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Abstract

Normalizing flows have received a great deal
of recent attention as they allow flexible gen-
erative modeling as well as easy likelihood
computation. While a wide variety of flow
models have been proposed, there is little
formal understanding of the representation
power of these models. In this work, we study
some basic normalizing flows and rigorously
establish bounds on their expressive power.
Our results indicate that while these flows are
highly expressive in one dimension, in higher
dimensions their representation power may
be limited, especially when the flows have
moderate depth.

1 Introduction

Normalizing flows are a class of deep generative mod-
els that aspire to learn an invertible transformation to
convert a pre-specified distribution, such as a Gaus-
sian, to the distribution of the input data. These
models offer flexible generative modeling — as the in-
vertible transformation can be implemented by deep
neural networks — and easy likelihood computation in
equation (3) that follows from the invertibility of the
transformation [Rezende and Mohamed, 2015].

Due to these advantages and their empirical success, a
number of flow models have been proposed [Dinh et al.,
2014, Germain et al., 2015, Uria et al., 2016, Kingma
et al., 2016, Tomczak and Welling, 2016, Dinh et al.,
2016, Papamakarios et al., 2017, Huang et al., 2018,
Berg et al., 2018, Grathwohl et al., 2018, Behrmann
et al., 2018, Jaini et al., 2019, Ho et al., 2019]. How-
ever, the expressive power offered by different kinds
of flow models — what kind of distributions they can
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map between, and with what complexity — remains
not well-understood, which makes it challenging to se-
lect the right flow model for specific tasks. Obviously,
due to their invertible nature, a normalizing flow can
only transform a distribution to one with a homeomor-
phic support [Armstrong, 2013]. However, even within
such distributions, it remains unclear whether a simple
distribution supported on R? could be transformed or
approximated via a normalizing flow from a Gaussian.

In this work, we carry out a rigorous analysis of the
expressive power of planar flows, Sylvester flows, and
Householder flows — the most basic classes of normal-
izing flows. The main challenge in analyzing the ex-
pressive power of any flow model class is invertibil-
ity. There is a body of prior work that analyzes the
universal approximation properties of standard neural
networks; however, analyzing the approximation prop-
erties of invertible mappings between distributions is a
completely different problem. Just because a function
class F is a universal approximator does not mean
that the set of all its invertible functions can trans-
form between arbitrary distributions; dually, even if
functions in F have limited expressivity, it is possi-
ble that its invertible subset is an universal approxi-
mator in transforming between distributions [Villani,
2008]. Additionally, universal approximation proper-
ties are often proved by construction via non-invertible
functions [Lu et al., 2017, Lin and Jegelka, 2018] and
hence these constructions cannot to be used to estab-
lish properties of the corresponding flows.

This work gets around this challenge by studying prop-
erties of input-output distribution pairs directly, in-
stead of considering the transformation class itself. In
particular, we consider both a local and global analy-
sis of properties of planar flows, their higher dimen-
sional generalization — Sylvester flows, and House-
holder flows. First, we analyze the local topology —
namely, the directional derivatives of the induced den-
sity. Second, we seek to bound the global total vari-
ation distance between the input and output distri-
butions that can be achieved by each planar flow or
Householder flow under certain conditions.
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Using these two kinds of analysis, we make three main
contributions in this paper.

First, we show that in one dimension, even planar
flows are highly expressive. In particular, they can
transform a source distribution supported on R to an
arbitrarily-accurate approximation of any target dis-
tribution supported on a finite union of intervals. The
conclusion holds even if we restrict to planar flows with
ReLU non-linearity and Gaussian source distributions.
This indicates that planar flows in one dimension are
universal approximators.

We next turn our attention to general d-dimensional
spaces, and we look at what kinds of distributions may
be expressed by a Sylvester flow model acting on a
Gaussian, mixtures of Gaussian (MoG) distributions,
or product (Prod) distributions. We show that when
the non-linearity is a ReLU function, Sylvester flows of
any depth cannot in general exactly transform between
certain standard classes of distributions. In particular,
ReLU Sylvester flows cannot exactly transform any
mixture of k& Gaussian distributions or product distri-
butions into another one — no matter what the depth
is — except under very special circumstances.

Finally, we consider the approximation capability of
normalizing flow models in d-dimensional space. Here,
we focus on local planar flows with a class of lo-
cal non-linearities — including common non-linearities
such as tanh, arctan and sigmoid — and Householder
flows. We show that in these cases, provided cer-
tain conditions hold, transforming a source distribu-
tion into a target may require flows of inordinately
large depth. In particular, if the target distribution
p(z) is constant in a ball centered at the origin and
proportional to exp(—||x||;/7) outside the ball, then p
may require local planar flows with depth Q (d'/7~1)
to transform from an arbitrary source distribution
(that is not too close). A similar conclusion holds
for Householder flows when the target distribution is
close to the standard Gaussian distribution. These re-
sults indicate that when local planar flows with certain
non-linearities and Householder flows have moderate
depth, they may have poor approximation power.

1.1 Related Work

There is a body of work on analyzing the approxi-
mation properties of neural networks [Cybenko, 1989,
Hornik et al., 1989, Hornik, 1991, Montufar et al.,
2014, Telgarsky, 2015, Lu et al., 2017, Hanin, 2017,
Raghu et al., 2017]. Most of these results apply to feed-
forward neural networks including non-invertible func-
tions. Therefore, their universal approximation prop-
erties do not directly translate to normalizing flows.

The work most related to ours shows that a resid-
ual network (ResNet) in which each block is a single-
neuron hidden layer with ReLLU activation is a univer-
sal approximator in the space of Lebesgue integrable
functions from R? to R? [Lin and Jegelka, 2018]. This
is related to us because the set of all such ResNets
with T invertible blocks is exactly T-layer ReLU pla-
nar flows. However, their construction that establishes
this property is based on non-invertible mappings, con-
sequently, their universal approximation result does
not extend to planar flows.

There has also been some recent related work on the
expressive power of generative networks. In particular,
it was proved by construction that when the output di-
mension is equal to the input dimension, deep neural
networks can approximately transform Gaussians to
uniform distributions and vice versa [Bailey and Tel-
garsky, 2018]. However, their constructions are again
based on non-invertible functions, and hence their re-
sults do not extend to normalizing flows.

Finally, there is also a body of empirical work on dif-
ferent kinds of normalizing flows; a more detailed dis-
cussion of these works is presented in Section 6.

2 Preliminaries

2.1 Definitions and Notation

Suppose d is the data dimension. Let z € R? be a ran-
dom variable with density ¢. : R — {0} UR*. Then,
an invertible function f : R — R? is called a nor-
malizing flow if f is differentiable almost everywhere
(a.e.) and the determinant of the Jacobian matrix of
f does not equal to zero:

det J¢(z) # 0 (a.e.)

where Jf(z);; = %’ Vi, j € {1,---,d}. If we ap-
ply a flow f over z, we obtain a new random variable
y = f(2), whose density ¢, can be written through the
change-of-variable formula:

q:(2)
= —7 1
W) = (et gy ) W
or
log gy (y) = log q.(z) — log | det J¢(z)| (2)
For conciseness, we write g, = f#q¢. in such context.

In particular, if the flow f is composed of T simple
flows fy,t=1---,T:

f=frofr—io---0fi

then according to the chain rule of the Jacobian ma-
trix, we have

T
log gy (y) =logq-(2) — > _log|det Jp, (1)  (3)
t=1
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where 20 =2, 2t = ft(thl), t= 17 T ,T.

Two simple flows are defined below [Rezende and Mo-
hamed, 2015]:

Planar Flows. Given the scaling vector u € R?, tan-
gent vector w € R? shift b € R, and non-linearity
h:R — R, a planar flow f,r on R is defined by

fot(z) =2+ uh(sz +b) (4)

Radial Flows. Given the smoothing factor a € RT,
scaling factor b € R, and center zy € R, a radial flow
frr on R? is defined by

b

a+ |z — zoll2

fit(2) = 2+ (2 = 20) (5)

A geometric intuition between planar and radial flows
is shown in Section A.1. Planar flows can be general-
ized to a higher dimension below [Berg et al., 2018]:

Sylvester Flows. Given the flow dimension m < d,
scaling matrix A € R¥™  tangent matrix B € R¥™
shift vector b € R%, and non-linearity » : R — R, a
Sylvester flow fg,1 on R? is defined by

fop1(2) = 2+ AM(BT 2 +b) (6)
where h maps coordinate-wise.

In addition, Householder matrices can also be used to
construct flows [Tomczak and Welling, 2016]:

Householder Flows. Given a unit reflection vector
v € R?, a Householder flow fu, on R? is defined by

fun(z) =z — 200" 2 (7)
For conciseness, we denote these flows by base flows.

2.2 Problem Statement

In this paper, we study the expressivity of base flows in
Section 2.1: given an input distribution ¢, we hope to
understand when a flow f composed of a finite number
of base flows can transform ¢ into any target distribu-
tion p or its approximation on R?¢. Formally, suppose
f is composed of T base flows in the same class. We
propose to answer the following two questions:

Q1 (Exact transformation): Under what conditions is
it possible to ezxactly transform ¢ into p with a finite
number of base flows? That is, f#q = p, (a.e.).

Q2 (Approximation): Since sometimes it may not be
possible to exactly transform ¢ into p, when is it possi-
ble to approzimate p in total variation distance (which
is equal to half of the ¢; distance)? How many layers
of base flows do we need? That is, given € > 0, is there
a bound for T such that

| f#q—pl1 < e

2.3 Additional Definitions and Notations

The determinant of the Jacobian matrix of a planar
flow for, a Sylvester flow fsy1, and a Householder flow
fun can be easily calculated by

det Jy (2) =1+u'wh'(w'z+b)
det Jy, ,(z) = det(I,, + diag(k'(BT 2+ b))BT A)
det Jp, (2) =-1

(8)
In this paper, we consider three types of non-linearities
h: ReLU(z) = max(z,0), general differentiable func-
tions, and local non-linearities (see Section 5 for de-
tail) including tanh(z), arctan(z) and sigmoid(z) =
1/(1 + exp(—z)). Specifically, let h = ReLU and 1{-}
be the indicator function, then det Jy ;. is equal to

det Jy  (2) = 1+ ww-Hw'z4+b>0}  (9)

A ReLU planar/Sylvester flow is invertible under cer-
tain bounds on its parameters as ReLU is Lipschitz.

We make a few additional definitions here. N denotes
a Gaussian distribution on R%:

exp (—5(z — p) "2z — p))
(27)4/2/det 2

The set supp p denotes the support of distribution p:

N(a;p, 2) =

supp p = {z € R? : p(z) > 0}

For vectors w; € R4, 1 < i < k, the span of them
denotes the subspace spanned by {w;}%_;:

k
span{wy, - ,wi} = {Zaiwi: a; ER,1 gigk}

i=1

The span of a set of matrices is defined as the span

of the union of their column vectors. For any differen-

tiable function g : R? — R and direction § € R?\ {0},

its corresponding directional derivative is defined by
9(z 4 ad) — g(x)

: _ T
lim ” =V.g(x) 0

2.4 Challenges

The main challenge in analyzing whether a class of
flows can universally approximate any target distribu-
tion when applied to a fixed source is invertibility. To
understand this, suppose F,C are function classes and
7 is the set of all invertible functions.

Even if F can approximate any function in C, it might
not hold that the invertible functions in F can approx-
imate any invertible function in C. This is because the
set of invertible functions Z might have no interior in
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C: for any invertible function, it is possible to mod-
ify it slightly to make it non-invertible — and hence
the approximation to an invertible function ¢ € C may
be a non-invertible function f € F (see Lemma 4,
[Mulansky and Neamtu, 1998]). For instance, it was
shown that a certain ResNet (F) is a universal ap-
proximator in C = ¢;(R?) [Lin and Jegelka, 2018], and
its invertible function subset (FNZ) is exactly the set
of transformations composed of finitely many ReLU
planar flows. However, since the universal approxi-
mation property was proved by construction using the
non-invertible trapezoid functions, this result does not
translate to ReLU planar flows.

Dually, if F has limited expressivity, it might still hap-
pen that functions in F NZ can approximate or even
express transformations between arbitrary pairs of dis-
tributions. This is because a small subset of functions
T (for instance, increasing triangular maps [Villani,
2008)]) is enough to transform between distributions.
Therefore, if FNZ is dense in T, then it is expressive.
It is however challenging to find all such dense sets 7.

3 The d =1 case

In this section, we discuss the universal approximation
properties of Sylvester flows when the data dimension
d = 1. In this case, a Sylvester flow is identical to a
planar flow. However, the one-dimensional case is not
trivial and requires delicate design. For both general
and ReLU non-linearity cases, we demonstrate they
are able to achieve universal approximation.

3.1 General Smooth Non-linearity

Suppose the flow f is a single planar flow with an ar-
bitrary smooth non-linearity h. It is straightforward
to show by construction that if supp p = supp ¢ = R,
then there exists a planar flow that exactly transforms
g into p. (See Lemma A.1). Using these exact trans-
formations, we can approximate any density supported
on a finite union of intervals when the input distribu-
tion is supported on R (e.g. a Gaussian).

Theorem 3.1 (Universal Approximation). Let p,q
be densities on R such that p is supported on a fi-
nite union of intervals and supp q = R. Then, for
any € > 0, there exists a planar flow fpr such that

”fpf#q _p”l <e

Since in Theorem 3.1, the support of p might not
be R, we are unable to achieve exact transformation
between p and ¢q. However, approximation is possi-
ble in that we can transform ¢ into p, a distribution
supported on R but approximates p in ¢; norm. To
achieve this, we construct such p that satisfying p ~ p
on supp p and p ~ 0 on supp p. An example is shown

in Figure 1, where p(z) = 2 min((|z] — 1)2, (|z] — 3)?)
for 1 < |z| < 3 and p(z) = 0 elsewhere.

A\

Figure 1: Target distribution p and its approximation
p with supp p = R.

0.6

0.0

3.2 ReLU Non-linearity

Since the ReLU activation has been proven to be ex-
pressive and is popular in recent neural network mod-
els [He et al., 2016, Lin and Jegelka, 2018], we provide
a universal approximation result for planar flows with
ReLU non-linearity.

Suppose the one-dimensional ReLLU flow has the form
f(z) = fpe(2) = z + uh(wz + b), where h = ReLU.
Since ReLU is linear on both R~ and R, we assign
u = *£1 for concreteness. In addition, to ensure the
transformation is strictly increasing, we require uw >
—1. Different from the general non-linearity case, the
determinant of det Jy in (9) indicates that a ReLU
planar flow keeps a halfspace of R and applies linear
scaling transformation to the other halfspace.

Given that the input distribution ¢ is Gaussian, we
prove it is possible to approximate any density sup-
ported on a finite union of intervals in #; norm using
a finite number of ReLU planar flows.

Theorem 3.2 (Universal Approximation). Let p be a
density on R supported on a finite union of intervals.
Then, for any € > 0, there exists a flow f composed
of finitely many ReLU planar flows and a Gaussian
distribution qnr such that || f#aqn — pll1 <.

There are two steps in the proof. First, we show
that Gaussian distributions can be exactly trans-
formed to tail-consistent piecewise Gaussian distribu-
tions (see Definition A.3, Definition A.4 for for-
mal definitions and Lemma A.3). An example of a
tail-consistent piecewise Gaussian distribution of three
pieces is shown in Figure 2: the distribution is com-
posed of three Gaussian pieces in full lines of three
colors, where the dashed lines are corresponding pro-
longations. Then, the area below yellow lines (— /- -)
is equal to the area below the blue dashed line (- -),
and the area below the green full line (- ) is equal to
the area below the yellow dashed line (- -).

In the second step, we show that tail-consistent piece-
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wise distributions can approximate any piecewise con-
stant distribution supported on a finite union of com-
pact intervals (see Lemma A.4). Notice that piece-
wise constant functions supported on a finite union
of compact intervals can approximate any Lebesgue-
integrable function [Lin and Jegelka, 2018], so do den-
sities supported on a finite union of intervals. There-
fore, the universal approximation property of ReLLU
planar flows (Theorem 3.2) is obtained.

0.0

Figure 2: A tail-consistent piecewise Gaussian distri-
bution in PW(3,G).

In Figure 3, two examples are presented on approx-
imating the same target distribution p with different
number of ReLLU planar flows. As illustrated, the ap-
proximation almost reaches perfection when we choose
a larger number of ReLLU planar flows.

Figure 3: Target distribution p, its piecewise constant
distribution approximation gy, of 50 (top)/300 (bot-
tom) pieces, and its tail-consistent piecewise Gaus-
sian distribution approximation g4 generated by 50
(top)/300 (bottom) ReLU planar flows over a Gaus-
sian.

Remark. Since we can transform the standard Gaus-
sian distribution N'(0,1) to any other Gaussian distri-
bution using a scaling function, which can be achieved
by two ReLU planar flows and a shift, we can further
assign the input distribution qn in Theorem 3.2 to be
the standard Gaussian distribution.

4 Exact Transformation for d > 1

In this section, we consider the exact transformation
question when the data dimension d > 1. We study
two cases where the flow is composed of a finite num-
ber of Sylvester flows with (i) ReLU non-linearity and
(74) general non-linearity. We specifically show how
the topology matching conditions yield negative re-
sults to the exact transformation question (that is, to
show there does not exist such flow that can transform
between certain distributions).

Our results are based on the following key observation
for a flow f : R? — R? For almost every z € R?
there exists a subspace V(z) C R? such that for any
v € V and small a > 0, det J¢(z) = det J¢(z + aw).
We call V the complementary subspace of f at z. This
observation can be used to determine what class of
distributions flows can transform between. By letting
a — 0, we can focus on properties of small neighbour-
hoods around z, which we call topology matching.

4.1 ReLU Non-linearity

We begin with constructing a topology matching con-
dition for ReLU Sylvester flows: f(z) = foi(z) =
Z + A ReLU(BTz +b). (8) shows that for a single
ReLU Sylvester flow, if BTz+b # 0, then det J;(2') =
det Jy(z) when 2’ is close to z. This statement can be
further generalized: if f is a flow composed of a fi-
nite number of ReLLU Sylvester flows, for almost every
z € R?, the determinant of the Jacobian of f is a con-
stant near z. Based on this observation, we conclude
that the complementary subspace V(z) = R, a.e. (see
Lemma A.5). Using this property, we construct the
topology matching condition in the following theorem.

Theorem 4.1 (Topology Matching for ReLU
Sylvester flows). Suppose distribution q is defined on
R?, and flow f is composed of finitely many ReLU
Sylvester flows on RY. Let p = f#q. Then, there
exists a zero-measure closed set @ C R? such that

Vz € R%\ Q, we have

J#(2) V. logp(f(2)) = V. log q(2)

Intuitively, the local directional derivatives of the log-
arithm of the density are preserved. As a special case,
if z satisfies V,q(z) = 0 (which means that z is a lo-
cal minima, local maxima, or saddle point of ¢), then
p(f(2)) must also have zero gradient at z. For instance,
suppose p is the standard Gaussian distribution on R?
and ¢ is a mixture of two Gaussian distributions on R?
with two peaks. Since only at the origin does p have
zero gradient, we conclude there does not exist a pla-
nar flow that transforms ¢ to p. Additional examples
are illustrated in Figure 6 in the Appendix.
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The proof of Theorem 4.1 follows from (2), the Tay-
lor expansion of f, and the observation that V(z) = R¢
a.e.. Notably, the conclusion holds for any number of
ReLU Sylvester flows. Using this condition, we show
in the following corollaries that it is unlikely for finitely
many ReLU Sylvester flows to transform between mix-
ture of Gaussian (MoG) or product (Prod) distribu-
tions unless special conditions are satisfied.

Corollary 4.1.1 (MoG-»MoG). (See formal version
in Corollary A.5.1) Suppose p, q are mizture of Gaus-
sian distributions on R? in the following form:

p(z) = wiN (24, 5p), q(2) = Y wiN (2 1), Sy)

i=1 j=1

Then, there generally does not exist flow f composed of
finitely many ReL U Sylvester flows such that p = f#q.

Corollary 4.1.2 (Prod-»Prod). (See formal version
in Corollary A.5.2) Suppose p and q are product dis-
tributions in the following form:

d d

p(z) o [ 9(zi)7; a(z) < [] gzi)"

=1 i=1

where rp,rq > 0,7y # 14, and g is a smooth function.
Then, there generally does not exist flow f composed of
finitely many ReL U Sylvester flows such that p = f#q.

Given our negative results, the reader might won-
der what distributions can be transformed by ReL.U
Sylvester flows. We show that certain linear transfor-
mations can be exactly expressed (see Theorem A.6,
Corollary A.6.1 and Corollary A.6.2).

4.2 General Smooth Non-linearity

In this section, we construct a topology matching con-
dition for Sylvester flows with general non-linearities.
Suppose f is a Sylvester flow f(z) = z + Ah(B" 2z +b)
with flow dimension m, where h is an arbitrary smooth
function. Analogous to Theorem 4.1, there exists a
d — m dimensional complementary subspace of f at
every point z € R%: V(z) = span{B}+. Using this
property, we are able to establish the topology match-
ing condition for a single Sylvester flow (see Lemma
A.7). Then, we generalize this result to n layers of
Sylvester flows in the following theorem.

Theorem 4.2 (Topology Matching for Sylvester
flows). Suppose distribution q is defined on R, and
n Sylvester flows {f;}*_; on R¢ have flow dimensions
{m;}_,, tangent matrices {B;}1,, and smooth non-
linearities. Let f = fp,o---0 f1 and p = f#q. Then
Vz € R, we have

V:logp(f(2)) = V:1ogq(z) € span{By, By, - -+, Bn}

When the sum of flow dimensions of {f;}1; is strictly
less than the data dimension d, span{ By, Ba,- - , B,}
is a strict subspace of R?. Under this situation, we
show in the following corollary that transformation be-
tween Gaussian distributions might be impossible with

a bounded number of Sylvester flows.

Corollary 4.2.1 (N —» N). (See formal version in
Corollaries A.7.1 and A.7.2) Let p ~ N(0,%,),q ~
N(0,%,) be two Gaussian distributions on R?, and
Zq_l — Z;l has high rank. Then, with a limited num-
ber of planar or Sylvester flows that have smooth non-

linearities, it is impossible to transform q to p.

Additional experiments are demonstrated in Figure 7
in the Appendix. We also construct a topology match-
ing condition for radial flows in Theorem A.8, and
compare that result with Theorem 4.2.

5 Approximation Capacity for Large d

In this section, we provide a partially negative answer
to the universal approximation question for certain
normalizing flows by showing that approximations in
these cases may require very deep flows. In particu-
lar, we study local planar flows and Householder flows
with specific target distributions.

Given an input distribution ¢ and a target distribu-
tion p on R, our goal is to lower bound the depth
T of a normalizing flow that can transform ¢ to an
approximation of p. This is formally defined below.

Definition 5.1. Let p,q be two distributions on R?,
€ >0, and F be a set of normalizing flows. Then, the
minimum number of flows in F required to transform
q to an approximation of p to within € is

T.(p,q,F) =inf{n: I{fi}l, € F such that
[(fio---ofu)#q—pl1 <€}

To achieve this goal, we look at the maximum ¢; norm
distance reduction of a normalizing flow f towards p:

Lp, f)= sup lp—d'llh = llp — f#d' |

q’ is a density on R?

We first show a surprisingly concise upper bound L of
L. This bound is used in proving Theorem 5.2 and
Theorem 5.3 in this section.

Lemma 5.1. L(p, f) < L(p, f), where

L5 = [ det I () = plo)] dz

Then, we naturally obtain a lower bound of T"

Ilp—qll1 — e

lp—als—¢ 1
supser L(p, f)

T(p,q, F) > >
.0 F) 2 e £ )
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Next, we make the following assumption on ¢:

Assumption 1. ||p —q|1 = 6(1).

This assumption holds when the input distribution ¢
is a random initialization (that is, ¢ is chosen arbitrar-
ily without any prior knowledge on p). Then, under
Assumption 1, there exists € > 0 (e.g. € = 1|[p—gq][1)
such that

1
T(p,qg. F) =Q| ——————
ikl <Supfe]-'£(pvf)>

In the rest of this section, we use this lower bound
on T to construct results for local planar flows and
Householder flows with specific target distributions.

5.1 Local Planar Flows

In this section, we look at a specific group of planar
flows, which we call the local planar flows. A c¢p-local
planar flow is defined below.

Definition 5.2. A non-linearity h is called cp-local if
there is a constant ¢, € R satisfying for any x € R, (i)
|h(z)| < ep, and (i7) |W (x)] < en/(1+ |z|). A planar
flow f(z) = z +uh(w" z + b) is called cy-local if h is
ep-local, |ullz <1, and ||w2 < 1.

Many popular non-linearities are cp-local, such as tanh
(cn, = 2), sigmoid (cp, = 1), and arctan (¢, = 7/2).

Geometrically, a local planar flow applies non-linear
scaling on the region near the d — 1 dimensional sub-
space {z : w'z+b = 0} in R%, while having little effect
on regions far away from the subspace (almost a con-
stant shift). This observation leads to the intuition
that one layer of local planar flow can only affect a
small volume of the whole space, so a large number of
layers is needed to approximate the target distribution
if supp p is a large region. In the following theorem,
we show for certain p, T' goes up polynomially in the
data dimension d with adjustable degrees.

Theorem 5.2 (¢; norm approximation lower bound
for local planar flows). Let p be a distribution on RY
(d > 2) such that for 7 € (0,1):

o p = O(p1), where density p1 satisfies
p1(2) o< exp(—||z[|3)
o ||[Vpll2 = O(||Vp2ll2), where density ps satisfies

Aol ep(=d)
P2() { exp(—[5)

Suppose F is the set of all cp-local planar flows. Then,
under Assumption 1, there exists e = ©(1) such that

lell> < d*
Il > a*

1 1

Te(p,q, F) =Q (min ((logd)féd(?*é),d(%*l)))

This indicates that if the target distribution p has
specifically bounded values and gradients, a large num-
ber of local planar flows is needed to approximate p
starting with a distribution ¢ that obeys Assumption
1. The number T is polynomial in d with adjustable
degrees, so it can be incredibly large as d gets large.

A concrete example that satisfies the condition in
Theorem 5.2 is when p(z) is equal to the py in the
statement. This satisfies the first condition because
exp(—d) < exp(—||z||3) in the ball centered at the ori-
gin with radius d'/7, and the integration of p; in this
ball is o(1) (see proof of Lemma A.9). Then, taking
for instance 7 = 0.2, the lower bound on T becomes
Q(d*), which is incredibly large in practical scenarios.

To prove Theorem 5.2, we first show that ﬁ(p, f)is
upper bounded by an integration of two terms. We
then present Lemma A.9 and Lemma A.10 to bound
these two terms separately.

5.2 Householder Flows

In this section, we look at Householder flows. Since
a Householder matrix does not change the ¢ norm of
any vector, it is possible to upper bound £ when the
target distribution p is almost symmetric, according
to Lemma 5.1. If p is a standard Gaussian distribu-
tion, we have £ = 0, indicating that Householder flows
cannot transform any different distribution to a stan-
dard Gaussian distribution. In the following theorem,
we provide a concise bound on T when p is very close
to the standard Gaussian distribution, where there is
only a small perturbation on its covariance matrix.

Theorem 5.3 (¢; norm approximation lower bound
for Householder flows). Let p be a Gaussian distribu-
tion N'(0,1+4 S) on R? (d > 2), where |S;;| < d~(2+*)
for some k >0 and any 1 < i,5 < d. Suppose F is the
set of all Householder flows. Then, under Assump-
tion 1, there exists e = O(1) such that

Te(p,q, F) = Q(d")

This indicates that we need a large number of House-
holder flows to approximate a distribution close to the
standard Gaussian distribution, starting with a distri-
bution ¢ that obeys Assumption 1. The number T
is also polynomial in the data dimension d with ad-
justable degrees, so it could be large as well. The
bound is computed from £, where |det J;(2)| = 1 for
a Householder flow f.

Additional Related Work
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6.1 Normalizing Flows

It was shown that transforming a simple distribution
to a complicated one by composing many simple trans-
formations can be used to solve density estimation
problems [Tabak et al., 2010, Tabak and Turner, 2013].
These transformations are called normalizing flows.
Two basic normalizing flows (planar and radial flows)
were introduced [Rezende and Mohamed, 2015]. Due
to their empirical success, there has been a growing
body of work on other kinds of normalizing flows. Two
categories of normalizing flows have been developed.

Triangular flows. It was proven that increasing trian-
gular functions can transform between arbitrary dis-
tributions [Villani, 2008]. Therefore, triangular flows
composed of fixed classes of increasing triangular func-
tions are expected to enjoy good expressive power.
In addition, the determinant of the Jacobian matrix
of an increasing triangular function is easy to com-
pute. These two benefits have led to the develop-
ment of a large family of triangular flows [Dinh et al.,
2014, Germain et al., 2015, Uria et al., 2016, Kingma
et al., 2016, Dinh et al., 2016, Papamakarios et al.,
2017, Huang et al., 2018, Jaini et al., 2019]. Among
these flows, IAF [Kingma et al., 2016], NAF [Huang
et al., 2018] and SOS flows [Jaini et al., 2019] were
shown to have the universal approximation property.

Non-triangular flows. It is possible to calculate the
determinant of the Jacobian matrix and the inverse
of a well designed non-triangular function. Several
flows parameterized by matrices were inspired by re-
sults from linear algebra and thus enjoy this prop-
erty [Tomczak and Welling, 2016, Hasenclever et al.,
2017, Ho et al., 2019, Berg et al., 2018], where the last
one is a matrix-form generalization of the planar flow.
Moreover, a recent non-triangular flow, the iResNet
[Behrmann et al., 2018], in the form of residual net-
works (ResNet) [He et al., 2016], was designed with an
efficient log-det approximator. It was further improved
in residual flows with an unbiased approximator [Chen
et al., 2019]. However, the expressivity of these flows
still remain unknown, even though the iResNet is ex-
pressed by powerful neural networks.

6.2 Continuous Time Flows

It is possible, from the infinitesimal point of view, to
generalize the discrete update of finite flows to con-
tinuous update of infinite flows. Infinite flows are
described by a differential equation instead of a se-
quence of transformations in the finite flow context
[Chen et al., 2017, Grathwohl et al., 2018, Chen et al.,
2018, Salman et al., 2018, Zhang et al., 2018]. The neu-
ral ODEs [Chen et al., 2018] is one significant work in
this class, but its expressivity still lacks understanding.

A counter-example was provided on the expressivity of
the neural ODEs [Dupont et al., 2019]. However, this
does not rigorously imply that neural ODEs are not
universal approximators because (i) the failure in ex-
act transformation does not imply the impossibility in
approximation, and (¢) universal transformation does
not necessarily need universal function representation.

To tackle the problem of such counter-example, addi-
tional p dimensions were introduced to ”augment” the
neural ODEs [Dupont et al., 2019]. By solving a d +p
dimensional augmented ODE and extracting the first
d dimensions, the expressivity of the neural ODEs is
enhanced. It was further shown that the augmented
neural ODEs is a universal approximator in the con-
tinuous function space when p = 1 [Zhang et al., 2019].
Nevertheless, in the context of normalizing flows, ev-
ery transformation has to be invertible, so the change
of dimension strategy, as well as its universal approxi-
mation property, does not apply to normalizing flows.

7 Conclusions

Normalizing flows are a class of deep generative mod-
els that offer flexible generative modeling as well as
easy likelihood computation. While there has been
a great deal of prior empirical work on different nor-
malizing flow models, not much is (formally) known
about their expressive power; we provide one of the
first systematic studies on non-triangular flows. Our
results demonstrate that one needs to be careful while
designing normalizing flow models as well as their non-
linearities in high dimensional space. In particular, we
show that Sylvester flows, a universal approximator
in one dimension, are unable to exactly transform be-
tween two (even simple) distributions unless rigorous
conditions are satisfied. Additionally, a prohibitively
large number of layers of planar or Householder flows
are required to reduce the ¢; distance between input
and output distributions under certain conditions.

There are a large number of open problems. Some un-
resolved problems towards expressivity of simple flows
include (¢) are certain combinations of tangent matri-
ces or non-linearities useful, (i7) can normalizing flows
composed of finitely many (> d) Sylvester flows with
arbitrary non-linearities (or other simple flows) trans-
form between any pair of input-output distributions
in high dimensional space, (i) are such normalizing
flows universal approximators in converting distribu-
tions, and (iv) what class of distributions are easy or
hard for normalizing flows composed of Sylvester flows
or other simple flows to transform between. A final
open problem is to look at other, more general classes
of flows, and provide upper and lower bounds on their
expressive power under different non-linearities.
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