
Supplementary Material:
Learning Rate Adaptation for Differentially Private Learning

1 Comparison to the Private Selection
algorithm by Liu and Talwar

Mean acc. Std acc. Mean evals
ADADP 0.6349 0.0033 1

Priv. γ = 2−9 0.6386 0.0011 601.04
Priv. γ = 2−8 0.6368 0.0113 224.30
Priv. γ = 2−7 0.6317 0.0399 131.76
Priv. γ = 2−6 0.6266 0.0516 49.77
Priv. γ = 2−5 0.6215 0.0552 32.25
Priv. γ = 2−4 0.6053 0.0662 14.79
Priv. γ = 2−3 0.5576 0.1280 6.72
Priv. γ = 2−2 0.5467 0.1278 3.42
Priv. γ = 2−1 0.4728 0.1688 2.04

Table 1: Comparison of ADADP and the private se-
lection algorithm [1, Alg. 2] for different values of the
parameter γ. ’Mean evals’ denotes the mean of the
number of training runs (100 epochs each) needed for
one evaluation of each algorithm. ’Mean acc.’ and
’Std acc.’ denote the mean and standard deviation
of the test accuracy of the resulting model, respec-
tively. Both methods have the same (ε, δ)-privacy for
the training dataset. The private selection algorithm
needs also a validation set which it also exposes with
(ε, δ)-DP.

2 Additional Figure to Section 5.5

Figure 1 shows the likelihoods of the test data as the
learning progresses for the Gaussian mixture model of
Section 5.5. The values of ε are for δ = 10−6.

3 Application to Federated Learning

Federated learning [2] presents another setting where
classical hyperparameter adaptation with a validation
set may be impractical. One obvious pain point is
skewed distribution of data on different clients, which
may lead to different clients requiring very different
learning rates that would be very difficult to tune with-
out an adaptive algorithm.
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Figure 1: Log-likelihood L(qξ) for ADADP and for
DP-SGD for different learning rates η, when σ = 1.2.

3.1 Adaptive federated averaging algorithm

We consider the federated averaging algorithm de-
scribed in [2]. The idea is such that the same model
is first distributed to several clients. The clients up-
date their models based on their local data, and these
models are then aggregated after a given interval by
a server which then averages the models to obtain a
global model. This global model is then again dis-
tributed to the clients.

In the algorithm described in [2, Algorithm 1], a ran-
dom subset of clients is considered at each aggregation.
We consider the case C = 1 where each client partic-
ipates in every aggregation, and replace the gradient
step in client update with a non-private variant of Al-
gorithm 2 given in the main text.

In [2], SGD with a constant learning rate is used for
the updates of the clients. The motivation for using
the learning rate adaptation comes from the fact that
after averaging and distributing, the model at each
client may be very far from the optimum for the local
data and thus small steps are needed in the beginning
of each sub training. Moreover, the data may vary
considerably between the clients, leading to varying
optimal learning rates.

For the learning rate adaptation, we use the same pro-
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Algorithm 1 Learning rate adaptive client update

ClientUpdate(k, θ)
Split Pk into batches of size |B|.
for each local step ` = 1, . . . , E do
Draw a batch B1 and evaluate at θ`:

G1 ←
1

|B|
∑
i∈B1

∇fθ`(xi).

Take a step size η`
2 :

θ`+1/2 ← θ` −
η`
2
G1,

Take a step of size η`:

θ̂`+1 ← θ` − η`G1,

Draw a batch B2, and evaluate at θ`+1/2:

G2 ←
1

|B|
∑
i∈B2

∇fθ`+1/2
(xi).

Take a step of size η`
2 :

θ̃`+1 ← θ`+1/2 −
η`
2
G2

Evaluate: err` ← ‖err(θ`+1, θ̂`+1)‖2
if err` > τ : then
θ`+1 ← θ` (Discard step)

end if
update: η`+1 = min(max( τ

err`
, αmin), αmax) · η`.

end for

cedure as in ADADP, but without the additive noise
and clipping of the gradients. We also use the con-
dition erri < τ for the model update as it makes the
algorithm considerably more stable.

3.2 Experiments

We compare the federated averaging algorithm with
adaptive learning rates to the constant learning rate
SGD. All experiments are implemented using PyTorch.

3.2.1 Dataset and test architectures

CIFAR-10 consists of colour images classified into 10
classes. The training set contains 50000 and the test
set 10000 examples. Each example is a 32 × 32 im-
age with three RGB channels. We use a simple neu-
ral network, which consists of two convolutional layers
followed by three fully connected layers. The convo-
lutional layers use 3 × 3 convolutions with stride 1,
followed by ReLU and max pools, with 64 channels
each. The output of the second convolutional layer is
flattened into a vector of dimension 1600. The fully
connected layers have 500 hidden units. Last layer
is passed to softmax of 10 classes with cross-entropy
loss. The total number of parameters for this network
is about 106.

3.2.2 Experimental Results

We consider a pathological case, where the CIFAR-10
training data is divided to five clients such that client
1 has cars and trucks, client 2 planes and ships, client
3 cats and dogs, client 4 birds and frogs and client
5 deers and horses. Then, each client has 10000 im-
ages. We interpolate between this pathological case
and a uniformly random distribution of data between
the five clients. Figure 3a depicts the test accu-
racies for the learning rate adaptive algorithm and
SGD. The learning rate of SGD is tuned in the grid
{. . . , 10−2.5, 10−2.0, 10−1.5, . . .}. We use in all alterna-
tives |B| = 10. We see that as the distribution of data
becomes more pathological (33% of the data chosen
randomly), the learning rate adaptive method is able
to maintain the overall performance much better than
SGD. Figure 3b corresponds here to the fully patho-
logical case. For a given minibatch size |B|, each client
carries out E number of sub steps between each aggre-
gation such that |B| · E = 10000 (one epoch of data
for each client).

Figure 2 illustrates further how ADADP is able to
adapt even for highly pathological distribution of data
whereas the performance of (even an optimally tuned)
SGD reduces drastically when the data becomes less
uniformly distributed.
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(a) Test accuracy vs. % of randomness.
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(b) Test accuracy vs. learning rate η for different levels of
randomness. For ADADP η means here the initial η0.

Figure 2: CIFAR-10 test accuracies for the federated
averaging algorithm after 200 communication rounds
using ADADP for different initial learning rates η0 and
constant learning rate SGD for different η. The train-
ing data is interpolated between the pathological case
and the uniformly random distribution of data. All
points are averages of three runs.

Adam gave poor results in this example. Figure 4
shows the test accuracies in the interpolated case,
where 33% of the data is chosen randomly for each
client, for the best initial learning rates found from
the grid {. . . , 10−5.5, 10−5.0, 10−4.5, . . .}. We use here
|B| = 10. Notice here the different scale of y-axis as
in Figure 3a.
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(a) Interpolated case.
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Figure 3: CIFAR-10 test accuracies for the federated
averaging algorithm using ADADP and a learning rate
tuned SGD, when the training data is interpolated be-
tween the pathological case and the uniformly random
distribution of data.

0 25 50 75 100 125 150 175 200
communication rounds

10

15

20

25

30

35

40

te
st

 a
cc

ur
ac

y

0 = 10 5.5

0 = 10 5.0

0 = 10 4.5

0 = 10 4.0

Figure 4: Test accuracies for the federated averag-
ing algorithm, when the client updates are done using
Adam using different initial learning rates η0.
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