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Abstract

We address the problem of learning the struc-
ture of a high-dimensional Gaussian graph-
ical model conditional on covariates, when
each sample belongs to groups at multiple
levels of hierarchy. The existing statistical
methods for learning covariate-conditioned
Gaussian graphical models focused on learn-
ing the aggregate behavior of inputs and out-
puts in a single-layer network. We propose
a statistical model called multi-level condi-
tional Gaussian graphical models for mod-
eling multi-level output networks influenced
by both individual-level and group-level in-
puts. We describe a decomposition of our
model into a product of two components, one
for sum variables and the other for differ-
ence variables derived from the original vari-
ables. This decomposition leads to an effi-
cient learning algorithm for both complete
data and incomplete data with randomly
missing individual observations, as the ex-
pensive repeated computation of the parti-
tion function can be avoided. We demon-
strate our method on simulated data and
real-world data in finance and genomics.

1 INTRODUCTION

We consider the problem of modeling multiple corre-
lated outputs influenced by multiple inputs in high-
dimensional setting, when individuals belong to groups
at multiple levels of hierarchy. The individuals’ out-
comes can be influenced both by individual-level in-
puts at the lower level of hierarchy and by group-level
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inputs at the upper level of hierarchy. For example,
exam scores of multiple subjects for each student may
be influenced by the attributes of the student but also
by the attributes of the school. A similar problem
arises when predicting voting patterns of voters in dis-
tricts based on the attributes of voters and districts
or predicting energy consumption of households in re-
gions based on the attributes of households and re-
gions. Multi-level regression has been widely used to
learn regression coefficients for both individual- and
group-level inputs (Snijders and Bosker} 2012|). How-
ever, these methods have considered only multi-level
regression coeflicients but not multi-level output net-
works.

Here, we address the problem of modeling multi-level
output network structure in addition to multi-level
input-to-output mapping for grouped data. We model
the overall network over multiple correlated outputs as
an aggregate of multiple networks at different granu-
larity. The network component at the individual level
governs the output behavior of individuals within each
group, whereas the network component at the group
level governs the output behavior across groups.

We introduce sparse multi-level conditional Gaussian
graphical models for modeling multi-level sparse out-
put network influenced by multi-level sparse inputs
in a high-dimensional setting. @We extend condi-
tional Gaussian graphical models that have been pre-
viously developed as a Gaussian counterpart of con-
ditional random fields (CRFSs) for structured output
prediction (Lafferty et al., 2001; [Sohn and Kim) 2012;
Wytock and Kolter, 2013). We modify both the out-
put network and input-to-output mapping parameters
of this single-level model to model the hierarchy in
multi-level data. We adopt the CRF framework rather
than extending regression models, because 1) the con-
ditional dependencies represented by the edges in the
probabilistic graphical models are more intuitively ap-
pealing and 2) the optimization problem for model es-
timation is convex, unlike the bi-convex optimization
problem for learning regression models with correlated
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noises to model correlated outputs.

We present an efficient learning algorithm that scales
to large datasets in both complete and missing data
settings. We first show that our multi-level model de-
composes into a product of two components, one for
sum variables and the other for difference variables
derived from the original input and output variables.
Then, we show that learning our model using this de-
composed representation leads to an efficient optimiza-
tion method, both when complete data are available
and when only aggregate group-level data are avail-
able for randomly missing output variables. A naive
approach of EM algorithm (Dempster et al., (1977 or a
direct optimization after marginalizing out the missing
variables would require the expensive computation of
performing inference or evaluating the partition func-
tion repeatedly for each sample. Our learning algo-
rithm based on the decomposition reduces or sidesteps
this expensive computation, leading to orders of mag-
nitude speed up for large datasets.

Related Works. CRF's have been extended to take
into account hierarchy in data at pixel and super-pixel
levels (Huang et al.,[2011; Xie et al., 2019; [Wang et al.|
2016|) or hierarchy in pixel labels (Ruiz-Sarmiento
et all [2019). These methods modeled discrete out-
puts at different levels with different variables or even
with different CRF's, whereas we consider continuous
outputs and learn a single output network that decom-
poses into network components at each level. Multi-
layer networks have been introduced in social science
and other network sciences to model different aspects
of interactions among the entities or nodes as different
layers of a network (Boccaletti et al., 2014} |Finn et al.|
2019; Basaras et al.l 2017)). These works have mainly
focused on mining multi-layer networks for properties
such as centralities, communities, and spreaders using
graph-mining techniques or exponential random graph
models (Wang et al.l 2013)), rather than estimating the
networks themselves from grouped observations.

2 BACKGROUND

We consider the following problem set-up for predict-
ing multivariate outputs given both individual-level
and group-level inputs when individuals are grouped at
multiple levels of hierarchy. Let y = [y?,...,yL]T €
R™4 where y; € R? for ¢ = 1,...,m, denote g out-
put variables for each of the m individuals in a group.
Let x = [x¥,...,x1 zT]T € R™P*" denote input vari-
ables, where x; € RP for ¢ = 1,...,m represents
individual-level p inputs for the ith individual and
z € R” represents group-level r inputs shared across
all m individuals in the group.

Multi-level regression models (Snijders and Bosker]

2012)) have been introduced to model the outputs for
the ith individual in the group given the individual-
level and group-level inputs as

yi =Blx; + BgTZ +e;, e~N (07971) .

B, € RP*Y in the equation above are regression co-
efficients describing within-group effects of individual-
level inputs on outputs, whereas B, € R"*9 represents
across-group effects of group-level inputs on outputs.
The ¢ x q inverse covariance parameter €2 models the
correlated noise across g outputs. Collecting the mod-
els across all m individuals in the group, the model
above can be equivalently written as

y:BTX+e7 eNN<O,Im><m®Qil),

Im><m ® Bw
11 xm & Bg
matrix L, ., and an 1 X m matrix of ones 17x,,. The
multi-level regression models above with fixed effects
and with no group-specific effects have been extended
to model group-specific random effects in B,, and By.

where B = [ ] with an m x m identity

In this paper, we consider problems in high-
dimensional setting, focusing on multi-level models
with fixed individual-level and group-level effects. In
this case, a sparse estimate of the parameters of
the multi-level regression model above could be ob-
tained within the framework of multivariate regression
with covariance estimation (MRCE) (Rothman et al.,
2010)). Given input and output data for n groups of m
individuals, Y € R®*™4 and X e R™*(m»+7)  muylti-
level MRCE estimates the parameters by minimizing
the Li-regularized negative log-likelihood

1
argmin — log || + ~tr ((Y ~XB)T(Y - XB)Q)
Q-0,B n

+ 28, |[Bulli + A, [[Bg[l1 + Aell@f. (1)

This optimization problem is bi-convex in B and 2
and can be solved by alternately estimating B with
Lasso while fixing € and estimating ©Q with QUIC
while fixing B (Rothman et al.l [2010). While multi-
level MRCE assumes a single-level output structure €2,
in the next section, we introduce a statistical approach
for modeling output network structure at multiple lev-
els, in addition to input effects on outputs at multiple
levels.

3 SPARSE MULTI-LEVEL
CONDITIONAL GAUSSIAN
GRAPHICAL MODELS

We introduce multi-level conditional Gaussian graphi-
cal models, adopting a conditional random field frame-
work that has been widely used for structured output
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prediction. Our model builds on conditional Gaus-
sian graphical models to model both multi-level input-
to-output mapping and multi-level output network.
We derive an alternative decomposed representation
of our model, which provides additional insights into
our model and also allows us to efficiently estimate the
model for large problems both with complete data and
in the presence of missing individual-level data.

3.1 The model

Given the problem setting in the previous section with
q outputs for m individuals y € R™? and p individual-
level and r group-level inputs x € R™P*" in each
group, in order to model multi-level output structure
and multi-level input-to-output mapping, we extend
the previous single-level conditional Gaussian graphi-
cal model

p(y [ x; A, ©) = exp (—;yTAy - XT@Y) /Z(x), (2)

with a single-level input-to-output mapping parame-
ter @ € RP*? and ¢ X ¢ output network A for p in-
puts and ¢ outputs with m = 1 and r = 0, where
Z(x) = (2m)72|A|7Y2 exp (—3xTOAT1OTx) is the
normalization factor that ensures the probability dis-
tribution integrates to 1. Our multi-level extension
of this model has multi-level input-to-output mapping
parameter ® € R(mp+7)xq

_ | Ixm @11
@_ |:11><m®5:| ’

where IT € RP*Y and E € R"*? model the influ-
ence of the within-group individual-level inputs x;’s
for : = 1,...,m and group-level inputs z on outputs,
respectively. Our multi-level model represents multi-
level output network as an mgq x mgq positive definite
matrix

A:Imxm®A+1me®Qa

where each of the two ¢ X ¢ matrices, A and 2, mod-
els the individual-level and group-level output struc-
ture, respectively. Our multi-level network models the
decomposition of the overall output correlation in A
into two components, A describing the correlated out-
put behavior across individuals within each group at
the lower-level of the data hierarchy and €2 represent-
ing the correlated output behavior across groups at
the higher-level of the hierarchy. The identity matrix
I, xm in the Kronecker-product term for A above al-
lows the outputs of each individual in a group to have
independent behavior, whereas the matrix 1,,x,, in
the Kronecker-product term for € forces the outputs
of all individuals in each group to be tied up to model
group-level correlated output behavior.

3.2 Challenges in learning multi-level
conditional Gaussian graphical models

A naive approach for estimating our multi-level model
is to minimize the Li-regularized negative data log-
likelihood by directly adopting the alternate Newton
coordinate descent method, which has been previously
developed for an efficient optimization of the single-
level model (McCarter and Kiml [2016). Using this
strategy, given mean-centered output data 'Y € R™*"™4
and input data X € R™*(mP+7) for n groups, a sparse
estimate of the parameters of our model can be ob-
tained by solving the following optimization problem:

argmin — log |A| + tr(SyA + 28,0 + A~'©7S,0)
A>0,T1,2

+Aa(lAlly +1€2,) + Ao (T[]l +[[Z],),
where Sy = %YTYa Syx - lYvT)(, and Sx = %XTX

are the sample covariance matrices. The [|-]]1 is an Ly
penalty and Ay and Ag are regularization parameters
controlling the sparsity level in the estimated param-
eters. We do not penalize the diagonal elements of A
and €2, as is typically done in the estimation of Gaus-

sian graphical models.

However, with this optimization strategy, the compu-
tational efficiency of the single-level model estimation
does not directly translate to the multi-level model for
the following two reasons. First, the line search and
evaluation of the objective involve the costly computa-
tion of log|A| and A~! for the large mq x mq matrix
A. Second, it is necessary to maintain large sample
covariance matrices throughout the optimization, in-
cluding the mgq x mg matrix Sy, mg x (mp+r) matrix
Syx, and (mp+r)x (mp-+r) matrix Sk. In the next sec-
tion, we introduce a decomposition of our multi-level
model as an alternative representation and show that
this decomposition allows us to sidestep these two key
challenges for an efficient estimation of the multi-level
model.

3.3 Decomposed representation

We show in Theorem [ below that the multi-level
model based on Eq. can be written as an equiva-
lent form of a product of two components, one for sum
variables and the other for m(m — 1)/2 pairwise dif-
ference variables derived from inputs and outputs for
m individuals in each group.

Theorem 1. Let y, = >./" y; and w = [x] ZT]T
with X = Z;il x; be sum variable. Let y;; =y; —y;
and X;; = X; — X; be difference variables for all pairs
(i,5)7s fori,j € {1,...,m}. Assuming AQ = QA,
the following decomposition of the multi-level condi-
tional Gaussian graphical model holds:

Py | x;A,0) = fo(ys | w; V,F) fa(yifs | xijs; T, ).
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The sum component in this decomposition is given as

1
fs(Ys | w;V, F) = exp (_QYZVYS - WTFYS) /ZS(X)
with V.= Q@+ LA and F = [LTI7 E7]"
ference component is given as

fa(yifs | xijs; T, W) =

The dif-

1
Hexp (—Qy;";I‘yij — xz;»\Ilyij) /Zi;(x)| [Za(%)
i<j
with T' = %A and ¥ = %H. The normalization

factors in the sum and difference components are given
as

1
Zo(x) = (2m) 12| V|7 2m~ 12 exp (—2WTFV1FTW)

1 p—
Zij(x) = exp (—2XZ;‘III‘ 1\I’Xij>
Zd(x) = (271-)(7”—1)(1/2|I\|—(m—1)/2m_q(m_1)/2.
The proof is in Supplementary Information A.

The decomposition in Theorem [I| turns the original
multi-level model with mgq x mq output network pa-
rameter A and (mp + ) X ¢ input-to-output mapping
parameter ® into another form in which each compo-
nent is described by significantly smaller ¢ x ¢ out-
put networks, V. = Q + %A and T' = %A, and
(p+ 1) x g and p X ¢ input-to-output mapping pa-
rameters, F = [%HT ET]T and ¥ = %H. Each
component in this decomposition takes the form that
resembles conditional Gaussian graphical models with
p inputs and g outputs. In particular, when m = 2, the
multi-level model decomposes exactly into two condi-
tional Gaussian graphical models, each modeling sums
and differences of inputs and outputs for m = 2 indi-
viduals per group, as we state in the following corol-
lary.

Corollary 1. Letys = y1+y2 and x5 = X1+X5 be the
sum of the input and output variables of m = 2 indi-
viduals in a group. Let yg =y1 —y2 and xg = X1 — Xz
represent the difference of the input and output vari-
ables. Then, our multi-level model in Eq. (@ factor-
izes into two conditional Gaussian graphical models,
one based on the sum variables ys and w = [Xs, 2] and
the other based on the difference variables yq and x4:

p(y [ xA,0) =p(ys | w; V,F)p(ya | xa; T, ),
where
plys | w; V. F) = (2m) 2|V |1/

cexp (= 1/2(yTVy, + 2w' Fy, + wFV ' Fw))
p(ya | xa; ®,T) = (27)~9/2|T|'/?

cexp (—1/2(yiTyq + 2x] Wy, + x] T 1 ¥7x,))

with V.=Q+ 1A, F=[i07 27", T = 1A, and
1 . . .

W = SII. The proof is provided in Supplementary

Information A.

By learning the model parameters based on this alter-
native representation, it is possible to remove the two
computational bottlenecks in the naive application of
the optimization method for single-level model. First,
during line search and evaluation of the objective, we
only need to compute the determinant and inverse of
far smaller ¢ x ¢ matrices V and I rather than for a
large mq x mq matrix A.

Second, since the decomposed model is defined on sum
and difference variables that collapse the original vari-
ables for m individuals in each group, the sufficient
statistics that need to be pre-computed for optimiza-
tion also collapse across the m individuals, signifi-
cantly reducing the computation time. The sum com-
ponent of the decomposed representation models the
sum data Y of size n x ¢ and X of size n x (p + 1)
obtained from the original data Y of size n x mq and
X of size n x (mp+r). This collapsed data means col-
lapsed covariance matrices Sy, of size ¢ X ¢, Sy, of size
(p+7)x (p+7), and Syw, of size ¢ x (p+ 7). The dif-
ference component of the decomposed representation
takes the difference data Y;; of size nm(m —1)/2 x ¢
and X;; of size nm(m —1)/2 x (p + r) derived from
Y and X for (i,j) pair of individuals in each group.
Although the effective sample size increases from n to
nm(m — 1)/2 due to the computation of pairwise dif-
ferences for m individuals per group, this is one time
computation to be completed prior to the optimiza-
tion, and during the optimization, we again only need
to maintain significantly smaller covariance matrices,
Sy, of size ¢ X ¢, Syx, of size ¢ x (p + 7). Sx, of size
(p+r)x(p+r).

Then, we extend the alternate Newton coordinate de-
scent method for the single-level model to fit our multi-
level model (McCarter and Kim) 2016). In each iter-
ation, we alternately update each of II, 2, A, and
2, while fixing the others. With A and €2 fixed, up-
dating IT and E simply becomes quadratic minimiza-
tion problems with L; regularization, which can be
solved efficiently with the coordinate descent method
for Lasso. To update A and €2, we apply Newton’s
method, where the Newton direction is found by min-
imizing the second-order approximation of the nega-
tive data log-likelihood with L; regularization via the
Lasso coordinate descent. For problems with large p
and ¢, where the covariance matrices do not fit in the
memory, we extend the alternating Newton block coor-
dinate descent method previously developed for single-
level conditional Gaussian graphical model optimiza-
tion to remove the memory requirement. We provide
the details of this optimization algorithm in Supple-
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mentary Information B.

3.4 Learning with missing individual-level
observations

In multi-level data, output observations may be avail-
able only at the group-level but not at the individual-
level. For example, average scores of certain subjects
across all students in a school may be available but
scores of individual students may not. In such cases,
we show estimating our multi-level model based on the
decomposition of the original model leads to signifi-
cant improvement in computation time, compared to
estimating the model based on the original represen-
tation. Below, we illustrate this for the case of group
size m = 2, though this generalizes to arbitrary m.

Theorem [2| below states that with missing individual-
level data, our multi-level model in Eq. (2)) with m = 2
collapses into another conditional Gaussian graphical
model.

Theorem 2. When data are available for individual
members of the group for a subset V.C {1,...,q} of
the output variables but only for the group-level sums
for the other output variables H ={1,...,q} =V, the
multi-level conditional Gaussian graphical model with
m = 2 collapses into the following conditional Gaus-

sian graphical model:
Pyl yY | xA,0) =1/Z(x)
T
Lyl | x| v g | ¥

cexp | — = 3 A | —x'O 3 , (3

p( 9 l yv ] l yv yv (3)
where A = CtTACt and ©T = CtTOT with
Ct representing the Moore-Penrose inverse of C =
c
CV
Lixm ® Igxg and C, = Lngxmq for m = 2, with only
the rows corresponding to the variables in y* and yV,

respectively. The proof is given in Supplementary In-
formation A.

. CH and CY are the submatrices of C; =

Theorem [2| suggests the optimization method devel-
oped for a single-level conditional Gaussian graphical
model could be used, after imputing the missing data
(Corollary 2, Supplementary Information A). How-
ever, this strategy, in addition to the two challenges
discussed in the previous section, poses another com-
putational challenge of evaluating the partition func-
tion Z(x) in Eq. that contains a log-determinant
and inverse of the collapsed network A = CtTACT.
Since the network is collapsed differently via different
C™ due to different sets of observed outputs V for each
group-level sample, evaluating Z(x) for each of the n
group-level samples in each iteration of optimization
would be prohibitively expensive.

The decomposed representation reduces this compu-
tational burden from collapsed mgq x mq matrix A to
smaller collapsed ¢ x ¢ matrix I'. This can be seen for
m = 2 by integrating out the missing individual-level
outputs in the decomposed representation:

piyE,yY|x A, ©) =/p(ys| xs; V, F)p(ya|xq; ¥, T)dy"
= byl V) [plyilxs . )iy,

We notice that the integral now applies only to the
difference component, with reduced cost of evaluating
the partition function with collapsed I for each sam-
ple. In particular, in the special case of diagonal T’
with [v1,...,7,] in the diagonal elements, the integral
above leads to

py I yYIx A, ©) = (2m) " V|12
cexp (— 1/2<ySTVyS +2x ' Fy, + szV_lFTXS))

-@m)~ 2 [T 1l
eV
cexp (— 1/2(yy Tyyy +2x5 Wy +x7 ¥y 1 ¥Tx,)),

where evaluating the determinant and inverse of col-
lapsed T' in partition function becomes trivial, elimi-
nating the challenges involved in the network that col-
lapses differently for each sample. Thus, when data
contain randomly missing individual-level data, learn-
ing the model based on the decomposed representation
is significantly more efficient than using the original
representation in Eq. . It is straightforward to
show that this result generalizes to m > 2.

4 EXPERIMENTS

4.1 Simulation Study

We compare the performance of our method, single-
level conditional Gaussian graphical models, and
multi-level MRCE on simulated data in terms of the
accuracy of graph structure recovery and prediction.
To simulate a dataset, we first generate two scale-free
networks of size ¢ = 50 for 2 and A. We draw edge
weights from uniform distribution Ula, b], where a and
b are set for each simulation scenario, and set signs
randomly to positive or negative. We then add values
drawn from U[1,4] to the diagonal elements of both
network matrices. Given € and A, we construct A
with group size m = 4 or m = 6, and then add a con-
stant to diagonals to make the entire matrix A positive
definite. For IT and =, we generate random sparse ma-
trices of a chosen density of non-zero elements, with
values drawn from Ule,d] and signs randomly set to
positive or negative. From IT and =, we then construct
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Figure 1: Comparison of methods on simulated data. Precision-recall curves for the recovery of (a) 2 + A, (b) ©, and

(c) A, (d) II, and (e) E. Top row for Case 1, middle row for Case 2, and bottom row for Case 3 with group size m = 6.

Table 1: Prediction Errors in Simulation Study

MCGGM | CGGM | MRCE
Case 1 0.242 0.258 0.294
Case 2 0.054 0.055 0.061
Case 3 0.411 0.604 1.067

the multi-level input-to-output mapping parameter ©.
We vary the edge strengths and sparsity levels of €2,
A, II, and E under each of the five scenarios as fol-
lows: Case 1 with UJ0.2,0.8] and with sparsity at 5%
for all parameters; Case 2 with U]0.8,1.2] for ©Q and
A and UJ0.2,0.6] for II and E, with sparsity at 5%
for all parameters; Case 3 with U]0.2,0.6] for ©Q and
A and U[0.8,1.2] for IT and E, with sparsity 5% for
all parameters; Case 4 with U[0.2,0.8] for all parame-
ters, with sparsity at 2% for 2 and 5% for the others;
and Case 5 with U[0.2,0.8] for all parameters, with
sparsity at 2% for A and 5% for the others.

We generate p = 500 individual-level input data and
r = 100 group-level input data as random binary ma-
trices. Given the parameters and input data, we simu-
late output data from the multi-level conditional Gaus-
sian graphical model based on Eq. . Each dataset
consists of n = 300 samples. We generate 30 datasets
under each scenario and report results averaged over
these replicates.

Out of 300 samples in each dataset, we use 240 samples

to train each model and evaluate its prediction errors
on the other 60 samples. During training, to select the
optimal regularization parameters, we use three-fold
cross validation for multi-level MRCE and 70%-30%
split for training and validation data for multi-level
and single-level conditional Gaussian graphical mod-
els. Since single-level conditional Gaussian graphical
models do not consider group structure, we treat the
group-level and individual-level observations as inde-
pendent samples, effectively increasing the sample size
per dataset to nm.

We compare the performance of the different meth-
ods on the recovery of true parameters under differ-
ent simulation scenarios with group size m = 6, using
precision-recall curves. For the models that estimate
only a single-level network, we compare their network
estimates to €2, A, and 2 + A. As can be seen in
Figure [, our method recovers network structures and
input-to-output mapping parameters at both individ-
ual and group level across the first three scenarios with
higher accuracy than the other methods. The results
from Cases 4 and 5 as well as the same set of five
scenarios but with clustered networks for € (Supple-
mentary Information Figures 4-6) are consistent with
those in Figure [I We also repeated all experiments
with group size m = 4, and the results were consistent
with those from m = 6.
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Figure 2: Comparison of computation time of the multi-
level model using the original and decomposed representa-
tions. The number of inputs was fixed at p = 10, 000.

We compare the performance of the methods on
predicting the outputs in the test set, using the
mean-squared error across all group and individuals
(Zn/ Zm/ (Ynm — ynm)2/(an)) for predicted ynm
from each method and observed y,.,,. Table [I| shows
that our method achieves lower prediction errors than
the other methods across all simulation scenarios.

To assess the advantage of using the decomposition
of our model in Theorem [1] for efficient optimization,
we compare the computation time of the optimiza-
tion methods based on the original representation and
based on the decomposition, assuming A is a diago-
nal matrix. As shown in Figure[2] as the problem size
increases, the optimization based on the decomposed
model is substantially more efficient.

4.2 Financial data

We apply our approach to the daily stock prices of
the S&P500 companies from 2013 to 2018 to learn the
multi-level model that can predict the stock prices in
the future using the prices in the past. We consider
the model with group size m = 4, where each group
member corresponds to the daily close, open, high,
and low prices, and use the daily closing prices of var-
ious futures, commodities, and foreign major indices
as the group-level inputs. From the S&P500, we ob-
tained data for 467 companies, after removing compa-
nies with duplicate listing as well as those that under-
went significant corporate actions or lacked data from
2013 to 2018. Among these, we selected the members
of the S&P100 for ¢ = 97 outputs. We considered
r = 45 group-level inputs composed of futures closing
prices for 25 various commodities, bonds, and curren-
cies and major indices of 20 large non-US economies.
The open-open prices series was used for European in-
dices because they close during the market hour in the
US. We considered the z-scored daily log-return for
each input and output variable.

Our task is to forecast the next day’s close, open, high,
and low prices of 97 companies, using the previous
day’s close, open, high, and low prices of 467 compa-

nies and closing prices of 45 group-level variables. Our
model is trained using the data from each full year (250
or 251 days) from 2013 to 2018, and tested on the first
100 days of the succeeding year. For 2018, the test
data was the first 74 days of 2019. The mean and stan-
dard deviation of training data were used to z-score
the respective test data. Both single-level conditional
Gaussian graphical model and multi-level MRCE re-
ceived nm stacked samples as in simulation studies.

Table 2: Prediction Error on S&P100 Data

MCGGM | CGGM | MRCE
2013-14 1.044 1.053 1.098
2014-15 1.131 1.122 1.167
2015-16 1.061 1.064 1.182
2016-17 0.578 0.584 0.718
2017-18 2.365 2.462 2.522
2018-19 0.817 0.832 0.880

Our method almost always achieves lower prediction
errors than the methods that do not account for group
structure (Table [2)). The high prediction errors across
different methods for year 2017-2018 can be explained
by the high volatility of early 2018. We also compare
the @2 and A in our estimated multi-level model ob-
tained from the training data in year 2018 with the
network recovered using the single-level model (Figure
3). We find that € recovers the network of very closely
related companies (such as LLY-PFE, FDX-UPS, V-
MA, F-GM, TGT-WMT, GD-LMT-RTN, etc) whose
daily stock fluctuations closely mirror each other and
whose financial performances are often used to fore-
cast each others’. These strong associations among re-
lated companies are not immediately apparent in the
hairball produced in the network estimate from the
single-level conditional Gaussian graphical models.

4.3 Genomics data

We apply single-level and multi-level conditional Gaus-
sian graphical models to the genetic variant and ex-
pression data from the Genotype-Tissue Expression
(GTEx) project (GTEx Consortiuml| [2017) to learn
the gene network influenced by cis-acting and trans-
acting variants. In diploid organisms with two sets
of chromosomes of maternal and paternal origins, cis-
acting variants (individual-level inputs) influence the
expression of genes that reside on the same chromo-
some as the given variant, whereas trans-acting vari-
ants (group-level inputs) influence the expression of
genes on both chromosomes (Wittkopp et al., [2004;
McManus et al., [2010).

We analyze the expression data for 7,650 genes from
cultured fibroblasts, and genotype data for 374,334 ge-
netic variants in chromosome 1 from 483 donors. One
of the challenges in this problem is that with the ex-
pression data, maternal and paternal expression mea-
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Networks recovered from 2018 financial data. (a) € from multi-level model, (b) A from multi-level model,

Figure 3:

()

and (¢) A from single-level conditional Gaussian graphical model. The node colors represent sectors: red for industrial;
orange for health care; yellow for information technology; green for consumer discretionary; teal for financial; blue for

consumer staples; and purple for energy.

surements may be missing for some genes in some sam-
ples and only the total expression levels may be avail-
able, because the two copies of genes with identical se-
quences are indistinguishable. Approximately 40% of
genes have missing maternal and paternal expression
values in this dataset. We use 350 samples as the train-
ing data and use the remaining 133 to select the reg-
ularization parameters. For the single-level model, we
use the total expression values and genotypes summed
across maternal and paternal chromosomes.

The runtimes of both methods vary across 5 to 9 hours
on 16-core and 32GB-RAM machines, indicating that
our multi-level model does not take significantly longer
time than the single-level counterpart, because of the
decomposition in Theorem [I] for efficient optimization.

Unlike the single-level model, our method is able to
distinguish between cis-acting and trans-acting vari-
ants, which leads to the following sets of novel find-
ings that can be made only by our approach. First,
our approach identifies potential cis-acting variants
(pink in Supplementary Information Figure 7), which
are distant from the genes they regulate and have not
been previously annotated. Second, in our estimated
multi-level model, the average absolute effect sizes of
cis-acting variants was 0.19£0.35, while that of tran-
acting variants was 0.0420.11. This corresponds to the
widely held view that the effects of cis-variants tend
to be stronger and localized, while the effects of trans-
variants spread small effects over a large number of
genes. Third, compared to trans-acting variants, more
cis-acting variants were identified as variants that are
thought to act mainly through cis-regulatory mech-
anisms, such as promoter and UTR variants (Table
3). Finally, many long non-coding RNAs (IncRNA)
are thought to regulate genes in trans, and we found
many of our potential trans-acting variants residing in

high-confidence IncRNA regions (Volders et al.| 2018)).

Table 3: The number of cis-acting and trans-acting
variants with functional annotation

cis | trans
unique genomic variants 252 187
enhancer 1 2
promoter 18 4
open chromatin region 17 4
promoter flanking region 15 5
CTCF binding site 2 2
TF binding site 9 0
3 prime UTR variant 11 1
5 prime UTR variant 11 0
intron variant 121 89
+ IncRNA region 90 63
missense variant 1 0
non coding transcript exon variant 24 0
synonymous variant 6 4

5 CONCLUSION

In this paper, we proposed sparse multi-level condi-
tional Gaussian graphical models for recovering the
underlying output network structure and input fea-
tures influencing outputs given multi-level grouped
data. We introduced an alternative decomposed rep-
resentation of the model that enables an efficient pa-
rameter estimation for large datasets.
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