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Abstract

In applications such as molecule design or
drug discovery, it is desirable to have an al-
gorithm which recommends new candidate
molecules based on the results of past tests.
These molecules first need to be synthesized
and then tested for objective properties. We
describe ChemBO, a Bayesian optimization
framework for generating and optimizing or-
ganic molecules for desired molecular proper-
ties. While most existing data-driven meth-
ods for this problem do not account for sam-
ple efficiency or fail to enforce realistic con-
straints on synthesizability, our approach ex-
plores the synthesis graph in a sample-efficient
way and produces synthesizable candidates.
We implement ChemBO as a Gaussian process
model and explore existing molecular kernels
for it. Moreover, we propose a novel optimal-
transport based distance and kernel that ac-
counts for graphical information explicitly. In
our experiments, we demonstrate the efficacy
of the proposed approach on several molecular
optimization problems.

1 Introduction

In many applications, such as drug discovery and mate-
rials optimization, one is interested in designing chem-
ical molecules with desirable properties (Elton et al.,
2019). For instance, in drug discovery, one wishes to
find molecules with high solubility in blood and high
potency, but low toxicity. Recently, we have seen a
surge of interest in adoption of machine learning tech-
niques for such tasks, due to their effectiveness in mod-
eling structure-property relations of molecules, and due

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

to limitations of traditional computational chemistry
methods in effectively exploring the large and complex
space of chemical molecules. For instance, the num-
ber of drug-like molecules is estimated to be between
1023 and 1060 (Polishchuk et al., 2013), among which
only around 108 have been synthesized. While there
have been several strategies for this problem, such
as generative modeling, reinforcement learning, and
more (Gómez-Bombarelli et al., 2018, Jin et al., 2018a,
Popova et al., 2017, You et al., 2018, Oliynyk et al.,
2016), one promising approach is to treat this task as a
black-box optimization problem (e.g. Ling et al. (2017),
Griffiths and Hernández-Lobato (2017)). Here, we as-
sume existence of a function f : X ! R defined on the
chemical space X , where f(x) is a measure of goodness
of molecule x for the relevant application. The goal is
to find the optimum of this function argmaxx2X f(x).
In real world settings, f is typically derived from the
results of laboratory experiments. The algorithm would
then use results of the past experiments, i.e the f(x)
values, to recommend new molecules. Since such ex-
periments are expensive, it is imperative to find the
maximum in as few evaluations as possible.

In this work, we contribute to this line of research
by developing ChemBO, a Bayesian optimization (BO)
framework for generating and optimizing molecules,
focusing on small1 organic molecules for drug discovery.
In doing so, we wish to emulate a real world setting,
where an algorithm would recommend new candidate
molecules. These molecules first need to be synthesized,
and then tested for necessary properties. Ideally, the
algorithm would not only ensure that the recommended
molecule is chemically valid and synthesizable, but also
provide a recipe for synthesis and take into consider-
ation the reagents and resources available. Even in
cases where the recommended molecules are synthe-
sized manually, providing a recipe can be a helpful
guide to the chemist and greatly reduce the amount of

1In contrast with biologics (large molecules), which are
protein based.
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manual work required. Combining sequential decision
making and synthesis, ChemBO is a first step towards
automated molecular optimization. To summarize, our
contributions are:

1. We develop a Gaussian process (GP) model of
structure-property relations in molecules. For the
GP kernel, we use prior work on molecular finger-
prints (Ralaivola et al., 2005, Hinselmann et al.,
2010) and additionally design a new optimal trans-
port based similarity measure between molecules
by treating them as graphs.

2. We use a synthesis graph to navigate the chemical
space. On each iteration of BO, ChemBO recom-
mends the molecule on this synthesis graph that is
deemed to be the most promising by the GP, i.e. the
molecule with the highest acquisition value (Brochu
et al., 2010). This approach not only ensures that
each recommended molecule is chemically valid,
but also provides a synthesis recipe2.

3. In our experiments, we demonstrate that ChemBO

outperforms simpler alternatives for synthesize-
able optimization, which do not use a proba-
bilistic model to guide search. The final val-
ues for the popular QED and penalized partition
coefficient benchmarks achieved by ChemBO are
competitive with state-of-the-art methods, while
using significantly less data and function eval-
uations. Our code is released open source at
https://github.com/ks-korovina/chembo.

2 Related Work
Optimization: SMILES strings (Anderson E, 1987),
which describe the structure of molecules as a string, are
a common representation used in machine learning tech-
niques for molecular optimization (Gómez-Bombarelli
et al., 2018, Kang and Cho, 2018). Other recent meth-
ods adopt graph representation for molecules, using gen-
erative models or reinforcement learning to construct a
molecular graph, and optimize the property in question
while attempting to maintain validity (Jin et al., 2018a,
You et al., 2018, Guimaraes et al., 2017, Zhou et al.,
2018, Jin et al., 2018b). In learning representations for
molecules, they draw on methods that process graph
data directly, such as graph neural networks (You et al.,
2018, Jin et al., 2018b) and covariant compositional
networks (Hy et al., 2018). However, drug/materials
optimization is a stateless optimization problem, where
there is no explicit need to deal with states and solve
credit assignment. This can require a large number
of samples (Jiang et al., 2017), and is not desirable in
settings where each evaluation might involve several
laboratory experiments. BO methods, which are par-

2We will qualify this statement later in Section 3.3.

ticularly well suited for optimization problems with
expensive evaluations, are sparsely represented in the
field. Gómez-Bombarelli et al. (2018), Jin et al. (2018a),
Kusner et al. (2017) learn a Euclidean representation
for molecules and perform BO on this space, while Grif-
fiths and Hernández-Lobato (2017) extend that work
to account for validity constraints.

Synthesizable recommendations: In much of the
above work, synthesizability of recommendations re-
mains one of the most important concerns. The com-
mon approach to tackle this problem is to consider a
proxy synthesizability score, by either imposing search
constraints on the objective (Griffiths and Hernández-
Lobato, 2017) or incorporating the score into f along
with the other properties (Gómez-Bombarelli et al.,
2018). However, synthesizability scores are not always
reliable. For example, Gómez-Bombarelli et al. (2018)
found that their autoencoder produced a large num-
ber of molecules with unrealistically large carbon rings
when using the SA synthesizability score (Ertl and
Schuffenhauer, 2009) as the reward function. More
critically, it ignores practical challenges in a labora-
tory environment. First, a chemist may not have the
reagents and/or the process conditions available to syn-
thesize the molecule. Second, figuring out the synthesis
plan for a single molecule, let alone the hundreds of
them recommended during the optimization routine,
can be quite challenging.

We leverage a large and separate direction of research
which use ML techniques to predict outcomes of chem-
ical reactions (Schwaller et al., 2018a, Wei et al., 2016,
Coley et al., 2019, Chen and Baldi, 2009, Law et al.,
2009) (see Engkvist et al. (2018) for a more complete
list). The first methods for such synthesis prediction

tasks were template based, in that they either select
relevant rules from a fixed library, or rank enumerated
outcomes of applying these rules. One of the first ex-
amples in the ML community was Wei et al. (2016),
which predicted reaction type and then used SMARTS
transformations to construct candidate outcome graphs.
Due to rigidity of template-based approaches, template-
free methods have become increasingly popular (Jin
et al., 2017, Schwaller et al., 2018b). One such method
in this class, and the one we adopt in this work to ex-
plore the chemical space, is Rexgen (Coley et al., 2019).
It proceeds in two stages: first, reactive sites are pre-
dicted using a Weisfeiler-Lehman network with global
attention (Lei et al., 2017) on the graph representa-
tion of reaction inputs; next, possible configurations of
connectivity changes in reactive sites are scored with a
Weisfeiler-Lehman Difference network (Jin et al., 2017).

Joint optimization and synthesis: Our approach
in this paper, which marries both directions of work,
can be viewed in two ways. On one hand, it performs
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optimization while ensuring the recommendations are
synthesizable. On the other hand, as we will explain
shortly, it explores synthesis paths to discover promis-
ing candidate molecules via a data-driven guide. This
approach is the core novelty of our work. As far as
we are aware, there is only one work in this direction:
concurrently with us, Bradshaw et al. (2019) pursued a
similar goal of performing optimization with synthesis
guarantees. However, their methodology and outcomes
are very different from ours, in that they adopt a gener-
ative model on subsets of molecules and train it jointly
with a property predictor directly on that latent space,
all of which may require many samples. As a result,
while their method produces useful representations for
subsets of molecules, unlike ChemBO, it is not designed
for sample-efficient goal-directed optimization tasks.

Kernels on molecules: For our GP based BO ap-
proach, we need to define a kernel between molecules.
While there has been prior work on defining kernels
and similarity metrics between graphs (Wallis et al.,
2001, Kondor and Lafferty, 2002, White et al., 2019,
Sutherland, 2015), most do not account for more com-
plex properties of molecules in addition to graphical
structure. There have been a variety of neural net-
work based graph similarity measures proposed for
molecules (Liu et al., 2018, Torng and Altman, 2018,
Kearnes et al., 2016). However, these approaches are
computationally expensive, which can be challenging
in our GP based approach, where the similarity needs
to be computed for several pairs of molecules during
each iteration of the BO routine. A common class
of graph based kernels used in chemoinformatics are
based on molecular fingerprints (Ralaivola et al., 2005,
Hinselmann et al., 2010). In ChemBO, we use one
such molecular fingerprint kernel in our GP. However,
molecular fingerprints essentially featurize the graph at-
tributes and might not capture all necessary graphical
information. For this reason, we develop a novel graph
based similarity measure between molecules which is
computed via an optimal transport program. It is
most similar to Kandasamy et al. (2018) who use an
optimal transport based kernel for neural architecture
search. In our experiments, we found that while the
performance of the molecular fingerprint kernel and our
dissimilarity measure can depend on the objective, they

Algorithm 1 ChemBO

1: Input: Number of steps T , Initial evaluations D0

2: for t = 1, . . . , T do

3: Infer posterior GP(µt(x),t(x, x
0)|Dt�1)

4: xt  argmaxx2X 't(x) . Acquisition-Opt

5: f(xt) Evaluate xt

6: Dt  Dt�1 [ {xt, f(xt)}
return x⇤  argmaxxt2{x1,...,xT } f(xt)

generally outperform naive strategies which do not use
a probabilistic model to inform recommendations.

3 Method
3.1 ChemBO as a Gaussian Process based

Bayesian Optimization Algorithm

In this work, we design a Gaussian process (GP) based
Bayesian optimization (BO) procedure. The reader
can find a detailed review of GP-based BO in (Snoek
et al., 2012, Kandasamy et al., 2019a), and specific im-
plementation details (such as the choice of acquisition
function) in Appendix B. Here we focus on the two
central decisions of designing a GP based BO solution
for molecular optimization: choosing a GP kernel to
specify a GP model, and designing a method to opti-

mize the acquisition function. In Section 3.2, we specify
GP models, specifically choices for the kernel (x, x0)
between two molecules x and x0. Next, in Section 3.3,
we describe a method to optimize the acquisition 't

over the chemical space X . As mentioned previously,
when doing so, we will strive to ensure that the recom-
mendations are synthesizable and provide a synthesis
recipe. We note that while there are several options for
the kernel and the acquisition optimization strategy in
conventional domains, such as Euclidean spaces, both
tasks are nontrivial in the chemical space and consti-
tute the major contributions of this work. We outline
the ChemBO procedure in Algorithm 1.

3.2 Kernel

A natural option would be to simply use one of the ex-
isting molecular kernels. Indeed, molecular fingerprint
based kernels are known to work well for several appli-
cations, and we use that of Ralaivola et al. (2005) in
ChemBO. However, they may not be able to capture all
graphical information, which motivates us to develop a
new similarity measure described below.

An optimal transport based kernel: We will de-
scribe a dissimilarity measure d : X 2 ! R+ between
molecules. Given such a measure,  = e��d where
� > 0, is a similarity measure which can be used as
a kernel. The graphical structure of a molecule deter-
mines many of its chemical properties, and as such,
our measure will view molecules as graphs. We will
define this dissimilarity measure via a matching scheme
which attemps to match the atoms in one molecule to
another. The matching will only permit matching iden-
tical atoms, i.e. carbon atoms can only be matched to
carbon atoms, but we will incur penalties for matching
atoms with different bond types.

Molecules as graphs: For what follows, it will be
convenient to view a molecule M as a graph M =
(A,B), which is defined by a set of atoms A (vertices)
and a set of bonds B (edges). A bond (u, v) 2 B
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is an unordered pair of atoms u, v 2 A. Each atom
a 2 A has a label, denoted `a(a), as does each bond
b 2 B, denoted `b(b). For example, `a(a) could take
values such as C, H, or O, indicating carbon, hydrogen,
or oxygen atoms, while `b(b) could take values such as
SINGLE, DOUBLE, or AROMATIC, indicating single, double, or
aromatic bonds. We will also assign weights wa(a) > 0
for all atoms a 2 A of a molecule – our matching scheme
will attempt to match the weights in one molecule to
another, in order to compute a dissimilarity measure.
We will discuss choices for wa shortly.

Description of the measure: Given two molecules
M1 = (A1, B1),M2 = (A2, B2) with n1, n2 atoms re-
spectively, let U 2 Rn1⇥n2

+ denote the matching matrix,
i.e. U(i, j) is the weight matched between i 2 M1 and
j 2 M2. The dissimilarity measure is the solution of
the following program.

minimise
U

'at(U) + 'st(U) + 'nm(U) (1)

s.t.
X

j2A2

U(i, j)  wa(i),
X

i2A1

U(i, j)  wa(j), 8i, j

Here, the first term is the atom type penalty 'at which
only permits matching similar atoms, i.e. C atoms can
only be matched to other C atoms and not H or O
atoms. Accordingly, it is defined as

'at(U) = hCat, Ui =
X

i2A1

X

j2A2

Cat(i, j)U(i, j),

where Cat(i, j) = 0 if `a(i) = `a(j) and 1 otherwise.
The second term is the bond type penalty term, which,
similar to 'at, is given by 'st(U) = hCst, Ui, where
Cst(i, j) is the penalty for matching unit weight from
atom i 2 A1 to atom j 2 A2. We let Cst(i, j) to be the
fraction of dissimilar bonds in the union of all bonds.
If the atom type and bond type penalties are too large
or infinite, we can choose to not match the atoms from
one molecule to another. However, we will incur a
penalty via the non-matching penalty term 'nm. We
set this term to be the sum of weights unassigned in
both graphs, i.e.

'nm(U) =
X

i2A1

(wa(i)�
X

j2A2

U(i, j))

+
X

j2A1

(wa(j)�
X

i2A1

U(i, j)).

For two molecules M1,M2, we will denote the resulting
dissimilarity measure, i.e. the solution of (1), by d.

Design choices: Let us first consider choices for the
weights {wa(a)}a2A in the matching scheme. A natu-
ral option here is to let wa(a) be the atomic mass of

atom a, which assigns more importance to larger and
heavier atoms, which heavily influence the 3D structure
of the molecule. Indeed, the molecular mass (sum of
atomic masses) is commonly used as an indicator of how
drug-like a molecule is in many metrics, including the
QED (Bickerton et al., 2012). However, lighter atoms
may able to influence other important drug-like prop-
erties. For example, the existence of hydroxyl groups
(-OH), is strongly correlated with solubility in water,
since it can function as an electron donor. Hydrogen
(atomic mass 1.008 Au) plays a crucial role in this
behaviour, and, setting wa as above would downplay
its significance when compared to, say, carbon (atomic
mass 12.011 Au). In such cases, it is more appropriate
to treat all atoms types equally, setting wa(a) = 1 for
all atoms.

In addition to d, we also consider a normalized version
of this dissimilarity,

d̄(M1,M2) = d(M1,M2)/(wm(M1) + wm(M2))

where wm(M) =
P

a2A wa(a) is the total weight of a
molecule M = (A,B). Our experience suggested that
using d had a tendency to exaggerate the dissimilar-
ity between larger molecules, simply because a larger
amount of atom weights needed to be matched. That
said, the size of the molecule affects its drug-like prop-
erties (such as its ability to bind with the target), and
d accounts for the differences between small and large
molecules better than its normalized counterpart.

Combining OT kernels: The two options for the
weights {wa(a)}a2A and the two options for normal-
ization give rise to four different combinations for our
dissimilarity measure. Instead of attempting to find
a single best combination, we use an exponential sum

kernel of the form  = e�
P

i �idi , where {di}i are the
measures obtained for each combination. An ensemble
approach of this form allows us to account for all of
the factors discussed above when comparing molecules.
The �i terms, which affect the relative importance of
each measure, are treated as kernel hyperparameters
which can be fitted using maximum likelihood or pos-
terior sampling. It is worth mentioning that while the
above form is similar to many popular kernels, it is not
known if it is in fact a valid positive definite kernel.
However, there are many ways to circumvent this issue
in practice; in this work, we project the n⇥n matrix of
(·, ·) values to the positive-definite cone (Sutherland,
2015, Kandasamy et al., 2018). In Appendix A, we
show that (1) can be solved via an optimal transport
program (Villani, 2008) and discuss some shortcomings
in the proposed dissimilarity measure.

A simple test: Finally, we perform a simple exper-
iment to demonstrate that this dissimilarity metric
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aligns with drug-like properties. In Figure 1, we pro-
vide the following scatter plot for molecules sampled
from the ChEMBL dataset. Each point in the figure is
for pair of networks. The x-axis is the dissimilarity mea-
sure and the y-axis is the difference in the QED drug
likeliness score (Bickerton et al., 2012) and Synthetic ac-
cessibility score (Ertl and Schuffenhauer, 2009). We use
100 molecules, giving rise to 5000 pairs. We see that
when the measure is small, the difference in the QED
score is close to 0. As the measure increases, the points
are more scattered. One should expect that for a mean-
ingful distance measure, while molecules that are far
apart could have either similar or different properties
(as there could be several distinct “clusters”), molecules
that are close by should have similar properties, and
our measure satisfies this requirement. Additionally,
in Appendix A, we provide some interesting T-SNE
visualizations for our measure.

3.3 Exploring the Space of Synthesizable

Molecules and Optimizing the

Acquisition

Our proposal for acquisition optimize involves randomly
exploring the space of synthesizable molecules and pick-
ing the one with the highest acquisition—this can be
viewed as performing a random walk on a synthesis

graph
3. For this, consider a setting in a laboratory or

an automated experimentation apparatus, where we
have access to a limited library of reagents S and pro-
cess conditions Q. We will assume that we have access
to an oracle Synthesize which can take as input a set
of compounds and process conditions and tell us the
set of molecules M produced if these compounds are
reacted in the given conditions. In the event, a reaction
cannot be effected, it will output Null. Our procedure
for optimizing the acquisition function, described in
Algorithm 2, operates as follows. As input, it takes S,
P, the number of evaluations n and a set D of evalu-
ations where we have already conducted experiments.
First it randomly samples a few molecules S and a few
process conditions Q from S and Q respectively. It
passes them to Synthesize to generate a set of out-
puts M . If the synthesis was successful, i.e. if we could
generate new molecules that were not evaluated before,
they are added to the pool S. It repeats this for n
successful steps. At the end, we return the maximizer
argmaxx2S '(x) of the acquisition '.

The above procedure relies crucially on the Synthe-

size oracle, which can perfectly predict the outcomes
of reactions. Alas, no perfect such oracle exists4. While

3A synthesis graph is a directed graph where each node
is a molecule, and the parents of this node are the reagents,
which when combined, produce the child molecule.

4If it did, the entire field of organic chemistry might be
expressed as a massive graph search problem.

Algorithm 2 Acquisition-Opt: Random Walk Ex-
plorer
1: Input: n, S, P, D . Steps n, Initial molecules S and

conditions P, Past evaluations D
2: k = 0
3: while k  n do

4: S  Rand-Select(S) . Select a subset of
molecules as reaction inputs

5: Q Rand-Select(Q) . Select a subset of
process conditions

6: M  Synthesize(S,Q) . Predict product
7: if M 6= Null and M\D 6= ? then . M\D is

set difference.
8: k  k + 1
9: S  S [M\D . Add outcomes to the pool

return argmaxx2S '(x)

outputs of reactions are well known for simple cases, it is
impossible to predict outcomes with complex molecules,
and in some cases, the outputs may not even be deter-
ministic. Fortunately however, there have been several
advances in computational chemistry to predict out-
comes of chemical reactions, which can be used in place
of the oracle. In our work we use Rexgen (Coley et al.,
2019). It should be emphasized that since such predic-
tors are not perfect, so in practice, ChemBO could end
up recommending unsynthesizable molecules and/or in-
correct synthesis recipes. An additional concern is that
the random walk in Algorithm 2 could take long and
circuitous paths to arrive at a molecule. Consequently,
the synthesis recipe arrived at via Algorithm 2 may not
be the most efficient way to synthesize a given molecule.
Despite these concerns, we contend that our approach
is far more likely to yield synthesizable recommenda-
tions than existing approaches. Moreover, an incorrect
and/or inefficient recipe can still be a useful guide to
a chemist, who might choose to modify it rather than
develop from scratch.

4 Experiments

Optimization objectives: We evaluate our meth-
ods on two of the most common molecular property
functions found in the literature: the QED score (Quan-
titative Estimate of Drug likeliness) (Bickerton et al.,
2012), and Pen-logP score (penalized octanol-water
partition coefficient). The former is computed using
the procedure described in Bickerton et al. (2012),
while the latter is computed using the following for-
mula: Pen-logP(m) = logP(m) � SA-Score(m) �
ring-penalty(m), where logP is the octanol-water par-
tition coefficient (Miller et al., 1985), SA-Score is the
synthetic accessibility score (Ertl and Schuffenhauer,
2009), and ring penalty is the number of long cycles.
The partition coefficent measures solubility in water,
SA-score is a negative proxy for synthesizability (lower
is easier), and large rings might indicate that molecules
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Figure 1: Each point in the scatter plot indicates the dissimilarity measure between the molecules (x axis) and the difference
in the QED score and SA score (y axis). The four images are for the four different combinations of the distance. See text
for interpretation.

are not stable once synthesized. Note that the range of
penalized logP is unbounded, and QED is constrained
to values between 0 and 1. In implementing Pen-logP,
we followed the exact implementation of this metric
in (Jin et al., 2018a). We mention that these metrics
may not be the most relevant to actual drug discovery
applications – for instance, they do not account for
how well the molecule binds with the given target of
interest. However, their use in literature makes them
good comparative benchmarks.

Methods: We compare three instantiations of
ChemBO: 1. using a molecular fingerprint kernel (fin-

gerprint), 2. using the dissimilarity metric described
in Section 3.2 (ot-dist), and 3. using a linear com-
bination of fingerprint and ot-dist (sum-kernel). The
fingerprint based kernel computes Tanimoto similarity
between topological (path-based) fingerprints of given
molecules (Landrum et al., 2006). The sum-kernel is
a kernel given by k(x, y) = ↵1 · fingerprint(x, y) + ↵2 ·
ot-dist(x, y), where ↵i 2 [0, 10] are kernel parameters
fitted at training time. In addition, we also also com-
pare to the random walk explorer (rand) in Algorithm 2,
which operates exactly as described except returns the
maximum of the function f in step 9 (instead of the
acquisition). This can be viewed as a simple random
search baseline which attempts to optimize in the space
of synthesizable molecules. We wish to reiterate that
to our best knowledge other work do not enforce a hard
constraint on synthesizability, nor do they require that
a recipe for synthesis be provided. Hence, they are not
directly comparable to our method. However, we quote
results on the best QED and Pen-logP values from
their papers for comparison. Moreover, we include an
additional virtual screening baseline, which is allowed

to randomly sample and evaluate molecules from the
entire dataset, instead of just the compounds reachable
by synthesis from the starting pool.

Experimental set up: As stated previously, we wish
to emulate a setting where a chemist has to work with
the reagents and process conditions available to her.
We choose 20 randomly chosen molecules from the
openly available ChEMBL database as our initial set
of reagents. The maximum QED score of the initial
pool was 0.858 (when QED > 0.9, it is typically consid-
ered high). As the process conditions for the random
explorer, we use all the process conditions available in
Rexgen. We bootstrap all three methods listed above
by evaluating the metric (QED or Pen-logP) on this ini-
tial set, and then execute the methods for 80 iterations,
totaling 100 evaluations of f . We describe additional
details on our BO implementation in Appendix C.

4.1 Results & Discussion

Main Results: In Figure 2, we plot the number of
iterations against the optimal found value by each
method over 80 function evaluations for both QED
and Pen-logP. We provide the final optimal values for
each method in Table 1. The results were obtained by
averaging over 5 independent runs. ChemBO methods,
fingerprint, ot-dist and sum-kernel, all outperform the
naive random walk strategy on both tasks, validating
the use of model based Bayesian strategies for this task.
ot-dist does better than fingerprint on the QED score
while vice versa on Pen-logP, and sum-kernel provides a
good adaptive trade-off between them that works well
for both benchmarks, and also has lower variance.

Optimal Molecules & Synthesis Recipes: Figure 3 illus-
trate some optimal molecules found for the QED and
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Figure 2: Results comparing the three methods described in the beginning of Section 4. We plot the number of iterations
(after initialization) against the highest found QED (left) and Pen-LogP (right) values by each method. Higher is better in
both cases. All curves were produced by averaging over 5 independent runs. The shaded regions indicate one standard
error.

Pen-logP objectives by ChemBO. For the most part,
optimal QED molecules were found by ot-dist, while op-
timal Pen-LogP molecules by fingerprint. Interestingly,
molecules with high QED scores tend to be simpler
than those with high Pen-logP scores. In Appendix C,
we visualize and discuss the synthesis recipes for some
of the optimal molecules.

rand fingerprint ot-dist sum-kernel

QED 0.90± 0.01 0.91± 0.01 0.93± 0.01 0.94± 0.01
P.logP 6.81± 0.34 9.79± 2.26 8.10± 1.01 8.65± 0.43

Table 1: Final value for QED and Pen-logP over 80 eval-s

Reliability of synthesis paths: A thorough validation of
the synthesis paths proposed by ChemBO would require
performing actual synthesis in lab conditions. However,
we can perform the following sanity checks. Using
synthetic accessibility score Ertl and Schuffenhauer
(2009) as a proxy for ease of synthesis of the resulting
molecule, we can evaluate plausibility of the end result.
The results presented in Table 2 show that the end
molecule is within a reasonable range from averages in
curated datasets, and the minimum score over synthesis
path is well below these values.

ChEMBL ZINC250k Avg SA score Min path SA
2.73± 0.65 3.1± 0.77 3.77± 1.46 2.5± 0.44

Table 2: Synthetic accessibility scores over 50 samples/runs
over the datasets, optimal results from ChemBO, and aver-
age minimum over produced synthesis paths.

Novel Molecules: As ChemBO runs, we compute the
fraction of molecules that do not appear in the entire
ChEMBL dataset. For ot-dist optimizing QED, on aver-
age 95.64% molecules are novel, for fingerprint 96.84%;
and for Pen-logP 78% and 87.67%, respectively. This
indicates that ChemBO is able to explore the chemical
space well, despite the constraints on synthesizability.

Comparison with existing work: In Table 3, we
compare ChemBO to state-of-the-art methods adopt-
ing reinforcement learning or generative modeling tech-
niques (Jin et al., 2018a, You et al., 2018, Guimaraes
et al., 2017, Zhou et al., 2018). We use the same
evaluation strategy as in these works, reporting top
scores across several runs. It is interesting to compare
the number of QED/Pen-LogP evaluations required
by some of these methods. Guimaraes et al. (2017) is
trained with supervision on a random subset of 5K
molecules from the ZINC dataset (Irwin and Shoichet,
2005), and hence uses at least 5K evaluations. VAE
in Jin et al. (2018a) is trained on full ZINC dataset
(⇡ 250k molecules) in an unsupervised manner, and
then 25k evaluations to train a GP and optimize the
given objective. Both You et al. (2018) and Zhou et al.
(2018) train RL policies using all the 250K molecules in
the ZINC dataset and incorporate the penalized logP or
QED score as part of the reward, hence making at least
that many evaluations. In contrast, in our ChemBO ex-
periments, we ran 100 BO iterations using two different
kernels for 5 trials, totalling 1000 function evaluations.
It should be emphasised that the above methods are
not designed to keep the number of QED/Pen-logP
evaluations to a minimum, and in fact, are tools de-
veloped for very different settings. Yet, it speaks to
the efficiency of ChemBO, that we were able to obtain
better or comparable values than the above work in
significantly fewer evaluations, particularly given our
more stringent conditions on synthesizability.

Virtual screening baseline: There are two possible
ways to translate the virtual screening experiment into
a computational simulation. Firstly, we can assume
that a fixed number of compounds is available to an
experimenter, and we can either synthesize from them,
or use them directly for screening. This baseline is
already part of the results above, since we spend the
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ORGAN (Guimaraes et al., 2017) JT-VAE (Jin et al., 2018a) GCPN (You et al., 2018) MolDQN (Zhou et al., 2018) ChemBO (ours)
QED 0.896 0.925 0.948 0.948 0.941

Pen-logP 3.63 5.30 7.98 11.84 18.39
# evaluations � 5K 275K � 25K � 25K 100

Table 3: The best QED and Pen-LogP scores reported from prior work. For ChemBO, we use the best value obtained
across the 5 trials for both fingerprint and ot-dist. Note that not all methods treat this as an optimization problem and
do not impose conditions on synthesizability as we do.

(a) QED 0.92083 (b) QED 0.92145 (c) QED 0.94023 (d) QED 0.94087

(e) plogp 11.271 (f) plogp 11.988 (g) plogp 12.231 (h) plogp 11.270

Figure 3: A random sample of optimal molecules and values found by ChemBO. In the top row, we show those with the
highest QED scores, and in the bottom row we show the same for Pen-logP.

initial BO budget on finding the maximum value of the
initial pool (“screening” it), and after that all optimizers
have to improve upon that value. In the second version,
we compare virtual screening and ChemBO/rand for
the same number of evaluations. Now we start with
a pool, and then sample compounds outside of that
pool from the rest of the dataset. This corresponds
to a situation where the experimenter purchases the
compounds randomly in addition to the ones she has;
in theory, this could lead to a larger optimum due to
accessing more dataset molecules than in our setup,
i.e. a larger search space. The results obtained by
simulating such an experiment are shown in Figure 4.
Even with using more samples, these values are worse
than the numbers in Table 1.

QED penalized logp
0.922± 0.013 5.34± 0.973

Table 4: Virtual screening baseline: means and standard
deviations over 10 replications.

5 Conclusion
In real world use cases for computational and statisti-
cal methods for molecular optimization, an algorithm
recommends a molecule, which is synthesized, tested,
and the results returned to the algorithm. These re-
sults are then used by the algorithm to inform future
recommendations. In order to achieve full automation,
computational methods should strive to ensure that
such recommendations are synthesizable and provide a
recipe to do so. ChemBO, which uses BO techniques
to design recommendations, is a first step towards

this ambitious goal. Our experiments indicate that
model-based Bayesian methods can outperform naive
alternatives for this problem. We study kernels for
ChemBO and find that the ot-dist kernel we propose
can outperform standard kernels in some tasks, and
that combining it with other kernels (such as fingerprint)
can be a lower-variance alternative that performs well
across benchmarks. In addition, on two benchmark
objectives, we are able to get competitive or better
scores than existing work, while using significantly less
evaluations of the objective. While our approach is con-
strained by limitations of current synthesis predictors,
it can still be a very useful guide to a practitioner.

Improving the reliability of synthesis predictors and
developing smarter methods to explore the chemical
space are interesting avenues for future research, which
will improve the efficacy of our framework. Another
direction is to use ChemBO (and other methods) to
optimize for the ability to bind with a given target.
Separately, it would also be interesting to view the
optimization budget not in terms of the number of
compounds tested, but rather in terms of the number
of additional synthesis steps required (it is plausible
that synthesis is the bottleneck, not the cost of testing).
These goals bring up some new interesting method-
ological questions for Bayesian optimization, and the
potential for new modeling paradigms Kandasamy et al.
(2019b), Neiswanger et al. (2019). Finally, it would
be interesting to extend and test our framework on
biologics and other molecular optimization problems
in drug discovery and materials science.
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