, Sa, Sm1, S=
Find Newton directions via coordinate descent

Dg = argmin g(Q + 5o, A ILE) + h(Q + do, A IL E)
oo

Update 27 = Q + aDgq, where « is found via line search
Da = argming(Q, A +0a,ILE) + h(Q, A + 04,11, E)
on

Update AT = A + aDa, where « is found via line search
Solve via coordinate descent:
I+ = argmin g(IT) + A(TT)
I

ET = argmin g(E) + h(E)

Update for Z: Optimizing for 2 given all the other parameters corresponds to solving the following optimization
problem:

argmin go, A n(E) + A=[|E]; ,
where

1
goan(E) = tr<2SyzE + V(SIS B+ —ETSL I+ ETSZE)>.

1
m
Update for IT: Optimizing for IT given all the other parameters corresponds to solving the following optimiza-

tion problem:

argmin go A = (IT) + A [T ,
il

where

1 1 1 1 1
ga.az () = tr(28yx, — T+ 28y, T+ V7! (IS, I+ 7S, 2+ —E'SLIT) + —AT'TITS,,IT).

1
m
The two problems above for 2 and II are Lasso, which can be solved efficiently using a coordiante descent

algorithm.

Update for Q: To optimize Eq. for € given all the other parameters, we use the Newton’s method. We
first find the Newton descent direction by minimizing the second-order approximation of the objective in Eq.
with respect to 2 and then update €2 using this Newton direction and step size found by line search. The
Newton direction Dgq is found by solving the following optimization problem:

Dgq = argmin§A757n(5g) + /\QHQ + 59”1 )

7o)

where ga = m(dn) is the second-order Taylor expansion of the data log-likelihood in Eq. with respect to 2
and is given as

1
gazm(0a) = vec(Vaga zm () vec(da) + §V€C(5Q)TV?19A,E,H(Q)VGC(59)7

with the gradient and Hessian
1 1 1
Vagazn() =Sy, — V' -V (SII'S, I+ —I"S,,E+ —E"S, T+ E'S,E) V!
m m m

1 1 1
Vagazn(Q)=V'1g (V‘1 +2v! (WHTSXSH + EHTSXZE + %ETSIZH + ETSZE)V—l) .
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The above optimization problem is a Lasso problem and can be solved using a coordinate descent method.

Update for A: To optimize Eq. for A given all the other parameters, we again use the Newton’s method.
We find the Newton descent direction Da by minimizing a second-order approximation of the objective in Eq.
with respect to A and update A with this Newton direction and a step size found by line search. The
Newton descent direction Da can be found by solving the following:

Da = argmin o = n(da),
[N

where
1
gozn(0a) = vec(Vagozn(A)) vec(da) + §Vec(6A)TVQAQQ,E,H(A)Vec(éA)a

with the gradient and Hessian

1
Vagazn(A) = - (Sys +8y, — Vi —(m-1r!

-v (%HTSXSH + lors oz larer i re,m) vt
m m m

1 —1yqT —1
- —AT'IS, A )

1 1
Vagesn(Ad)=—|V'ie(V'i+2v! (WHTSXSH + EHTSXZE +—E'sLm+2"s,E)v1)

1
m

2
+T'® <(m -t + 2A—lnTsxdnA—l) 1 :
m

This optimization problem for finding a Newton direction is again a Lasso problem, which can be solved using
a coordinate descent algorithm.

In order to improve the efficiency of the coordinate descent algorithm, we extend the strategies used in McCarter
and Kim (2016). First, we restrict the coordinate descent updates to the active set of variables given as

Sa = {(0a)i : | (Vag(Q)),;| > Aa V Qi; # 0}
Sm = {I;; : | (Vrg(T0)) ;| > Am V I # 0}
Sz ={Ei:| ( =9(8)),; | > A= VEy; # 0}
Sa={(0a)is : | (Vag(d), | > Aa VA, # 0}

[1]

Second, we compute and store the intermediate results at the beginning of the coordinate descent updates for
= and IT and for 6q and 6a in each Newton iteration. We store the intermediate results Uz := EV ! for Z,
Un, = OV~! and Upn, = HA™! for I, Ug = 6oV ! for éq, and Us, == AoV ! and Us, := oA ™! for Ja.
When Z;; and II;; are updated, the ith row of the corresponding intermediate results is updated. After (dq):;

update, the ith and jth rows of Ugq are updated and after (da);; update, the ith and jth rows of Ua is updated.

Alternating Newton block coordinate descent

We further adopt the block-wise optimization method in McCarter and Kim (2016) to remove the memory
requirement for storing large dense matrices during coordinate descent optimization. The coordinate descent
updates require precomputing and storing the large dense matrices, such as Sx_, Sx,, and V1. Instead, we
perform a block-wise update of &, I, dq, and da, precomputing and reusing the portions of the large matrices
that are required for updating the current block of the parameters.

Blockwise optimization for Q: A coordinate-descent optimization for (dn);; requires computing the ith and
jth columns of large dense ¢ x ¢ matrices V="' and V~! (TI7S, I+ LTI7S,, = + LETST 11+ ETS,E) V!
found in the gradient and Hessian of the objective with respect to €. We represent
Vo (LIS, M+ LT7S,, B+ LETSL I+ BTS,E) V! as (Ry + Ry + R3)T(Ry + R2 + R3), where

m
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Ry = Q1V!, Ry = Q;V™! and R3 = Q3V~'. We precompute and store n x ¢ matrices, Q1 = %XSH,
Q2 = X2, and Q3 = ZE, which are used to update Ry, Rs, and Rj3 after each update of V. Instead of storing
V! and (R; + Ry + R3)T (R + Ry + R3) persistently, we perform blockwise coordinate descent, whereby the
active set Sq of dq is clustered into smaller blocks, and we perform coordinate-descent updates for elements
in the active set in each block. We cluster the rows and columns of dg by partitioning {1,...,q} into ko sets,
C1,...,Crqy. For each (C,,C.) block of dq, we do blockwise computation for (V=!). oy and (V1) oy,
and compute the ¢th column in each block as V(V‘l)(:’i) = e; using conjugate gradient method, where e; is
a vector of ¢ 0’s except for 1 in the ith element. Similarly for [(R; + Ry + R3)T(R; + Ry + R3)](.,c,), and
[(R1 + R2)"(R1 + R2)](.,c.), we obtain the ith column in each block using (Ry + Rz + R3)” (Ry + R + Rs3)..).
After updating each (dq)j, we update the corresponding ith and jth rows of the intermediate results (Un). c.)
and (UQ)(:7CT).

Blockwise optimization for A: A coordinate descent optimization for (da);; requires computing the ith and
jth columns of large dense g x ¢ matrices V™1, (R; + Ry + R3)T(R; + Ry + R3), A™1, and A~TITS, TIA!
found in the gradient and Hessian of the objective with respect to A. The optimization method for A is similar
to the one for 2. We represent ﬁAflﬂTSxdﬂA’l as RT Ry, where Ry = Q4A~!. We precompute and store
an X ¢ matrix, Q4 = %Xdl_[, which is used to update R4 after each update of A.

Blockwise optimization for Z: The coordinate descent update for (£);; requires the ¢th column of Sy and
S, and the jth column of V~1. Instead of storing Sx., S,, and V persistently, we perform blockwise coordinate
descent. We cluster the columns of E by partitioning {1,..., ¢} into kg sets, C1, ..., Ckx=. For each block (i, C..),
where i € {1,...,p+r}, we compute (Sx,) (i), (Sz)(,), and (V™). c,). After updating each (E);;, we update
the corresponding ith row of the intermediate result (Uz). ¢, )-

Blockwise optimization for II: The coordinate descent update for (II);; requires the ith column of S, and
Sx, and the jth column of V™1 and A~!. Instead of storing Sy, Sx,, V, and A persistently, we perform
blockwise coordinate descent. We cluster the columns of IT by partitioning {1,...,q} into kr sets, C1, ..., Cky-
For each block (i, C;), where i € {1,...,p}, we compute (Sx_)(..i), (Sxs) i), (V1o and (A7) ¢,). After
updating each (IT);;, we update the corresponding ith row of the intermediate results (Ur, )(.,c,) and (Urr,) ¢, )-



Multi-level Gaussian Graphical Models Conditional on Covariates

1 1 1 1 1
[ f \,\ f c c
RS 2 o kel il
(%]
2os 205 205 205 205
< o < o o
o o o o o
MRCE
CGGM
MCGGM
0 0 0 0 0
0 0.5 1 0 0.5 0 0.5 1 0 0.5 0.5 1
Recall Recall Recall Recall Recall
1 1 1 1 1
c c c c c
o il o Qo Qo
(%]
305 -80.5 .30.5 \—\\ _30.5 %0.5
< o Qo o o
o o8 o o o
MRCE -
MCGGM
0 0 0 0 0
0 0.5 1 0 0.5 0 0.5 1 0 0.5 0.5 1
Recall Recall Recall Recall Recall
1 1 1 1 1
c c c c c
K] 2 gl gl ©
(%]
2os 205 205 205 205
< Qo < 2 o
o o o o o
MRCE
CGGM-nm \ \
MCGGM
0 0 0 0 0
0 0.5 1 0 0.5 0 0.5 1 0 0.5 0.5 1
Recall Recall Recall Recall Recall

(a)

(b)

()

(d)

()

Figure 4: Comparison of methods on simulated data. Precision-recall curves for the recovery of (a) 2+ A, (b) Q, and
(c) A, (d) II, and (e) E. Top row for Case 1, middle row for Case 2, and bottom row for Case 3 with group size m = 6.
€ is set as a clustered network.
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Figure 5: Comparison of methods on simulated data. Precision-recall curves for the recovery of (a) 2+ A, (b) Q, and
(¢) A, (d) II, and (e) E. The results from Case 4 (top) and Case 5 (bottom) are shown for group size m = 6 and for
scale-free networks for €2 and A.
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Figure 6: Comparison of methods on simulated data. Precision-recall curves for the recovery of (a) 2 + A, (b) Q, and
(¢) A, (d) II, and (e) E. Results from Case 4 (top) and Case 5 (bottom) are shown for group size m = 6 and for Q with
a clustered network.



Gi Bum Kim, Seyoung Kim

>K SN
/ —~ / - /
S [ /

/ / = / —
/ e N
{ / / N / ~/
~/ = >
= Pat | 4
7 -
[ 7~ [ % ,
/ ) /
& N ..: Ry e
o
k. .
= e, NI \ %@ /
N ! B
\l< - \/\ o~
<o 7 - / AN
- / .
/ s 7
Lk ;
~/ < - \
B > F s
/ £ f ¥ f » »
' S

() ()

Figure 7: Single-level and multi-level conditional Gaussian graphical models estimated from GTEx data. The estimated
single-level model is shown for (a) the largest connected component and (b) the rest of the gene networks, where gene
network edges are shown as gray and the effects of variants on gene expressions are shown as blue. The estimated multi-
level model is shown for (c¢) the largest connected component and (d) the rest of the gene networks. In the multi-level
model, the influence of cis-acting variants is shown as brown if they have been previously annotated as having impact on
gene expression, red if they have not been annotated, and pink if the distance to the gene it is influencing is greater than
1 megabase. The influence of trans-acting edges is shown as green. Known transcription factors are colored as big orange
dots.



