
Stochastic Variance-Reduced Algorithms for PCA
with Arbitrary Mini-Batch Sizes

Cheolmin Kim Diego Klabjan
Northwestern University Northwestern University

Abstract

We present two stochastic variance-reduced
PCA algorithms and their convergence anal-
yses. By deriving explicit forms of step size,
epoch length and batch size to ensure the op-
timal runtime, we show that the proposed al-
gorithms can attain the optimal runtime with
any batch sizes. Also, we establish global con-
vergence of the algorithms based on a novel
approach, which studies the optimality gap as
a ratio of two expectation terms. The frame-
work in our analysis is general and can be used
to analyze other stochastic variance-reduced
PCA algorithms and improve their analyses.
Moreover, we introduce practical implementa-
tions of the algorithms which do not require
hyper-parameters. The experimental results
show that the proposed methodsd outperform
other stochastic variance-reduced PCA algo-
rithms regardless of the batch size.

1 Introduction

Principal component analysis (PCA) (Jolliffe, 2011)
is a fundamental tool for dimensionality reduction in
machine learning and statistics. Given a data matrix
A = [a1a2 . . . an] ∈ Rd×n consisting of n data vectors
a1, a2, . . . , an in Rd, PCA finds a direction w onto which
the projections of the data vectors have the largest vari-
ance. Assuming that the data vectors are standardized
with a mean of zero and standard deviation of one, the
PCA problem can be formulated as

maximize f(w) =
1

2n

n∑
i=1

(aTi w)2 =
1

2
wTCw

subject to ‖w‖2 = 1

(1)

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

where C = 1
nAA

T ∈ Rd×d is the covariance matrix
of data matrix A. Since the largest eigenvector u1 of
C maximizes f(w), (1) can be solved by the singular
value decomposition (SVD) of A. However, the runtime
of SVD is O(min{nd2, n2d}), which can be expensive
in a large-scale setting. An alternative way to solve
(1) is to use power iteration (Golub and Van Loan,
2012) which repeatedly applies wt+1 = Cwt/‖Cwt‖
at each iteration. The sequence of iterates {wt} gen-
erated by power iteration is guaranteed to obtain an
ε-optimal solution after O

(
1
∆ log 1

ε

)
iterations where

λ1 > λ2 ≥ . . . ≥ λd ≥ 0 are the eigenvalues of C and
∆ = 1− λ2/λ1. Since each iteration involves multiply-
ing vector wt with the matrix C, the runtime becomes
O
(
nd 1

∆ log 1
ε

)
. When n and d are both large, the run-

time of power iteration is better than that of SVD.
Nonetheless, it still largely depends on n and can be
prohibitive when ∆ is small.

In order to reduce the dependence on ∆ or n, many
variants have been developed. To improve the depen-
dence on ∆, Xu et al. (2018) propose power iteration
with momentum (Power+M) based on the momentum
idea of Polyak (1964). With the optimal choice of the
momentum parameter β = λ2

2/4, the total runtime
reduces to O

(
nd 1√

∆
log 1

ε

)
. Also, a stochastic algorithm

utilizing a stochastic gradient rather than a full gradi-
ent Cwt is introduced in Oja (1982). Since it requires
just one data vector at a time, the computational cost
per iteration is significantly reduced. However, due
to the variance of stochastic gradients, a sequence of
diminishing step sizes needs to be adopted, making its
progress slow near the optimum.

Built on the recent stochastic variance-reduced gradient
(SVRG) technique (Johnson and Zhang, 2013), Shamir
(2015, 2016) propose a stochastic variance-reduced ver-
sion of Oja’s algorithm (VR-PCA) and its extension for
finding k ≥ 1 principal components. Utilizing stochas-
tic variance-reduced gradients, VR-PCA works with
a constant step size and converges at an exponential
rate, reducing the total runtime to O(d(n+ 1

∆2)log 1
ε).

The analysis of VR-PCA considers a batch of size one.
While this implies that it works with any batch size,

Stochastic Variance-Reduced Algorithms for PCA with Arbitrary Mini-Batch Sizes

Table 1: Comparison of stochastic variance-reduced methods for PCA and their convergence analyses. Types
of convergence and complexity results are summarized. “Local” means that there is a restriction on the angle
between an initial iterate and the first eigenvector u1 and “global” implies no such restriction. For VR Power
and VR HB Power, µ ≥ 0 is a parameter that controls the progress of the algorithms through step size η = ∆µ

depending on batch size.

Algorithm Convergence Iteration Batch Size Total Runtime Reference

VR-PCA Local O
(

1
∆2 log 1

ε

)
O(1) O

(
d
(
n + 1

∆2

)
log 1

ε

)
(Shamir, 2015)

VR Power+M Local O
(

1

∆1/2 log 1
ε

)
O

(√
d

∆3/2

)
O

(
d
(
n +

√
d

∆2

)
log 1

ε

)
(Xu et al., 2018)

Fast PCA Global O
(

1
∆2 poly

(
log 1

ε

))
O(1) O

(
d
(
n + 1

∆2

)
poly

(
log 1

ε

))
(Garber and Hazan, 2015)

VR Power Global O
(

1
∆1+µ log 1

ε

)
O

(
1

∆1−µ

)
O

(
d
(
n + 1

∆2

)
log 1

ε

)
[This Paper]

VR HB Power Global O
(

1

∆1/2+µ log 1
ε

)
O

(
1

∆3/2−µ

)
O

(
d
(
n + 1

∆2

)
log 1

ε

)
[This Paper]

conditions for the step size and the epoch size are not
precisely given, making it hard to attain the theoreti-
cally guaranteed performance in practice.

A stochastic variance-reduced version of Power+M (VR
Power+M) is introduced by Xu et al. (2018). Due to the
momentum term, the iteration complexity is improved

to O
(

1
∆1/2 log 1

ε

)
. However, a batch size of O

(√
d

∆3/2

)
is

required to achieve such iteration complexity, leading

to the total runtime of O
(
d
(
n+

√
d

∆2

)
log 1

ε

)
. This run-

time is worse than that of VR-PCA due to the extra
dependency on

√
d. Moreover, if the batch size is not

sufficiently large, VR Power+M may diverge, which
makes it hard to use.

On other other hand, Garber and Hazan (2015) reduce
the PCA problem into a sequence of convex optimiza-
tion problems. Each convex optimization problem has
the form of the least square problem and amounts to one
step of inverse power iteration (Golub and Van Loan,
2012). Due to the finite sum structure of the objective
function, the SVRG algorithm (Johnson and Zhang,
2013) can be used to solve the least square problem.
However, solving this strongly convex optimization
problem can be as hard as the original PCA problem
since the objective function is (λ1 − λ2)-stronly con-
vex and (2λ1−λ2−λd)-smooth in the accurate regime.
Through inexactly solving these problems, an ε-optimal
solution can be obtained after a poly-logarithmic num-
ber of iterations.

The shifted-and-inverted approach is also introduced
for the leading eigenvector problem (Garber et al., 2016)
and numerous solvers such as coordinate-descent (Wang
et al., 2018), SVRG (Garber et al., 2016), accelerated
gradient descent, accelerated SVRG (Allen-Zhu and
Li, 2016) and Riemannian gradient descent (Xu, 2018)
have been developed to solve the least square problem.
Other works on power iteration include the noisy (Hardt
and Price, 2014) and coordinate-wise (Lei et al., 2016)
power methods. The noisy power method considers the
power method in a noise setting, which Balcan et al.
(2016) extend to provide an improved gap-dependency

analysis. Moreover, power iteration has been analyzed
for incremental or online PCA in many works (Allen-
Zhu and Li, 2017; Li et al., 2018; Balsubramani et al.,
2013; Arora et al., 2012; Boutsidis et al., 2015; Jain
et al., 2016; Mitliagkas et al., 2013).

In this paper, we introduce two mini-batch stochas-
tic variance-reduced PCA algorithms (VR Power, VR
HB Power) and provide their convergence analyses.
They are mini-batch stochastic variance-reduced vari-
ants of power iteration (Golub and Van Loan, 2012)
and power with momentum method (Xu et al., 2018).
While VR-PCA (Shamir, 2015) takes a data vector
at a time, VR Power works with any batch sizes and
the accompanying analysis reveals that whatever the
batch size is, VR Power attains the optimal runtime by
appropriately choosing the step size and epoch length.
Explicit conditions of the step size, epoch length and
batch size to ensure the optimal runtime of VR Power
are derived. On the other hand, VR HB Power is an
enhanced algorithm of VR Power+M. By adding the
step size, VR HB Power works with any batch sizes
while VR Power+M can fail unless the batch size is suf-
ficiently large. For any batch sizes, VR HB Power can
achieve the optimal runtime if we appropriately choose
the step size, epoch length and momentum parameter.
We derive explicit expressions for theses parameters.
Our analysis improves the analysis of VR Power+M
by removing the dependency on

√
d for the batch size.

For the comparison of stochastic variance-reduced PCA
algorithms and their convergence analyses see Table 1.

In the convergence analyses, we introduce a novel frame-
work of analyzing stochastic variance-reduced algo-
rithms for PCA. For an inner-loop iterate wt, we decom-
pose E[(uTkwt)

2] with uk an eigenvector with respect to
λk into two parts where the first one is the expectation
term and the second one is the variance term. To ob-
tain a tight bound for the variance term, we analyze its
growth over an epoch rather than focusing on iteration-
by-iteration behavior. Based on the Binomial expan-
sion of matrices, we come up with a compact bound

Cheolmin Kim, Diego Klabjan

of the variance term, which is used to establish an up-
per bound of (E[‖wt‖2] − E[(uT1 wt)

2])/E[(uT1 wt)
2] =∑d

k=2E[(uTkwt)
2]/E[(uT1 wt)

2] and derive conditions for
the step size, epoch length and batch size to ensure its
sufficient decrease.

The concept of representing the optimality gap as the
ratio of two expectations has been never used for analyz-
ing stochastic PCA algorithms. However, it results in
much simpler convergence statements than probabilistic
statements in Shamir (2015) and Xu et al. (2018). Note
that we are able to obtain probabilistic statements from
the expectation bounds using the Chebyshev inequal-
ity. Using the expectation bounds, we can establish
global convergence of stochastic PCA algorithms. Al-
though stochastic PCA algorithms have been observed
to work well with random initialization (Shamir, 2015),
an initial condition such as |uT1 w̃0| ≥ 1/2 is required
in previous probabilistic analyses. In our framework,
such condition is not necessary and the rate of conver-
gence does not depend on how far an iterate is from
u1 but is kept the same across iterations, as in the
case of deterministic power iteration. The framework
introduced in this work is not specific to the proposed
algorithms; it can be applied to analyze other stochastic
variance-reduced PCA algorithms such as VR-PCA or
VR Power+M, deriving expectation bounds for them
and resolving their initialization issues.

Our work has the following contributions.

1. We introduce two mini-batch stochastic variance-
reduced PCA algorithms. Regardless of the batch
size, our algorithms can attain the optimal runtime
by appropriately choosing algorithm parameters.
Explicit expressions for these parameters are pro-
vided.

2. We provide novel convergence analyses for the al-
gorithms where we establish global convergence by
deriving a bound for the ratio of two expectation
terms. The framework in our convergence anal-
yses is general and can be used to analyze other
stochastic variance-reduced PCA algorithms. To
this end, we are the first to establish convergence of
VR-PCA and VR Power+M for any initial vector
and in expectation.

3. We present practical implementations of the al-
gorithms and report numerical experiments. The
experimental results on real-world datasets show
that our algorithms outperform other stochastic
variance-reduced algorithms for any batch size.

The paper is organized as follows. We introduce the
algorithms in Section 2 and the convergence analyses
in Section 3. Some practical considerations regarding

the implementations of the algorithms are discussed in
Section 4 and the experimental results are followed in
Section 5.

2 Stochastic Variance-Reduced
Algorithms for PCA

We consider two mini-batch stochastic variance-reduced
algorithms for PCA. The first one is a mini-batch ver-
sion of VR-PCA (Shamir, 2015) and the second one is
an enhanced version of VR Power+M (Xu et al., 2018)
with a step size incorporated. For eigenpairs (λk, uk)
of C = 1

n

∑n
i=1 aia

T
i , we assume that the eigenvalues

λ1, λ2, . . . , λd satisfy λ1 > λ2 ≥ . . . ≥ λd ≥ 0 and
the eigenvectors u1, u2, . . . , ud form an orthonormal
basis. Since a symmetric matrix is orthogonally diago-
nalizable, we can assume that such eigenvectors exist
without loss of generality. We assume that all norms
are L2 for vectors and spectral for matrices.

Variance reduction algorithms have an outer loop and
an inner loop. They periodically compute exact gradi-
ents at each outer iteration and use it in inner iterations
to reduce the variance of stochastic gradients. Let w̃s
and wt denote an outer-loop and inner-loop iterate,
respectively. To get a stochastic variance-reduced gra-
dient of an inner loop iterate wt, we first decompose
the inner loop iterate wt it into two parts as

wt =
(w̃Ts wt)

‖w̃s‖2
w̃s +

(
I − w̃sw̃

T
s

‖w̃s‖2

)
wt

using the outer loop iterate w̃s. In the above decompo-
sition, the former term represents the projection of wt
on w̃s while the latter term represents the remaining
vector. Utilizing the exact gradient g̃s at w̃s, the exact
gradient at the first term can be computed as

∇f
(

(w̃Ts wt)

‖w̃s‖2
w̃s

)
=

(w̃Ts wt)

‖w̃s‖2
Cw̃s =

(w̃Ts wt)

‖w̃s‖2
g̃s.

On the other hand, a stochastic sample St is used to
compute a stochastic gradient at the second term as

1

|St|
∑
l∈St

ala
T
l

(
I − w̃sw̃

T
s

‖w̃s‖2

)
wt.

This results in the following stochastic variance-reduced
gradient gt at wt as

gt =
(w̃Ts wt)

‖w̃s‖2
g̃s +

1

|St|
∑
l∈St

ala
T
l

(
I − w̃sw̃

T
s

‖w̃s‖2

)
wt. (2)

2.1 VR Power

Using the stochastic variance-reduced gradient gt, we
obtain a stochastic variance reduced version of Power

Stochastic Variance-Reduced Algorithms for PCA with Arbitrary Mini-Batch Sizes

iteration as

wt+1 ← (1− η)wt + ηgt. (3)

This update rule has a similar form as the one in VR-
PCA, which repeats

wt+1 ← wt + η̄
(
ait(a

T
itwt − a

T
itw̃s) + g̃s

)
. (4)

Note that (3) generalizes (4) in the following two senses.
First, we can obtain an update rule of (4) by letting
η = (1 + η̄)/η̄ in (3). Second, with the choice of η = 1,
we can recover deterministic power iteration from (3)
while (4) does not. Using update rule (3), we have VR
Power exhibited in Algorithm 1.

Algorithm 1 VR Power

Parameters: step size η, mini-batch size |S|, epoch
length m
Input: data vectors ai, i = 1, . . . , n
randomly initialize outer iterate w̃0

for s = 0, 1, . . . do
g̃ ← Cw̃s
w0 ← w̃s
w1 ← (1− η)w0 + ηg̃
for t = 1, 2, . . . ,m− 1 do

sample a mini-batch St ⊂ {1, · · · , n} of size |S|
uniformly at random

gt ←
1

|St|
∑
l∈St

ala
T
l

(
I − w0w

T
0

‖w0‖2

)
wt+

(wTt w0)

‖w0‖2
g̃

wt+1 ← (1− η)wt + ηgt
end for
w̃s+1 ← wm

end for

When per sample cost is as expensive as per iteration
cost, VR Power is an efficient algorithm since it attains
the optimal sample complexity. However, if per sample
cost is cheap, it might not be effective since its iteration
complexity does not improve beyond O(1

∆ log(1
ε)). For

this reason, we introduce VR HB Power which works
better in the latter setting.

2.2 VR HB Power

Using gt, we obtain a stochastic variance-reduced heavy
ball power iteration as

wt+1 ← 2
(
(1− η)wt + ηgt

)
− βwt−1 (5)

where η ∈ (0, 1] is the step size and β is the momentum
parameter. Note that we can recover the deterministic
heavy ball power iteration from (5) when the step size η
is set to 1 and the exact gradient gt = Cwt is used. The
mechanism of controlling the progress of the algorithm
using the step size η is not present in VR Power+M
(Xu et al., 2018). As a result, it fails to converge unless

the mini-batch size |S| is sufficiently large. To the
contrary, our algorithm works with any mini-batch size
|S| due to the presence of the step size η. By selecting
an appropriate value of η depending on the size of |S|
and m, we can always ensure that the variance terms do
not grow faster than expectation terms. Having update
rule (5), VR HB Power is described in Algorithm 2.

Algorithm 2 VR HB Power

Parameters: step size η, momentum β, mini-batch
size |S|, epoch length m
Input: data vectors ai, i = 1, . . . , n
randomly initialize outer iterate w̃0

for s = 0, 1, . . . do
g̃ ← Cw̃s
w0 ← w̃s
w1 ← (1− η)w0 + ηg̃
for t = 1, 2, . . . ,m− 1 do

sample a mini-batch St ⊂ {1, · · · , n} of size |S|
uniformly at random

gt ←
1

|St|
∑
l∈St

ala
T
l

(
I − w0w

T
0

‖w0‖2

)
wt+

(wTt w0)

‖w0‖2
g̃

wt+1 ← 2
(
(1− η)wt + ηgt

)
− βwt−1

end for
w̃s+1 ← wm

end for

3 Convergence Analyses

In this section, we provide convergence analyses for
VR Power and VR HB Power. Before presenting the
convergence analyses, we first introduce some notation.

3.1 Notation

Let Ct and P be the sample covariance matrix at in-
ner iteration t and the projection matrix to the space
orthogonal to the outer iterate w0 = w̃s as

Ct =
1

|St|
∑
l∈St

ala
T
l , P = I − w0w

T
0

‖w0‖2
. (6)

Using (6), we can write gt as gt = ηCwt+η(Ct−C)Pwt.
Next, we characterize the variance of sample covariance
matrix Ct as

K = E[‖(Ct − C)2‖], σ2 = E[‖aitaTit − C‖
2].

Then, for Mk = E[(Ct − C)uku
T
k (Ct − C)], we have

‖Mk‖ ≤ K =
σ2

|S|
. (7)

For the analysis of VR HB Power, we define

αk(η) = 4(1− η + ηλk)2, β(η) = (1− η + ηλ2)2. (8)

Cheolmin Kim, Diego Klabjan

Also, we let pt(α, β) and qt(α, β) be the Chebyshev
polynomials of the first and the second kind (Mason
and Handscomb, 2002) respectively such that

pt(α, β) = (α− β)pt−1(α, β)− β(α− β)pt−2(α, β)

+ β3pt−3(α, β), (9)

qt(α, β) = (α− β)qt−1(α, β)− β(α− β)qt−2(α, β)

+ β3qt−3(α, β) (10)

for t ≥ 3 and

p0(α, β) = 1, p1(α, β) =
α

4
, p2(α, β) =

(α
2
− β

)2

,

(11)

q0(α, β) = 1, q1(α, β) = α, q2(α, β) = (α− β)2. (12)

Since the first eigenvector u1 of the covariance matrix
C is an optimal solution to (1), the optimality gap is

measured as
∑d
k=2(uTkwt)

2/(uT1 wt)
2, representing how

closely wt is aligned with u1. Note that this ratio is zero
if wt = u1. Our analysis studies it in expectation, pro-
viding a bound for θt =

∑d
k=2E[(uTkwt)

2]/E[(uT1 wt)
2]

given fixed s and θ̃s =
∑d
k=2E[(uTk w̃s)

2]/E[(uT1 w̃s)
2]

for an inner loop iterate wt and an outer loop iterate
w̃s, respectively.

3.2 VR Power

In Lemmas 3.1, 3.2 and 3.3, we consider a single epoch,
which corresponds to one inner loop iteration starting
with w0.

Lemma 3.1. For any η ∈ (0, 1], 1 ≤ k ≤ d and
1 ≤ t ≤ m, we have

E[(uTkwt)
2] = (1− η + ηλk)2tE[(uTkw0)2]

+η2
t−1∑
i=1

(1− η + ηλk)2(t−i−1)E[wTi PMkPwi].

Lemma 3.1 decomposes E[(uTkwt)
2] into two parts. The

first part represents the expectation term which grows
at a rate of (1− η + ηλk)2 and the second part is the
variance term which increases as wt strides away from
w0 as captured by E[wTt PMkPwt].

Lemma 3.2. For any η ∈ (0, 1], 1 ≤ k ≤ d and
1 ≤ t ≤ m, we have

d∑
k=2

E[wTt PMkPwt] ≤ 2K ·
d∑
k=2

E[(uTkw0)2]

·
(
(1− η + ηλ1)2 + η2K

)t
.

Moreover, if 0 <
η2Km

(1− η + ηλ1)2
< 1, then we have

θm ≤

[(
1− η + ηλ2

1− η + ηλ1

)2m

+
4η2Km

(1− η + ηλ1)2

]
· θ0.

Lemma 3.2 provides a bound for
∑d
k=2E[wTt PMkPwt],

which grows at a rate not greater than (1− η+ ηλ1)2 +
η2K. Using this bound and assuming some condition
on η, K, and m, a bound on θm is derived as a function
of θ0, η, m, and K. In Lemma 3.3, we present explicit
conditions for η, m, and |S| to ensure a sufficient de-
crease of θm.

Lemma 3.3. Let η = ∆µ for some µ ≥ 0. If m and
|S| satisfy

m =

⌈
(1− η + ηλ1) log 2

2ηλ1∆

⌉
(13)

and

|S| ≥ 16η2σ2m

(1− η + ηλ1)2
, (14)

then we have θm ≤ 3/4 · θ0.

For any µ ≥ 0 such that η = ∆µ, Lemma 3.3 provides
explicit values of m and |S| to ensure a sufficient de-
crease of θm. In the analysis of VR-PCA, exact values
of η and m to ensure the optimal runtime have not been
provided. Instead, only the orders of η and m have
been provided such that η = c1∆ and m = c2/∆

2, mak-
ing it hard to obtain the optimal runtime in practice.
Contrary to it, our analysis provides explicit expres-
sions for m and |S|, being more practical. Moreover,
since the term on the right-hand side of (14) goes to
zero as µ increases, it can be also stated that for any
|S| ≥ 1, there exists some µ ≥ 0 and thus η = ∆µ

and m (see (14)) such that θm ≤ 3/4 · θ0 holds. This
implies that VR Power can always attain a sufficient
decrease of θm no matter what |S| is used. We next
give the main result.

Theorem 3.4. Suppose that an initial vector w̃0 satis-
fies uT1 w̃0 6= 0 and let θ̃0 = (1− (uT1 w̃0)2)/(uT1 w̃0)2 ≥ ε
for some ε > 0. If η = ∆µ and m and |S| satisfy (13)
and (14), after τ = dlog(θ̃0/ε)/ log(4/3)e epochs of VR
Power, we have θ̃τ ≤ ε.

Theorem 3.4 present a convergence result for τ epochs.
Note that our result requires only a trivial assumption
on θ̃0 and thus establishes global convergence. Also,
since τ = O(log(1

ε)), only a logarithmic number of inner
loops is needed to be performed to obtain ε-accuracy.

3.3 VR HB Power

The following Lemmas 3.5, 3.6 and 3.7 are counterparts
of Lemmas 3.1, 3.2 and 3.3 for VR HB Power. For
the momentum parameter β, we let β = β(η) which
is defined in (8). As in the analysis of VR Power, we
first consider a single epoch with an initial inner loop
iterate w0.

Stochastic Variance-Reduced Algorithms for PCA with Arbitrary Mini-Batch Sizes

Lemma 3.5. For any η ∈ (0, 1], 1 ≤ k ≤ d and
1 ≤ t ≤ m, we have

E[(uTkwt)
2] = pt(αk(η), β(η))E[(uTkw0)2]

+ 4η2
t−1∑
r=1

qt−r−1(αk(η), β(η))E[wTr PMkPwr].

Lemma 3.5 breaks E[(uTkwt)
2] into the sum of expec-

tation part and variance part. While the expectation
term is a function of the Chebyshev polynomial of
the first kind, the variance part is a function of the
Chebyshev polynomials of the second kind. That being
said, the variance term grows faster and thus we need
a careful analysis for it.

Lemma 3.6. For any η ∈ (0, 1], 1 ≤ k ≤ d, and
1 ≤ t ≤ m, we have

d∑
k=2

E[wTt PMkPwt] ≤ 4K ·
(

1 +
4η2K

α1(η)− 4β(η)

)t−1

·

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2t

·
d∑
k=2

E[(uTkw0)2].

Moreover, if 0 <
4η2Km

α1(η)− 4β(η)
< 1, then we have

θm ≤
(
pm(α2(η), β(η))

pm(α1(η), β(η))
+

128η2Km

α1(η)− 4β(η)

)
· θ0.

Lemma 3.6 provides a bound for
∑d
k=2E[wTt PMkPwt].

Note that it depends on ∆ and blows up as ∆ goes to
zero due to the term involving 1/(α1(η)− 4β(η)). Due
to this dependency, VR HB Power tends to require a
larger batch size than VR Power given the same values
of η and m. Lemma 3.6 also establishes a bound for θm
as a function of θ0, η, m and K under some assumption.

Lemma 3.7. For some µ ≥ 0, let η = ∆µ and

m =

⌈(
1− η + ηλ1

ηλ1∆ +
√
ηλ1∆(2(1− η) + η(λ1 + λ2))

+

√
ηλ1∆(2(1− η) + η(λ1 + λ2))

ηλ1∆ +
√
ηλ1∆(2(1− η) + η(λ1 + λ2))

)
log 8

2

⌉
(15)

and

|S| ≥ 128ησ2m

λ1∆ [2(1− η) + η(λ1 + λ2)]
. (16)

Then, we have θm ≤ 3/4 · θ0.

Lemma 3.7 provides explicit conditions for m and |S|
to ensure a sufficient decrease of θm. Note that when
µ = 0, we have |S| ≥ O(1

∆3/2), which improves the
analysis of VR Power+M in Xu et al. (2018) by re-
moving the dependency on

√
d. Also, for any |S| ≥ 1,

there exists some η and m satisfying the conditions in
Lemma 3.7. This implies that VR HB Power works
with any batch size while VR Power+M does not. The
overall convergence is established next.

Theorem 3.8. Suppose that an initial vector w̃0 satis-
fies uT1 w̃0 6= 0 and let θ̃0 = (1− (uT1 w̃0)2)/(uT1 w̃0)2 ≥ ε
for some ε > 0. If η = ∆µ and m and |S| satisfy (15)
and (16), after τ = dlog(θ̃0/ε)/ log(4/3)e epochs of VR
HB Power, we have θ̃τ ≤ ε.

The global convergence result in Theorem 3.8 is based
on the single epoch result in Lemma 3.7. Since τ =
O(log(1

ε)), the iteration complexity of VR HB Power
is τm = O(1

∆1/2+µ/2 log(1
ε)). On the other hand, from

|S| = O(1
∆3/2−µ/2), the sample complexity amounts to

O((n+ 1
∆2) log(1

ε)). Note that VR HB Power has the
same sample complexity as VR Power but may have
small iteration complexity. Therefore, if per sample
cost is cheaper than per iteration cost, VR HB Power
can be more efficient than VR Power.

4 Practical Considerations

In this section, we discuss some practical aspects im-
plementing the proposed algorithms. First, to ensure
that the algorithms are numerically stable, we con-
sider normalizations as introduced in Shamir (2015)
and Xu et al. (2018). After updating wt+1, we nor-
malize wt+1 as wt+1 ← wt+1/‖wt+1‖2 in VR Power
and update wt and wt+1 as wt ← wt/‖wt+1‖2 and
wt+1 ← wt+1/‖wt+1‖2 in VR HB Power. Since these
scaling schemes do not impact the sample paths of
wt/‖wt‖, we can obtain the same results with numeri-
cal stability.

Another practical issue with the implementations of
VR Power and VR HB Power is to estimate λ1 and λ2.
As appearing in Lemma 3.3 and Lemma 3.7, accurate
values of λ1 and λ2 are essential to determine the values
of η, m, and β (for VR HB Power). In the experiments,
the mini-batch size |S| is given as some percentage of
n, so no estimation is required for |S|. In order to
estimate λ1 and λ2 at a regular interval (at the start
of each inner-loop), we use the exact gradients of two
consecutive outer-loop iterates w̃s−1 and w̃s. Since we
expect that w̃s approaches u1 as the iterations advance,
using the Rayleigh quotient, we estimate λ1 as

λ̂1 =
(w̃s)

TC(w̃s)

(w̃s)T w̃s
. (17)

To estimate λ2 in the same way, we need an estimate
of u2. In Power iteration, an iterate first approaches
the subspace spanned by u1 and u2 before converging
to u1. That being said, after a number of iterations,
we can approximate it by a linear combination of u1

Cheolmin Kim, Diego Klabjan

and u2. Based on this observation, we estimate u2 as

û2 = w̃s−1 − (w̃Ts−1w̃s)w̃s. (18)

The idea of the above estimation is to project w̃s−1 to
the space orthogonal to w̃s. If w̃s ≈ u1 and w̃s−1 ≈
α1u1 + α2u2 for some α1, α2(6= 0), we have û2 ≈ u2.
Using the Rayleigh quotient of û2, we estimate λ2 as

λ̂2 =
w̃Ts−1Cw̃s−1 − 2θsw̃

T
s Cw̃s−1 + θ2

sw̃
T
s Cw̃s

1− θ2
s

(19)

where θs = w̃Ts−1w̃s. While two matrix-vector multipli-
cations, Cw̃s−1 and Cw̃s, are involved in computing
(17) and (19), they incur no extra computation since
they are the exact gradients of w̃s−1 and w̃s, which are
computed regardless of the estimation. As a result, we
can obtain λ̂1 and λ̂2 by only computing some inner
products. For initial estimation of λ̂1 and λ̂2, we run
Power iteration five times and use the last two iter-
ates. Note that the exact gradient of the last iterate
is computed at the start of the very first outer-loop
iteration.

Given |S| and estimates of λ1 and λ2, we use bisection
search to find η ∈ (0, 1] such that the terms on the
right-hand sides of (14) and (16) are almost equal to
|S|. After η is found, we use (13) and (15) to determine
m.

5 Numerical Experiments

In this section, we test the performance of VR Power
and VR HB Power with that of (i) VR-PCA (Shamir,
2015), (ii) VR Power+M (Xu et al., 2018) and (iii) Fast
PCA (Garber and Hazan, 2015) for finding the first
eigenvector u1 of the covariance matrix C constructed
by data vectors ai, i = 1, . . . , n from real world datasets.
Note that all present stochastic variance-reduced PCA
algorithms are compared in this experiment.

5.1 Datasets

The datasets include ijcnn (Prokhorov, 2001), cover-
type (Blackard and Dean, 1999), YearPredictionMSD
(Bertin-Mahieux et al., 2011) and MNIST (LeCun et al.,
1998) as summarized in Tabel 2. All of them are ob-
tained either from the UCI repository (Dheeru and
Karra Taniskidou, 2017) or the LIBSVM library (Chang
and Lin, 2011). They are carefully chosen to incorpo-
rate a variety of datasets in terms of size and eigen-gap.
The first three datasets are standardized with a mean
of zero and standard deviation of one while the last
one is scaled to the range between 0 and 1 to preserve
its sparsity.

Table 2: A summary of datasets

dataset n d ∆

icjnn(test) 91,701 22 0.0079
cov 581,012 54 0.2106
MSD 463,715 90 0.3224
MNIST 70,000 764 0.8851

5.2 Settings

In order to report a comprehensive comparison of the
algorithms, we consider two settings for selecting hyper-
parameters. In the first setting, we use hyper-parameter
tuning. Specifically, we use a grid search to find the
best values of η, m and |S| = ρ% of each algorithm and
dataset where η ∈ {0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0},
m ∈ {25, 50, 100, 200} and ρ ∈ {1, 2, 5, 10}.

In the second setting, we use the following theoretically
derived or recommended hyper-parameter values.

• VR-PCA: η =
√
n/
∑n
i=1 ‖ai‖2, m = n, |S| = 1.

• VR Power+M: β = λ2
2/4, σ2 =

∑n
i=1 ‖ai‖2/n,

|S| = λ2 log 16√
λ2

1 − λ2
2

, T =
512 log 16λ2σ

2
√
d√

λ2
1 − λ2

2

.

• Fast PCA: δ = λ1 − λ2. We only consider the
accurate regime. In order to solve each problem,
we use SVRG (Johnson and Zhang, 2013) with
ε̃ = 10−3,

η =
λ1 − λ2

7(2λ1 + λ2)2
, m =

⌈
1

2η2(2λ1 + λ2)2

⌉
.

• VR Power, VR HB Power: |S| = ρ% · n for ρ ∈
{1, 2} and σ2 =

∑n
i=1 ‖ai‖2/n. For η and m, we

use bisection search explained in Section 4. Also,
the scaling schemes in Section 4 are used to ensure
numerical stability. The exact values of λ1 and λ2

are used to find η and m.

• PF VR Power, PF VR HB Power: As opposed to
VR Power and VR HB Power, adaptive estimates
of λ̂1 and λ̂2 obtained by the procedure in Section 4
are used to find η and m.

5.3 Results

Figure 1 displays the experimental result with hyper-
parameter tuning. In the figure, the x-axis represents
time in seconds and the y-axis represents the optimality
gap, 1− (w̃Ts u1)2, in the log-scale. Since VR-PCA and
VR Power are related algorithms, their performances
are similar except for cov where the step size of VR-
PCA is tuned to the largest possible value of 1.0. If

Stochastic Variance-Reduced Algorithms for PCA with Arbitrary Mini-Batch Sizes

0 20 40

time (seconds)

-10

-8

-6

-4

-2

0

lo
g
(e

rr
o
r)

ijcnn

0 20 40

time (seconds)

-10

-8

-6

-4

-2

0

lo
g
(e

rr
o
r)

cov

0 20 40

time (seconds)

-10

-8

-6

-4

-2

0

lo
g
(e

rr
o
r)

MSD

0 50 100

time (seconds)

-10

-8

-6

-4

-2

0

lo
g
(e

rr
o
r)

mnist

Fast PCA

VR-PCA

VR Power+M

VR Power

VR HB Power

Figure 1: The comparison of stochastic variance-reduced PCA algorithms with hyper-parameters tuned

0 100 200

time (seconds)

-12

-10

-8

-6

-4

-2

0

lo
g
(e

rr
o
r)

ijcnn

0 100 200

time (seconds)

-12

-10

-8

-6

-4

-2

0

lo
g
(e

rr
o
r)

cov

0 50 100

time (seconds)

-12

-10

-8

-6

-4

-2

0

lo
g
(e

rr
o
r)

MSD

0 50 100

time (seconds)

-12

-10

-8

-6

-4

-2

0

lo
g
(e

rr
o
r)

mnist

Fast PCA

VR-PCA

VR Power+M

VR Power(|S|=1%)

VR Power(|S|=2%)

VR HB Power(|S|=1%)

VR HB Power(|S|=2%)

PF VR Power(|S|=1%)

PF VR Power(|S|=2%)

PF VR HB Power(|S|=1%)

PF VR HB Power(|S|=2%)

Figure 2: The comparison of stochastic variance-reduced PCA algorithms with recommended hyper-parameters
and parameter-free algorithms

some larger values are included in the grid, VR-PCA
would have a similar performance to VR Power even for
cov. On the other hand, VR HB Power always performs
better than VR Power+M due to its additional control
through the step size. VR HB Power works particularly
well for ijcnn which has the smallest eigen-gap. If the
eigen-gap is large, the performance of VR HB Power
is not much different from the performances of VR
Power+M, VR-PCA and VR Power. We were not able
to find good hyperparameters for Fast PCA.

Figure 2 shows the experimental result without param-
eter tuning. In the figure, regardless of the batch size,
VR Power and VR HB Power outperform VR-PCA,
VR Power+M and Fast PCA. Although VR Power and
VR-PCA are similar algorithms, the performance of
VR Power is much better than that of VR-PCA due
to the choice of η and m. While VR Power precisely
choose the values of η and m depending on the values
of λ1, λ2 and |S|, VR-PCA does not utilize such infor-
mation and let them depend only on n. As a result, the
step size is too small and the epoch length is too large,
leading to slow convergence. On the other hand, due
to the extra dependency on

√
d, VR Power+M requires

too large samples and thus it is slower than VR Power
even for ijcnn which has the smallest eigen-gap. The
epoch length m of SVRG in Fast PCA is of the order of
1/∆2. Therefore, Fast PCA takes a significant amount
of time to solve each convex problem, which makes its
optimality gap not decrease as sharply as other algo-
rithms. On the other hand, PF VR HB Power takes

longer than VR HB Power while the performance of
PF VR Power looks very similar to that of VR Power.
This is because VR HB Power has the additional mo-
mentum parameter β, which makes its performance
more affected by estimation errors. Nevertheless, both
parameter-free algorithms work very well compared to
VR-PCA, VR Power+M and Fast PCA.

6 Conclusion

In this paper, we present two mini-batch stochastic
variance-reduced algorithms for PCA and derive exact
forms of their parameters to attain the optimal runtime.
Our results show that for any batch size, the optimal
runtime can be achieved by appropriately choosing the
step size and epoch length. We also introduce practical
implementations which automatically find such values
depending on batch sizes. The framework used in our
analysis is not specific to the proposed algorithms but
can be applied to analyze other stochastic variance-
reduced PCA algorithms and improve their results. In
our framework, the optimality gap is measured as the
ratio of two expectation terms and this enables us to
develop global convergence statements. Experimental
results show that the proposed algorithms work well
for arbitrary batch sizes.

Cheolmin Kim, Diego Klabjan

References

Allen-Zhu, Z. and Li, Y. (2016). LazySVD: Even faster
SVD decomposition yet without agonizing pain. In
Advances in Neural Information Processing Systems,
pages 974–982.

Allen-Zhu, Z. and Li, Y. (2017). First efficient conver-
gence for streaming k-PCA: a global, gap-free, and
near-optimal rate. In 2017 IEEE 58th Annual Sym-
posium on Foundations of Computer Science, pages
487–492. IEEE.

Arora, R., Cotter, A., Livescu, K., and Srebro, N.
(2012). Stochastic optimization for PCA and PLS.
In 2012 50th Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), pages
861–868. IEEE.

Balcan, M.-F., Du, S. S., Wang, Y., and Yu, A. W.
(2016). An improved gap-dependency analysis of
the noisy power method. In Conference on Learning
Theory, pages 284–309.

Balsubramani, A., Dasgupta, S., and Freund, Y. (2013).
The fast convergence of incremental PCA. In Ad-
vances in Neural Information Processing Systems,
pages 3174–3182.

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and
Lamere, P. (2011). The million song dataset. In
Proceedings of the 12th International Conference on
Music Information Retrieval.

Blackard, J. A. and Dean, D. J. (1999). Comparative
accuracies of artificial neural networks and discrimi-
nant analysis in predicting forest cover types from
cartographic variables. Computers and Electronics
in Agriculture, 24(3):131–151.

Boutsidis, C., Garber, D., Karnin, Z., and Liberty, E.
(2015). Online principal components analysis. In
Proceedings of the Twenty-Sixth annual ACM-SIAM
Symposium on Discrete Algorithms, pages 887–901.
Society for Industrial and Applied Mathematics.

Chang, C.-C. and Lin, C.-J. (2011). Libsvm: A library
for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2(3):27.

Dheeru, D. and Karra Taniskidou, E. (2017). UCI
machine learning repository.

Garber, D. and Hazan, E. (2015). Fast and sim-
ple PCA via convex optimization. arXiv preprint
arXiv:1509.05647.

Garber, D., Hazan, E., Jin, C., Kakade, S. M., Musco,
C., Netrapalli, P., and Sidford, A. (2016). Faster
eigenvector computation via shift-and-invert precon-
ditioning. In International Conference on Machine
Learning, pages 2626–2634.

Golub, G. H. and Van Loan, C. F. (2012). Matrix
computations, volume 3. JHU Press.

Hardt, M. and Price, E. (2014). The noisy power
method: A meta algorithm with applications. In
Advances in Neural Information Processing Systems,
pages 2861–2869.

Jain, P., Jin, C., Kakade, S. M., Netrapalli, P., and Sid-
ford, A. (2016). Streaming PCA: Matching matrix
Bernstein and near-optimal finite sample guaran-
tees for Ojas algorithm. In Conference on Learning
Theory, pages 1147–1164.

Johnson, R. and Zhang, T. (2013). Accelerating stochas-
tic gradient descent using predictive variance reduc-
tion. In Advances in Neural Information Processing
Systems, pages 315–323.

Jolliffe, I. (2011). Principal component analysis.
Springer.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.
(1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324.

Lei, Q., Zhong, K., and Dhillon, I. S. (2016).
Coordinate-wise power method. In Advances in
Neural Information Processing Systems, pages 2064–
2072.

Li, C. J., Wang, M., Liu, H., and Zhang, T. (2018).
Near-optimal stochastic approximation for online
principal component estimation. Mathematical Pro-
gramming, 167(1):75–97.

Mason, J. C. and Handscomb, D. C. (2002). Chebyshev
polynomials. Chapman and Hall/CRC.

Mitliagkas, I., Caramanis, C., and Jain, P. (2013).
Memory limited, streaming PCA. In Advances in
Neural Information Processing Systems, pages 2886–
2894.

Oja, E. (1982). Simplified neuron model as a princi-
pal component analyzer. Journal of Mathematical
Biology, 15(3):267–273.

Polyak, B. T. (1964). Some methods of speeding up
the convergence of iteration methods. USSR Com-
putational Mathematics and Mathematical Physics,
4(5):1–17.

Prokhorov, D. (2001). Ijcnn 2001 neural network com-
petition. Slide Presentation in International Joint
Conference on Neural Networks, 1:97.

Shamir, O. (2015). A stochastic PCA and SVD algo-
rithm with an exponential convergence rate. In In-
ternational Conference on Machine Learning, pages
144–152.

Shamir, O. (2016). Fast stochastic algorithms for SVD
and PCA: Convergence properties and convexity.
In International Conference on Machine Learning,
pages 248–256.

Stochastic Variance-Reduced Algorithms for PCA with Arbitrary Mini-Batch Sizes

Wang, J., Wang, W., Garber, D., and Srebro, N. (2018).
Efficient coordinate-wise leading eigenvector com-
putation. In Algorithmic Learning Theory, pages
806–820.

Xu, P., He, B., De Sa, C., Mitliagkas, I., and Re, C.
(2018). Accelerated stochastic power iteration. In
International Conference on Artificial Intelligence
and Statistics, pages 58–67.

Xu, Z. (2018). Gradient descent meets shift-and-invert
preconditioning for eigenvector computation. In Ad-
vances in Neural Information Processing Systems,
pages 2830–2839.

