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Stanford University

Abstract

A popular way to estimate the causal effect
of a variable x on y from observational data
is to use an instrumental variable (IV): a
third variable z that affects y only through
x. The more strongly z is associated with x,
the more reliable the estimate is, but such
strong IVs are difficult to find. Instead,
practitioners combine more commonly avail-
able IV candidates—which are not necessar-
ily strong, or even valid, IVs—into a single
“summary” that is plugged into causal ef-
fect estimators in place of an IV. In genetic
epidemiology, such approaches are known as
allele scores. Allele scores require strong
assumptions—independence and validity of
all IV candidates—for the resulting estimate
to be reliable. To relax these assumptions,
we propose Ivy, a new method to combine IV
candidates that can handle correlated and in-
valid IV candidates in a robust manner. The-
oretically, we characterize this robustness, its
limits, and its impact on the resulting causal
estimates. Empirically, we show that Ivy can
correctly identify the directionality of known
relationships and is robust against false dis-
covery (median effect size ≤ 0.025) on three
real-world datasets with no causal effects,
while allele scores return more biased esti-
mates (median effect size ≥ 0.118).

1 Introduction

A goal of causal inference is to ascertain the causal re-
lationship between a pair of variables (the risk factor
x and the outcome y) from observational data. This is
difficult because causal relationships can be distorted
by confounders: common causes of the risk factor and
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the outcome that may be unobserved. To address this
difficulty, a third variable, called an instrumental vari-
able (IV), can be used to estimate causal effect. In-
formally, an IV only affects the outcome through its
effect on the risk factor. IV methods are widely used
in practice (Angrist and Krueger, 1991; Mokry et al.,
2015; Walker et al., 2017; Millwood et al., 2019). In
particular, we are motivated by Mendelian randomiza-
tion (MR) (Burgess and Thompson, 2015), a represen-
tative use case in which genetic markers serve as IVs
to infer causation among clinical variables.

IV methods are most reliable when the IV z is strongly
associated with the risk factor x, but such strong IVs
are often difficult to identify in practice. Instead, prac-
titioners typically rely on more readily available IV
candidates. These variables may not be strong, or even
valid, IVs, but can be used in lieu of an unavailable
strong IV. To this end, a two-phase approach can be
used: first, synthesize: combine the IV candidates into
a summary variable, and secondly, estimate: plug the
summary variable into a causal effect estimator.

In MR, a popular, state-of-the-art approach for the
synthesis phase is allele scores. The summary vari-
ables generated by allele scores are meant to reduce
bias in causal estimates (Angrist and Pischke, 2008;
Davies et al., 2015). In the words of Burgess et al.
(2017), allele scores are a “recent innovation” in MR
and are a “recommend[ed]” way to utilize plentiful IV
candidates—but with the caveat that if an IV candi-
date is not actually a valid IV, allele scores may lead
to “potentially misleading estimates.” Indeed, allele
score methods suffer two main weaknesses: they im-
plicitly assume that the IV candidates (1) are all valid
IVs and (2) are independent conditioned on the sum-
mary variable (Sebastiani et al., 2012). When these
assumptions are not met, as often happens in practice,
the resulting estimate may turn out to be unreliable.1

To improve robustness against invalidity and depen-
dencies among the IV candidates while still reaping
the benefits of the two-phase approach (e.g., modular-
ity and bias reduction), we propose Ivy, a novel way
to synthesize a summary IV from IV candidates. Ivy

1See Appendix A for an extended discussion.
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produces a summary IV by modeling it as a latent
variable, and inferring its value based on the statisti-
cal dependencies among the IV candidates. Ivy is in-
spired by recent advances in the theory of weak super-
vision, leveraging results on structure learning (Varma
et al., 2019). Ivy targets the synthesis phase and is
orthogonal to the effect estimation phase: the sum-
mary IV it generates can directly be plugged into IV-
based causal effect estimators, whether they are classi-
cal (Wald, 1940; Angrist et al., 1996), robust (Bowden
et al., 2016; Kang et al., 2016), or modern (Hartford
et al., 2017; Athey et al., 2019).

We provide theoretical bounds on the robustness of our
approach against invalidity or dependencies among the
IV candidates. Specifically,

• We analyze the parameter estimation error for Ivy.
Under weaker assumptions than allele scores, and
with sufficiently many samples, Ivy’s error scales
as O(1/

√
n) for n samples. Even outside of this

regime, when Ivy may fail to identify all invalid IVs
or dependencies, the resulting error is mild (scaling
linearly in the number of misspecified dependencies
and undetected invalid IVs).

• We translate the error in the parameter estimation
into bounds for a downstream parametric causal
effect estimator —the Wald estimator—which is a
commonly used estimator in MR.

• We further adapt our analysis to show how, in con-
trast to Ivy, allele scores may produce unreliable es-
timates in the presence of invalidity or dependency
among IV candidates.

Empirically, we show that Ivy can more reliably es-
timate causal effects compared to allele score meth-
ods, even with low-quality uncurated IV candidates
with potential dependencies and invalidity. On three
real-world datasets with no causal effects, Ivy yields
median effect size less than 0.025, while allele scores
return more biased estimates (median effect size ≥
0.118). This result aligns with our theoretical insights
into Ivy and allele scores.

2 Background

We consider a two-phase approach to estimating causal
effects with IV candidates. First, the IV candidates are
combined to form a summary (the synthesis phase).
Second, in the effect estimation phase, this summary
is plugged into an estimator, along with the risk fac-
tor and outcome, to produce an effect. Our approach
tackles the first phase, and is orthogonal to the second
phase. We give background on these ideas below.

We seek to infer the causal relationship between a risk
factor x and an outcome y. This relationship may be

distorted by a confounder c, which is a common cause
of both x and y. To handle confounding, an instru-
mental variable z may be used. z directly induces a
change in x independent of c. This change will alter
the value of y only through the causal link between
x and y, enabling us to measure the causal link (Fig-
ure 1a). We focus on the setting where x, y, c, and z
are binary, although our procedure can be extended to
handle continuous x, y, and c. A valid IV is a variable
satisfying Definition 1; otherwise, it is invalid.

Definition 1 (Burgess and Thompson (2015)). An in-
strumental variable z satisfies (i) Relevance: z is not
independent of the risk factor, i.e. z 6⊥ x; (ii) Exclusion
Restriction: z can only influence the outcome through
x, i.e. z ⊥ y | x, c; (iii) Unconfoundedness: z is inde-
pendent of the confounder, i.e. z ⊥ c.

Figure 1a depicts the setting where a valid IV is ob-
servable. The dashed confounder node c indicates that
IV methods can deal with unobserved confounders be-
tween x and y. By contrast, estimating effects with-
out accounting for confounding may lead to failure in
distinguishing between spurious correlation and causa-
tion. The following is a well-known example of spuri-
ous correlation in epidemiology, dismissed by a careful
use of IVs.

Example 1. The concentration of high-density
lipoprotein (HDL) is negatively correlated with the oc-
currence of coronary artery disease (CAD) and thus
appears protective, but recent studies suggest that there
is no causal link. The correlation is spurious due
to confounders such as the concentration of other
lipid species (Rye and Ong, 2015). Nonetheless, the
strength of this spurious correlation led to a hypoth-
esized causal link, but drugs developed to raise HDL
levels failed to prevent CAD (Schwartz et al., 2012).
This spurious correlation was later dismissed by a se-
ries of MR studies (Voight et al., 2012; Holmes et al.,
2014; Rader and Hovingh, 2014).

2.1 IV Synthesis

The more strongly a valid IV is associated with the risk
factor, the more reliable the resulting causal effect es-
timate. However, finding such strong IVs is challeng-
ing in practice. Instead, practitioners often combine
more widely available IV candidates—variables that
are weakly associated with the risk factors, intercor-
related, or even invalid IVs—into a summary IV. One
way to view this procedure is that the summary IV is a
prediction of a latent variable that, while unobserved,
can serve as a strong IV.

Allele Scores The use of unweighted/weighted al-
lele scores (UAS/WAS) to synthesize a summary IV
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Figure 1: IV method settings (unobserved variables are dashed; the dashed arrow between x and y is the causal
relationship we seek to estimate, dashed edges are dependencies that we seek to infer): (a) the traditional setting
with observed strong IV z, (b) a simple setting where we do not see z, but see noisy weak IV candidates w1, w2, w3

independent conditioned on z, (c) a more challenging setting that Ivy can handle where some IV candidates have
dependencies (w2, w3), others are invalid (w4 violates unconfoundedness, w5 and w6 violate exclusion restriction,
and w6 violates relevance).

is a popular leading approach in MR (Burgess and
Thompson, 2013; Davies et al., 2015; Burgess et al.,
2016). UAS weights each IV candidate equally while
WAS weights them based on their associations to the
risk factor. While allele scores can mitigate bias in-
duced by weak IV candidates, they assume that these
IV candidates are all valid and independent condi-
tioned on the summary (Figure 1b). Thus, depen-
dencies (Sebastiani et al., 2012) or invalidity (Burgess
et al., 2017) in IV candidates (Figure 1c) can still result
in unreliable effect estimates when using the summary
variable. Our proposed approach, Ivy, can be viewed
as a generalization of allele scores to lessen these is-
sues.

2.2 Effect Estimation

In the effect estimation phase, the risk factor x, the
outcome y, and the summary (or, when available, the
strong IV) z are used in an estimation procedure to
obtain an estimate of the causal effect of x on y.

In MR, the standard estimator is the Wald ratio
βzy/βzx, where βzx and βzy are the logistic regression
coefficients of predicting x and y using z, respectively.
While Ivy can be plugged into other estimators, we
analyze the estimation phase for the commonly used
Wald estimator in MR.

3 IV Synthesis With Ivy

We describe the Ivy framework for instrumental vari-
able synthesis. We begin with our problem setup and
assumptions. Then we present Ivy (Algorithm 1) and
its components. Next, we theoretically characterize
the model parameter estimation error in Ivy due to
invalid IV candidates, misspecified dependencies, and
sampling noise. Finally, we bound the impact of this
error on downstream causal effect estimation.

3.1 Problem Setup

We seek to use a valid, but unobserved IV z ∈ {−1, 1}
to infer the causal relationship between the risk fac-
tor x ∈ {−1, 1} and the outcome y ∈ {−1, 1}. This
causal relationship is obscured by potentially unob-
served confounders c ∈ {−1, 1}d. The data generation
process among x, y, z, and c follows some probability
distribution D. Although we do not directly observe
z, we do observe m IV candidates w ∈ {−1, 1}m. Only
some of these m IV candidates are valid.

If the IV z could be observed, we could directly plug it
into a causal effect estimator; unfortunately, z is rarely
known in practice. Thus, the primary challenge is to
reliably infer z from w, i.e. to estimate the distribution
P(z | w), and to characterize how this impacts the
reliability of downstream causal inference.

Notation We use “IV candidate” and “candi-
date” interchangeably. We call candidates that are
valid/invalid IVs “valid/invalid candidates”. We de-
note the index set of the valid candidates as V ⊆ [m],
where [m] := {1, 2, . . . ,m}. We use wV to repre-
sent the subvector of the vector w indexed by V (i.e.
the subvector corresponding to the valid candidates).
When the subscript is omitted, ‖·‖ denotes the 2-norm.

Inputs and Outputs We have access to data{
(x(i), y(i), w(i))

}n
i=1

: n samples each of the risk x, the
outcome y, and the m IV candidates. Our goal is to
produce a causal effect estimate α̂x→y of x on y.

3.2 Assumptions

We explain the assumptions made by Ivy, in particular
comparing to those made by allele scores. These are
described in further depth in Section B.2.

First, we describe assumptions on validity. We assume
the majority of IV candidates are valid IVs, and for the
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invalid candidates (i 6∈ V ), wi ⊥ z. These assumptions
weaken those of allele scores, which assume that all
candidates are valid IVs.

Next, we continue with assumptions on dependen-
cies. To allow for dependencies, we model the can-
didates and z via an Ising model (the canonical binary
maximum-entropy distribution with pairwise depen-
dencies). We write the density of the model as

1
Z exp(θ∗zz + Σi∈V θ

∗
iwiz + Σ(i,j)∈Eθ

∗
ijwiwj), (1)

where Z is a normalization constant, E is the set of
pairwise dependencies between valid IVs, and the θ∗

terms are the model parameters. While allele scores
require the maximal level of sparsity in the model (no
dependencies, so that E is empty), our assumptions
are weaker: we only require that for each valid IV
candidate wi there are at least two others that are
independent of wi and each other conditioned on z,
and, conversely, that candidates that are dependent
(i.e., in E) are all mutually dependent. Lastly, we
require that on average, valid IV candidates agree with
z more often than not. We discuss identifiability of
causal effects in Appendix B.3.

3.3 Algorithmic Framework

We describe the Ivy framework (Algorithm 1). First,
because our data may include both valid and invalid
IV candidates, and because even the valid candidates
may have dependencies, we learn a set of valid can-
didates and dependencies directly from our data (Al-
gorithm 2). Next, we learn the mean parameters of
the joint distribution of our estimated valid wi’s and
z, without observing z (Algorithm 3). Concretely,
(µ∗, O∗), the true mean parameters2, are E[wz] and
E[wwT ] (where E[wz] is a vector with entries E[wiz]).
We observe the w’s, so we can easily estimate O∗ by
Ô. More challenging is to estimate µ∗, since we do not
observe z; we use our learned dependencies and valid-
ity to estimate µ∗ by µ̂. Finally, in Algorithm 4 we use
µ̂ and Ô to form an estimate ẑ of z. We also describe
how to use ẑ in a generic IV-based estimator F to get
a causal effect estimate (the estimation phase). We
describe the components of Algorithm 1 in detail.

Step 1: Identify Valid IV Candidates and their
Dependencies. Inputs: data and hyperparameters.
Outputs: estimated set of valid candidates V̂ and esti-
mated dependency set Ê of V̂ . Our method for learn-
ing the valid IVs and their dependencies is an applica-
tion of recent approaches for structure learning (Varma
et al., 2019) in graphical models. The main challenge

2These are expectations of the sufficient statistics in (1).
E[z] is also a parameter; we assume it is known, but it can
also be estimated (see, for example, Ratner et al. 2019).

Algorithm 1 Ivy Algorithmic Framework

Input: Data
{

(w(i), x(i), y(i))
}n
i=1

.

1: V̂ , Ê ← StructureLearn (data, λ, γ, T1, T2)
2: µ̂← ParamLearn (data, V̂ , Ê)
3: α̂x→y ← CausalEst (Estimator,data, V̂ , µ̂)

Output: Causal effect estimate α̂x→y.

Algorithm 2 Valid IV and Dependency Learning
(StructureLearn)

Input: Data
{
w(i)

}n
i=1

, params. λ, γ, T1, and T2.

1: Compute sample covariance matrix Σ̂ from w(i)’s.
2: (Ŝ, L̂)← argmin

L�0, S−L�0
L(S − L, Σ̂) +λn(γ‖S‖1 +‖L‖∗),

where L is a loss function.
3: ˆ̀← argmin` ‖L̂− ``T ‖F
4: V̂ ← {j : |(Σ̂ˆ̀)j | ≥ T1}
5: Ê ←

{
(i, j) : i, j ∈ V̂ , i < j, Ŝi,j > T2

}
Output: Estimated valid IV candidate set V̂ , esti-

mated dependency set Ê.

is that without observing z, all of the valid IV candi-
dates will appear to be correlated, although may be in-
dependent conditioned on z. Meanwhile, the valid and
invalid candidates form mutually-independent compo-
nents. We recover both the graph structure and the
covariances between the IV candidates (valid and in-
valid) and z via a robust PCA approach. This enables
us to estimate which IVs are valid and their statistical
dependencies. The procedure is given in Algorithm 2.

Concretely, the identification of the valid candidates
and their dependencies translates to decomposing a
rank-one matrix and a sparse matrix from their sum
(Line 2 of Algorithm 2). Here, the candidate validity
ends up being encoded in the rank-one component L̂
and the dependencies are encoded in the sparse compo-
nent Ŝ. Thus, we can threshold the vector correspond-
ing to the rank-one matrix L̂ to obtain the valid IVs
and then threshold the corresponding submatrix of Ŝ
containing valid IVs to obtain the dependencies. There
are several choices of loss functions. For our analysis,
we use L(S−L, Σ̂) = 1

2 tr((S−L)Σ̂(S−L))−tr(S−L).

Step 2: Estimate Parameters of the Candidate
Model. Inputs: data, Ĝ := (V̂ , Ê). Outputs: esti-
mated parameters Ô, µ̂. In Algorithm 3, we learn the
mean parameters. We leverage conditional indepen-
dencies encoded in our estimated dependency struc-
ture to obtain these parameters without ever observ-
ing z, via the agreements and disagreements of the IV
candidates. We adapt Ratner et al. (2019).

Specifically, we set aj := wjz for all j ∈ V̂ . Then
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Algorithm 3 Parameter Learning (ParamLearn)

Input: Data
{
w(i)

}n
i=1

, Ĝ = (V̂ , Ê) where V̂ are esti-

mated valid candidates, Ê are edges among them.

1: Form estimated matrix Ô ← 1
n

∑n
i=1 w

(i)

V̂
(w

(i)

V̂
)T .

2: Ω̂← {(i, j) : wi, wj are disconnected in Ĝ \ {z}}
3: Form matrix MΩ̂ and vector q̂ from Ô

4: ˆ̀← argmin` ‖MΩ̂`− q̂‖
5: |µ̂| ← exp(ˆ̀/2)
6: Recover sgn(µ̂)

Output: Estimated model mean parameters Ô, µ̂.

Algorithm 4 Synthesis & Causal Effect Estimation
(CausalEst)

Input: Data
{

(w(i), x(i), y(i))
}n
i=1

, estimated param-

eters Ô, µ̂, V̂ , Ê, causal effect estimator F (·).
1: for i ∈ [n] do . Synthesize

2: ẑ(i) ← Pµ̂,Ô

(
z | w(i)

V̂

)
3: end for
4: α̂x→y ← F

({
(ẑ(i), x(i), y(i))

}n
i=1

)
. . Estimate

Output: Causal effect estimate α̂x→y.

the mean parameter µi := E[ai] = E[wiz]. Since
z2 = 1, E[aiaj ] = E[(wiz)(wjz)] = E[wiwj ]. We
can estimate E[wiwj ] from data. Moreover, if wi and
wj are independent conditioned on z (i.e. (i, j) is an

edge in Ω̂), then E[aiaj ] = E[ai]E[aj ], which means
logE2[ai] + logE2[aj ] = logE2[wiwj ]. We form a
system of equations MΩ̂` = q, with q the vector of
logE2[wiwj ] terms and ` the vector of logE2[ai] terms.

The matrix MΩ̂ is formed by taking each (i, j) 6∈ Ω̂ and
adding a row with a 1 in positions i and j and 0’s else-
where. We solve this to get estimates µ̂i of E[ai] up to
sign; using the assumption that valid candidates agree
with z the majority of the time, we recover the signs.
This gives µ̂ (and Ô was estimated earlier).

Step 3: Synthesize IV and Estimate Causal Ef-
fect Inputs: data, Ô, µ̂, V̂ , Ê, and causal effect es-
timator F (·). Outputs: causal effect estimate α̂x→y.
Finally, in Algorithm 4, we generate a probabilisti-
cally synthesized version of z called ẑ from our model
parameterized by Ô, µ̂. We obtain samples of z based
on these to account for the uncertainty in the synthe-
sized summary IV, concluding synthesis. We then feed
these samples, along the risk factor and the outcome,
to a causal effect estimator in the estimation phase,
producing a causal effect estimate.

3.4 Theoretical Analysis

We theoretically analyze Ivy and provide bounds on
its parameter estimation error. We further analyze
the error in downstream causal effect estimation using
the Wald estimator—a common estimator of causal
effects in MR—as a proof-of-concept. We focus on
the scaling with respect to the number of samples n
and the number of IV candidates m. We present a
simplified bound that explains the conceptual result,
and provide a more general version in Appendix B.4.

Parameter Estimation Bound We show how the
gap between the parameters µ∗ of (1) and our esti-
mated µ̂ decays with the number of samples.3 We fix
Rmin, the lowest correlation between valid candidates,
and Cmin, the lowest accuracy for a valid candidate.
Then, let c0, c1 be constants and d be the largest de-
gree of a valid IV candidate in G.

Theorem 1. Let µ̂ be the result of Algorithm 1 run on
n samples of m IV candidates, where m > c0. Denote
µ∗ to be the mean parameter of (1). If n > c1d

2m,
then with probability at least 1− 1

m ,

E[‖µ̂− µ∗‖] ≤ 16m
5
2

Rmin
‖M†‖

√
2π

n
.

Remark The bound on the estimation error goes to
0 as O(1/

√
n), while it scales as O(m5/2) in the num-

ber of IV candidates. The bound also depends on the
smallest correlation between a pair of valid IVs; the
smaller this term, the more samples we need to accu-
rately estimate µ∗. ‖M†‖ is the largest singular value
of the pseudoinverse of M := MΩ, i.e., the true M
formed with the edges from G; it indicates the cost of
solving our problem (which is independent of n).

Under the assumptions in Section 3.2, Ivy can han-
dle invalid candidates and dependencies in G. This is
because with sufficiently many samples (the require-
ment n > c1d

2m), the structure learning component
correctly identifies valid candidates and the correct de-
pendencies among them, with high probability. The
more dependencies that have to be estimated (that
is, the larger the number of sources m and degree d),
the more samples we need. However, once we pass a
threshold, we are operating only over valid IVs and a
correct model, enabling the estimation error to go to
zero. In Appendix B.4, we present a more technical
result, applicable to the low-sample regime. In that
case, the structure learning component may not iden-
tify all invalid IVs and may leave some edges, and we
bound the impact of these unidentified invalid IVs and
misspecified dependencies.

3In Appendix B.4 we bound E[‖Ô−O∗‖] with Lemma 1.



Kuang et al.

Application to Allele Scores UAS implicitly fol-
lows the conditionally independent model above. Our
framework helps obtain new insights on its behavior.
Specifically, when the ground truth model is not con-
ditionally independent, we can explain the approxima-
tion error in the parameters estimated by UAS.

As long as there is at least one misspecified depen-
dency, the parameter error in UAS cannot go to
zero. Specifically, let n → ∞ and suppose there is
a dependency between w1 and w2, but we miss it.
Then, we do not have conditional independence, so
E[w1w2] 6= E[a1]E[a2]. Form q′ with E[a1]E[a2] and
q with E[w1w2]. We can write q′ − q = δe1 for some
δ 6= 0, since q is only incorrect in one position. Then,
‖`′ − `‖ = ‖M†(q′ − q)‖ = ‖M†(δe1)‖ = |δ|‖M†e1‖ ≥
|δ|
‖M‖ , which is a lower bound that is independent of n.

Thus we obtain that E[‖µ′ − µ∗‖] > 0.

Causal Effect Estimation Error Next, we bound
the causal effect estimation error when using Ivy’s
synthesized IV. We bound the mean squared error
E[(α̂x→y − α∗x→y)2] between the effect with Ivy’s ver-
sion of z and that with the true z, as a function of the
parameter error E[‖µ̂−µ∗‖] we obtained in Theorem 1.

We use the popular Wald estimator as an example.
Let β∗zx and β∗zy be the population-level coefficients of
z from the logistic regressions to predict x and y un-
der D, and β̂ẑy, β̂ẑx the corresponding regression coeffi-
cients of ẑ. Define α∗x→y := β∗zy/β

∗
zx as the population-

level Wald estimator. Suppose that the population-
level logistic loss of D satisfies Lemma 3 in Appendix
B.5, so that it is λ-strongly convex. Again suppose
m > c0, n > c1d

2m and large enough such that for
some κ ∈ (0, 1), max{|β̂ẑy − β∗zy|, |β̂ẑx − β∗zx|} ≤ κβ∗zx,
and let c2 be a constant.

Theorem 2. Run Algorithm 1 on n samples of m
IV candidates to synthesize ẑ’s that are plugged into
the Wald estimator to obtain the causal effect estimate
α̂x→y. Then, the error in the estimate α̂x→y compared
to the true effect α∗x→y is bounded as follows:

E[(α̂x→y − α∗x→y)2] ≤
√

1

n
· 6000c2m

5
2 (β∗zx+β∗zy)2(1+‖M†‖)
Rminλ(1−κ)2β∗4zx

.

Theorem 2 quantifies how the estimation error of z
propagates to the downstream Wald estimator. The
error goes to 0 as 1/

√
n, suggesting that, under the

conditions we described, we can indeed perform reli-
able causal inference from weak IV candidates. Our
final observation is that model misspecification may
lead to nonzero error in the causal estimates (see Sec-
tion B.7): with even one misspecified dependency,
E[‖µ′ − µ∗‖] > 0 with positive probability. We can
lower bound (α̂x→y−α∗x→y)2 in terms of E[‖µ′−µ∗‖],
concluding that (α̂x→y − α∗x→y)2 > 0 for such cases.

4 Experiments

We empirically validate that the summary IVs syn-
thesized by Ivy lead to reliable causal effect estimates
when plugged into standard causal effect estimators on
real-world healthcare datasets. Specifically,

• In Section 4.1, we show, in clinically-motivated sce-
narios where only uncurated (potentially dependent
or invalid) IV candidates are available, that Ivy can
synthesize a summary IV that leads to more reliable
effect estimates than allele scores.

• In Section 4.2, in scenarios with hand-picked curated
(putatively valid and conditionally independent) IV
candidates, we show that Ivy performs comparably
well to allele scores.

• In Section 4.3, we evaluate the Ivy framework on
synthetic data and further focus on its robustness
against violation of key assumptions.

We describe the datasets, methods, and evaluation
metrics and then report our primary findings.4

Datasets In collaboration with cardiologists, we se-
lected real-world health data collected from the UK
Biobank (Sudlow et al., 2015) for a variety of cardiac
conditions. Because heart diseases are a major class of
conditions affected by many factors, we examined five
factors (for instance, we study the LDL-CAD link, as
in Burgess et al. 2016). The most challenging aspect
of selecting datasets for causal inference is the lack
of ground truth effects. As a result, we have three
desiderata for our dataset choices:

• We need some risk-outcome pairs where strong clini-
cal evidence exists to support that there is no causal
relationship, while for other pairs, there is strong ev-
idence of a positive relationship;

• We require standard pairs that have previously been
tested against in the MR literature;

• To evaluate performance in the favorable setting
where IV candidates are valid and conditionally in-
dependent, we need access to curated sets of candi-
dates.

The five risk factors we use are high-density lipoprotein
(HDL), low-density lipoprotein (LDL), systolic blood
pressure (SBP), C-reactive protein (CRP), and vita-
min D (VTD). The outcome is occurrence of coro-
nary artery disease (CAD). Single-nucleotide polymor-
phisms (SNPs) associated with these factors are used
as IV candidates. These pairs are well-understood by
clinicians, enabling us to use these pairs as proxies
to the ground truth (Collaboration, 2011; Lieb et al.,
2013; Holmes et al., 2014; Manousaki et al., 2016). Us-

4In Appendix C, we give further details about our setup
and additional experiments.
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Figure 2: Wald ratios in estimating the causal effects
of three risk factors (HDL, C-reactive protein, and vi-
tamin D) to the occurrence of coronary artery disease
using uncurated IVs. Goal: 0 causal effect.

ing the risk factors, outcome, and IV candidates, we
extract 11 datasets from the UK Biobank for our ex-
periments (details in Table A.2).

Methods Ivy produces a summary in the synthe-
sis phase, so we compare to allele scores—UAS and
WAS—in Sections 4.1-4.3, as they also produce a sum-
mary IV. Additionally, we report results of logistic re-
gression (Assn), which is a proxy for the confounded
association between the risk factor and the outcome.

Metric After the synthesis phase, we use the sum-
mary IV in the estimation phase by plugging it into a
causal effect estimator, along with the risk factor and
the outcome. In all experiments, we use the Wald ra-
tio to estimate effects. We report the median Wald
ratio and its 95% confidence interval (CI). In MR, a
CI that covers the origin is interpreted as no causal ef-
fect, while strictly positive/negative CIs indicate pos-
itive/negative causal effects.

4.1 MR with Uncurated IVs

We first use the summary variable synthesized by Ivy
to draw causal inference in common clinical scenarios
where only low-quality IV candidates are available. As
shown in Figure 2, Ivy dismisses known spurious corre-
lations on all three of the real-world datasets (median
effect size ≤ 0.025); in comparison, allele scores yield
more biased estimates (median effect size ≥ 0.118).
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Figure 3: Wald ratios in estimating the causal ef-
fect between high(low)-density lipoprotein and coro-
nary artery disease using curated IVs. Goal in (a): 0
causal effect. Goal in (b): positive causal effect.

Specifically, we test spurious relationships between
three potential risk factors (HDL, CRP, and VTD)
and CAD: these are known to be noncausal, so the
true effect size is 0. We compare Ivy with UAS, WAS,
and Assn. Results are in Figure 2. Both UAS and
WAS return negative causal effects for HDL (UAS me-
dian: -0.494; WAS median: -0.366; Figure 2a) and
CRP (UAS median: -0.118; WAS median: -0.159; Fig-
ure 2b) with negative CIs. By contrast, Ivy does not
identify a causal effect (Ivy median: 0.025 and 0.001
for HDL and CRP, respectively), with CIs covering
the origin. In Figure 2c, the CIs of all three meth-
ods cover the origin, indicating successful dismissal.
Nonetheless, the median estimates of UAS (0.153) and
WAS (0.133) are skewed towards the positive direction,
while Ivy’s is very close to the origin (-0.012).

Ivy tends to have a wider confidence interval compared
to allele scores, as it selects only a subset of IV candi-
dates. Allele scores make use of all candidates regard-
less of their validity, and may be hurt by one or more
being invalid. In all cases, Association (Assn) fails to
dismiss spurious correlation, highlighting the impor-
tance of the use of IVs for debiasing causal estimates.

4.2 MR with Curated IVs

Next, we use a summary IV using a set of curated
(putatively valid and conditionally independent) can-
didates with both known non-causal and known causal
pairs. While all methods work, for the positive LDL-
CAD relationship, Ivy retains the positive perfor-
mance of WAS over UAS. The results are in Figure 3.

Concretely, since we are now in the fortunate (but
rarer) setting in which the IV candidates are “good,”
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Figure 4: Dismissing spurious correlations when z is
invalid. As the invalidity of z, i.e., the accuracy of w9

in predicting z, increases, all methods eventually fail.
However, Ivy is the most robust.

we expect that both Ivy and allele scores provide rea-
sonable estimates. We use the known noncausal rela-
tionship between HDL and CAD (Example 1) and the
known positive causal relationship between LDL and
CAD. Ivy is compared with UAS, WAS, and Assn. In
terms of dismissing spurious correlation (Figure 3a),
the 95% CIs of all three IV-based methods (Ivy, UAS,
WAS) cover the origin, indicating successful dismissal.
Notably, the median estimate of Ivy is closest to the
origin (-0.005) compared to other methods (UAS me-
dian: -0.081; WAS median: -0.241), suggesting a po-
tentially less biased estimate from Ivy. Again, Assn
fails to dismiss spurious correlation even in this “eas-
ier” setting.

In terms of identifying a true causal relationship (Fig-
ure 3b), all three IV-based methods correctly identify
the direction of the causal relationship (UAS median:
0.419; WAS median: 0.999; Ivy median: 1.074), as
indicated by the positive CIs of the causal estimates.
The lengths of the CIs of the three IV-based methods
are also comparable to each other. On this dataset,
Ivy yields an estimate most similar to that of WAS—
matching the property that Ivy mimics allele scores in
the setting where IV-candidates are high-quality.

4.3 Synthetic Experiments

Now we use synthetic data, controlling candidate prop-
erties and the ground-truth. We validate the robust-
ness of Ivy and compare the effect to the ground-truth.

Robustness We investigate how robust Ivy is to an
important violation of our main assumptions (that all
the invalid candidates are independent of z). Then,
the summary z itself may be an invalid IV. We show
that Ivy yields a causal estimate that is more robust
to this case compared to allele scores. Of course, when
the invalidity is sufficiently strong, eventually Ivy also
fails to dismiss a spurious correlation (Figure 4b).

We use the spurious correlation model in Figure 4a.
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Figure 5: Wald ratios in causal effect estimation using
synthetic data. The true causal effects are 0 and 0.15.

The candidate w9 serves as a confounder between the
risk factor and the outcome. Here z is invalid because z
is associated with w9, and we increase this association
strength (red edge) to force more invalidity. We ex-
pect Ivy to downweight the influence of w9 while UAS
and WAS may not. Indeed, Ivy performs well when
z is nearly valid (i.e., nearly independent of w9), and
gradually degrades (blue curve), while allele scores im-
mediately struggle. Eventually, increasing the amount
of invalidity causes Ivy to fail as well.

Dismissing Spurious Correlations Next, we gen-
erate synthetic data with no causal effect along with
valid and invalid IVs and adding dependencies. The
results are in Figure 5a. Ivy recovers the dependency
structure and identifies the invalid candidates. As a
result, Ivy can successfully dismiss the spurious cor-
relation by identifying no causal effects (Ivy median:
0.042) while both UAS and WAS fail to do so by yield-
ing estimates that are consistent with the direction of
the spurious correlation (UAS median: 0.266, WAS
median: 0.509).

Positive Causal Effects We use synthetic data
with positive effects and dependent, partially invalid
IV candidates. Experimental results are reported in
Figure 5b. Ivy provides a median estimate (0.146)
that is closest to the true effect (0.150) while both UAS
(0.440) and WAS (0.545) return median estimates that
are biased towards the observational association.

5 Conclusion

We introduce Ivy, a framework that synthesizes from
IV candidates a summary IV used for downstream
causal inference. Through theoretical analysis and em-
pirical studies, we demonstrate the robustness and lim-
itation of Ivy in handling invalidity and dependencies
among IV candidates.
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Appendix

The appendix is organized as follows. First, we discuss related work (Section A). Next, we provide theoretical
details, including the proofs of our main results, and in particular Theorem 1 and its generalization. We also
provide an analysis of the statistical power for our technique combined with the Wald estimator (Section B).
Finally, we provide additional experimental details (Section C).

A Related Work

A.1 Overview

Pearl’s seminal work on causality (Pearl, 2009) defines the causal inference paradigm, including the notion of
intervention. For example, if an external force was to change the air pressure, a barometer’s reading would
change, while if we were to change the barometer reading, the pressure would remain the same. Thus, we can
define causal relationships via interventions.

Causal relationships can be encoded in directed acyclic graphs (DAGs), resembling encoding distributions with
graphical models. However, causal graphs also carry an additional family of distributions induced by performing
interventions. Learning such graphs is a major area in causal inference (Heckerman, 1995; Ellis and Wong,
2008). Recent work establishes nearly optimal algorithms for learning a causal graph with the smallest number
of samples and interventions (Kocaoglu et al., 2017; Acharya et al., 2018). The equivalence classes of causal DAGs
is explored in Yang et al. (2018). Causal models often include both discrete and continuous variables, motivating
research into mixed model structure learning (Lee and Hastie, 2013). Learning a network across multiple domains
is considered in Ghassami et al. (2018). Although none of these works directly fit our paradigm, structure learning
is an important part of our approach as well.

When performing interventions is not possible and we must attempt to estimate causal effects from observational
data, instrumental variable approaches are an option. The concept of instrumental variables date back to the
1920s (Wright, 1928). The traditional approach to IV estimators relies on structural models. For example, linear
relationships between the instrumental, treatment, and effect variables inspired the two phase least-squares model
(2SLS) (Angrist et al., 1996). These types of models can be replaced by deep neural nets, as in Hartford et al.
(2017). The presence of invalid instrumental variables motivates the line of research in robust IV methods (Pearl,
1995; Bonet, 2001; Han, 2008; Bowden et al., 2016; Kang et al., 2016; Sharma, 2018; Windmeijer et al., 2018).
Another concern is related to instrumental variables that are weakly correlated with the risk factor (Bound et al.,
1995).

Our work is focused on observational rather than interventional approaches. However, unlike the previously
mentioned works, we do not examine a particular causal effect estimator, but rather seek to develop a way to
synthesize a latent strong summary IV from multiple IV candidates. This is the synthesis phase of a two-phase
methods. Our approach, in particular, focuses on predicting a latent variable (the summary). Other causal
inference techniques that make use of latent variables related to our work include matrix completion algorithms
for observational data with missing entries (Athey et al., 2018) and algorithms that handle multiple causes (Wang
and Blei, 2018, 2019).

Mendelian randomization (Burgess and Thompson, 2015) is a popular approach to perform causal inference
among clinical variables using genetic variants such as single-nucleotide polymorphisms (SNPs) as instrumental
variables. Since SNPs are determined for each individual randomly at conception, it offers a natural random-
ization among different individuals. Furthermore, since DNA encoding will influence downstream biological and
clinical outcomes but not the other way around (the central dogma of molecular biology), using SNPs as instru-
mental variables is also an effective way to avoid reverse causation. The use of SNPs as IVs also comes with its
challenges, such as that a SNP can be correlated with multiple clinical outcomes (a.k.a. pleiotropy), and that a
SNP can demonstrate weak effects towards downstream outcomes. Moreover, SNPs can potentially be invalid
IVs. Allele scores are an effective approach to combine SNPs into a summary variable. The summary variable
can then be used downstream in a causal effect estimator such as a Wald estimator in order to produce a causal
effect estimate. Allele scores are an effective approach to handle SNPs that are weakly associated with the risk
factor (a.k.a. weak IVs). However, allele scores are sensitive to the presence of SNPs that are not valid IVs.
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Methods Candidate
Dependency

Breakdown
Level

Data
Generation

Invalidity
Allowed

Sample
Complexity

Two
Phase

Ivy (us) Full-rank
Candidates

50–100% 5 Ising Model Some ER,
Some UC

Non-Asy X

Two Stage
Least Square

Full-rank
Candidates

0% Linear
Model

None Asy 5

Inverse Variance
Weighted (IVW)

Independent 0% Linear
Model

None Asy 5

UAS (Binary) Conditionally
Independent

0% Naive
Bayes

None Asy X

WAS (Binary) Conditionally
Independent

0% Naive
Bayes

None Asy X

sisVIVE
(Kang et al., 2016)

Full-rank
Candidates

< 50% Linear
Model

ER, UC Non-Asy 5

Simple Median
(Bowden et al., 2016)

Independent < 50% Linear
Model

ER, UC Asy 5

Weighted Median
(Bowden et al., 2016)

Independent < 50%
Information

Linear
Model

ER, UC Asy 5

Egger Regression
(Bowden et al., 2015)

Independent 100% Linear
Model

Some ER Asy 5

Windmeijer et al.
(2018)

Full-rank
Candidates

< 50% Linear
Model

ER, UC Asy 5

L1-GMM
(Han, 2008)

Full-rank
Candidates

< 50% Linear
Model

ER, UC Asy 5

Deep IV
Hartford et al. (2017)

Full-rank
Candidates

0% Nonlinear None None 5

Bennett et al.
(2019)

Full-rank
Candidate

0% Nonlinear None None 5

Table A.1: Comparison of assumptions among IV methods. Relevance of the IV candidates is assumed. ER:
exclusion restriction; UC: unconfoundedness

A.2 Method Comparison

Ivy relates to a variety of IV methods in the literature. We describe a number of these and compare the
assumptions and use of these methods. This taxonomy can be found in Table A.1.

In Table A.1, candidate dependency refers to the properties that the collection of IV candidates must satisfy.
Requiring independence is the strongest, most restrictive property, while being only conditionally independent
is slightly weaker. Weaker still is only requiring that the data matrix (where each row contains the samples from
a particular candidate) is full-rank, which precludes identical copies of candidates.

Breakdown level represents the percentage of invalid IVs allowed before a method fails to return a reliable
estimate. Note that methods that have a 0% level require all valid candidates. Invalidity allowed represents the
type of invalid IVs that a method can recognize (i.e., invalid because they do not satisfy exclusion restriction (ER)
or unconfoundedness (UC)). Sample complexity describes whether asymptotic (Asy) or non-asymptotic (Non-
Asy) estimation guarantees, if any, are known in the literature. Finally, the “two phase” property describes
whether the method aims to generate a summary variable with a synthesis phase followed by an estimation
phase, or whether it is a direct estimation.

The overall goal of Ivy is to perform well in scenarios where there is a less restrictive assumption on dependencies
and invalidity, often at the same time. Thus Ivy can handle correlated candidates and a number of invalid IVs
simultaneously, which existing methods struggle with. We note, however, that Ivy handles binary variables,
while other methods can sometimes handle both categorical and continuous variables. We also seek to provide
theoretical guarantees in finite-sample settings, rather than just asymptotic consistency.

5See Section B.4 for a discussion on scenarios when the breakdown level can be more than 50%.
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The median methods (simple and weighted) have a higher breakdown level compared to allele scores. They
are designed to deal with invalidity (naturally, we do not know which candidates are invalid) by producing
median measurements that filter out the invalid candidates. However, they also require independence among the
candidates (Bowden et al., 2016). By contrast, Ivy can handle dependencies. There are a few other differences,
including the fact that the median methods have asymptotic guarantees (instead of finite sample bounds).

An important point is that the goal of Ivy, as a method for the synthesis phase, is to provide an IV of higher
quality. This strong IV can then be used downstream in a causal estimator, or in another IV method. Therefore,
we stress that Ivy is complementary to existing IV methods in the literature instead of necessarily being a
competing alternative. For example, we could use Ivy to provide additional candidates to be used in the simple
median method, to provide weights to be used in the weighted median method, or to plug it into a deep learning-
based estimator like DeepIV (Hartford et al., 2017).

Allele Scores Since they synthesize a summary variable of genetic contribution towards elevating the risk
factor, two-phase methods including allele scores, e.g., UAS (unweighted allele score) and WAS (weighted allele
score), are most similar in spirit to Ivy. Specifically, when the risk factor is binary, Sebastiani et al. (2012) point
out the equivalence of the decision rules between a Naive Bayes classifier and an allele score whose weights are
derived from univariate logistic regressions (as in WAS). Since Ivy with conditional independence can be viewed
as a Naive Bayes classifier with a hidden label, it shares similar statistical dependency assumptions with allele
scores (Figure A.1). The difference is that allele scores may use the observed risk factor as the label of the
classification, while Ivy assumes a valid hidden IV. When the conditional independence assumption is lifted, Ivy
generalizes beyond allele scores with additional potential to handle dependencies and certain types of invalidity
among candidates.

Ivy and allele scores explicitly construct a summary IV, while other methods directly obtain a causal estimate,
and are thus not modular (right-most column of Table A.1). Some key differences compared to allele score
methods: Ivy has finite sample bounds, not just asymptotic results, has a weaker assumption for dependencies,
and has a higher invalidity breakdown level. We note that our breakdown level assumption is 50% by default,
but under certain scenarios, we can handle even more invalid IVs (Section B.4).

Deconfounder (Wang and Blei, 2018) Wang and Blei (2018) proposed the deconfounder, a causal inference
framework that estimates causal effects of multiple causes from observational data under the assumption that
there is no unobserved single-cause confounder (a.k.a. single ignorability). The deconfounder first learns a set
of latent confounders from the data using latent factor models. These confounders are then used as surrogates
to the actual confounders in the data, along with the multiple cause variables, to be fed into the adjustment
formula to achieve causal effect estimation. Wang and Blei (2018) show that the residue after adjusting for the
confounders and the treatment variables can be used as instrumental variables.

While Ivy also makes use of latent variables, the latent variables are used to act as instrumental variables. This
is different from the deconfounder, where latent variables are used as confounders. Nonetheless, here we offer
an explanation of how Ivy may be interpreted in the deconfounder framework under certain circumstances. In
MR, the SNPs used as IV candidates are usually only associated with the risk factors, instead of causal to the
risk factors. Suppose that all the SNPs are valid IV candidates, and many of the SNPs are correlated with
each other. Such correlations can be potentially explained by a causal yet unobserved genetic variant (Burgess
and Thompson, 2015) modeled as a hidden variable. In the deconfounder framework, these hidden variables
are viewed as confounders. Since all the SNPs are valid, Ivy in this scenario uses a latent variable to model a
summary IV. Unlike deconfounder that seeks to estimate the causal relationship between the SNPs and the risk
factor, Ivy seeks to synthesize a summary IV that is better associated with the risk factor so as to provide a
stronger IV to infer causation between the risk factor and the outcome.

B Extended Theoretical Results

First, we provide an additional algorithm that explicitly computes the correlations between the candidate IVs
(Section B.1). Next, we discuss assumptions (Section B.2) and identifiability (Section B.3). We then provide the
proof of our main results, including an extended version of Theorem 1 (Section B.4 - B.7). In Section B.8, we
give a bound on the error in statistical power when using our approach (compared to having access to the true
z). Afterwards, we detail why the conditional independence assumptions in our Ising model enable us to produce
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Figure A.1: Equivalence of allele score and Ivy to a Naive Bayes classifier. Note that in Figure A.1b, when z is
perfectly predictive of x, it become equivalent to Figure A.1a.

independent accuracies, a key component of our approach (Section B.9). Finally, we give further examples that
our algorithm does not tackle, demonstrating the limitation of our technique (Section B.10).

B.1 Additional Algorithm Details

We provide some additional information on our algorithms. We start with some notation for our structure
learning component, which applies the one in Varma et al. (2019). Let us write for our model’s covariance and
inverse covariance matrices,

Σ :=

[
ΣO ΣOz
ΣTOz Σz

]
and Σ−1 := K =

[
KO KOz

KT
Oz Kz

]
.

Here O is the set of observed IV candidates and z is the valid, but unobserved, summary IV. The key idea behind
the algorithm is that in the inverse covariance matrix K, a 0 entry Kij indicates that there is no dependency
between wi and wj (Loh and Wainwright, 2013). Therefore, if we had access to K, we would be able to directly
read off the graph. Unfortunately, this full K includes the unobserved latent IV z, so we cannot observe the full
covariance matrix Σ and invert it to estimate K. We only have access to an estimate of ΣO, the matrix given
by the observed candidates. If we directly invert ΣO, we do not obtain the block KO, but rather this block
corrupted by adding an additional low-rank matrix that is non-sparse and hides the graph structure.

Structure learning attempts to break up the Σ−1
O matrix, which we can estimate, into a sparse matrix S that we

use to approximate KO, and a rank one symmetric matrix L = ``T . Then, a simple transformation yields the
estimated covariance between z and each candidate; this enables us to read off both the valid IVs (those whose
covariance with z is larger than zero) and the dependencies between the invalid IVs from S.

When estimating Ô, we compute 1
n

∑n
i=1 w

(i)

V̂
(w

(i)

V̂
)T . In practice, one may also compute 1

n−1

∑n
i=1 w

(i)

V̂
(w

(i)

V̂
)T

(as this is an unbiased estimator) if there are very few samples; asymptotically, either method yields the same
error bounds. Finally, note that we clip our predicted µ̂ to lie within [−1,+1], since z and the wi’s (and thus
the wiz’s) are all in {−1,+1}.

B.2 Assumptions

We summarize the assumptions that we make in order to provide theoretical guarantees for the performance of
Ivy. We discuss our assumptions made in the synthesis phase and estimation phase, respectively.

Synthesis Phase We detail the assumptions used in the estimation phase. First, the majority of IV candidates
are valid IVs, and for the invalid candidates (i 6∈ V ), wi ⊥ z. Second, the joint distribution of w’s and z follows
an Ising model. Here, (V,E) consists of valid candidates and their edges, while V̄ := {1, . . . ,m} \ V and E′ are
the corresponding invalid candidates and their edges:

P(w, z) =
1

Z
exp(θ∗zz + Σi∈V θ

∗
iwiz + Σ(i,j)∈Eθ

∗
ijwiwj + Σ(i,j)∈E′θ

′
ijwiwj).

We assume that the graph G above satisfies the singleton separator set property. That is, the intersections of
maximal cliques among the nodes in G are always of cardinality at most one. Another way to state this is to say
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that candidates form components that intersect (at most) in the latent variable. We write d for the maximum
degree of a candidate dependency.

Next, for each valid candidate wi there are at least two others that are independent of wi and each other
conditioned on z. We further assume that valid IV candidates agree with z more often than not on average.

Since we use a variant of the procedure in Varma et al. (2019) as an instance of the structure learning al-
gorithm, we review the assumptions made in Varma et al. (2019). These conditions are standard and were
originally introduced in Chandrasekaran et al. (2012) and Wu et al. (2017). Let hX(Y ) := 1

2 (XY + Y X).
We write PS for orthogonal projection on subspace S. Let αΩ := minM∈Ω,‖M‖∞=1 ‖PΩhΣO (M)‖∞, δΩ :=
minM∈Ω,‖M‖∞=1 ‖PΩ⊥hΣO (M)‖∞, αT := minM∈T,‖M‖=1 ‖PThΣO (M)‖, δT := minM∈T,‖M‖=1 ‖PT⊥hΣO (M)‖,
βT := maxM∈T,‖M‖∞=1 ‖hΣO (M)‖∞, βΩ := maxM∈Ω,‖M‖=1 ‖hΣO (M)‖. Next, set α := min{αΩ, αT }, β :=
max{βT , βΩ}, and δ := max{δΩ, δT }.

With this notation, we require that there exists ν ∈ (0, 1/2) with δ/α < 1− 2ν, and µ(Ω)ξ(T ) ≤ 1
2

(
να

(2−ν)β

)2

.

Estimation Phase We enumerate some standard regularity conditions with respect to univariate logistic
regressions in order to characterize the error induced by the Wald estimator. Specifically, let `(x; θ) be the
negative log-likelihood function of the univariate logistic regression parameterized by θ ∈ Θ. Let I(θ) :=

E
[
∂2`(x;θ)
∂θ2

]
be the corresponding Fisher information matrix. We assume that for any given θ ∈ Θ, there exists

an unbiased estimator θ̌ of θ that is a function of some number n of independent samples
{
x(i)
}n
i=1

drawn from

D such that, for some constant λ, Cov(θ̌) � I
2λn . We further assume that for some κ ∈ (0, 1), we have that

max{|β̂ẑy−β∗zy|, |β̂ẑx−β∗zx|} ≤ κβ∗zx, where β∗zx and β∗zy be the population-level coefficients of z from the logistic

regressions to predict x and y under D, and β̂ẑy, β̂ẑx the corresponding regression coefficients of ẑ.

B.3 Identifiability of Causal Effects

Recall that we follow a two-phase approach that consists of a synthesis phase followed by an estimation phase.
If identifiability can be achieved in both phases, overall identifiability can be achieved. The assumptions made
in the synthesis phase ensure the identifiability of the synthesis phase. Afterwards, we can use existing standard
conditions for identifiability of the estimation phase (Balke and Pearl, 1997; Burgess and Labrecque, 2018;
Swanson et al., 2018; D’Amour, 2019) to identify causal effects.

B.4 Extension and Proof of Theorem 1

First, we give some additional details on our approach. Afterwards, we give an extended version of Theorem 1
(Theorem 3); this more general result subsumes Theorem 1.

We need some additional notation. Recall that V ⊆ {1, . . . ,m} is the subset of valid candidates. We write

o1(x) := bx2c and o2(x) :=
∑

(i,j)∈E

I{(KO)ij ≤ x}.

The second function involves the order statistics among certain entries in the inverse covariance matrix; its use
is explained below. Note that o1(x)→ 0 as x→ 0; in fact, it is 0 once |x| < 1. Similarly, o2(x)→ 0: it is 0 once
x is below the minimal entry in the matrix. Next, to clean up the notation, we use constants c3 and c4, defined
in Varma et al. (2019); these are a function of the maximal degree d and upper bounds on the conditioning of
covariance matrix, which we assume are fixed. Recall that our thresholds are T1, T2 in Algorithm 2. We write

iS := o1

(
c3m

2

T1
√
n

)
and eS := o2

(
T2 + c4

√
m
n

)
.

This notation indicates that iS is the number of invalid IVs and eS the number of missed edges (among the valid
candidates) after structure learning.

We define qmax to be the largest-magnitude entry of q̂, and Rmin > 0 to be the smallest entry of E[wV w
T
V ]. We

write M† for the pseudoinverse of the matrix M := MΩ̂. Note that in Theorem 1 we have M = MΩ because
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we recover the true Ω, as we show below. Let rM be the least-squares residual for M ˆ̀ = q̂. We let S be a
matrix (not to be confused with the sparse matrix for structure learning; it shall be clear from the context) so
that SM = MΩ is the corrected form of M , removing dependencies and invalid candidates. We call S the row
selection matrix. Let the SVD of M be M = UMΣMV

>
M . We let ρSUM be the smallest-magnitude singular value

of SUM . Finally, we let umax to be the largest norm of a row of UM .

Our main result in this section is Theorem 3.

Theorem 3. Let µ̂ be the result of Algorithm 1 run on n samples of m IV candidates, for n > n0 for some
constant n0. Here, s of the m candidates are invalid and p = m− s are valid. Set µ∗ to be the true parameters.
Then, with probability at least 1− 1/m,

E[‖|µ̂| − |µ∗|‖] ≤ 16(iS + p)
5
2

Rmin
‖M†‖

√
2π

n

+m3/2σ−1
min(M)

(
(iS(iS + p) + eS)umax + ρ−1

SUM
− ρSUM

)
‖U⊥M (U⊥M )>‖qmax. (2)

Additionally, if we bypass structure learning and run the latter part of the algorithm, we obtain the following
explicit result, where s is the number of invalid IVs and e is the number of dependencies among the valid sources.

E[‖|µ̂| − |µ∗|‖] ≤

1√
s+ p− 2

(
16(s+ p)

5
2

Rmin

√
2π

n
+m

3
2

(√
2(s(s+ p) + e)√
s+ p− 2

+ ρ−1
SUM

− ρSUM

)
‖U⊥M (U⊥M )>‖qmax

)
.

Note that the norm above is taken implicitly over the parameters among variables in joint set V̂ ∩V (which goes
to V once n is large enough); these are the parameters in common between the recovered set of candidates V̂
and the valid candidates V . Of course, if this set becomes too small, e.g., below three variables, we cannot even
recover. Fortunately, we know the rate at which iS goes to 0. Below, we implicitly assume that |V̂ ∩ V | ≥ 3.
Before we give the proof, it is worth commenting on Theorem 3.

When m and n are as large as prescribed, we have that with the desired probability 1 − 1/m that the correct
structure is recovered, in which case the o1 and o2 functions defined are equal to 0, and thus iS = 0 and es = 0.
With this, the first term inside the sum of the second term is 0. We also have that S (the row selection matrix)
is the identity, and ρSUM = 1, and the entire right-hand side goes to 0. In the first term, iS + p = p. Finally,
under these assumptions on m and n we can also recover the signs, yielding Theorem 1.

More generally we can think of the left-hand summand above as being an estimation error, which goes to 0 in n,
and the right-hand term as a penalty for misspecification. Here we upper bound this term, in order to measure
our robustness to such misspecification, but using the same argument we made in Section 3.4, we can show that
it is always positive regardless of n, so long as i and e are positive.

We also briefly comment on the difference between the two cases above. In the top case, where we use structure
learning, the obtained M matrix has a potentially complicated structure. The M obtained from assuming
conditional independence for all pairs of candidates, which is all we can do without knowledge of the graph, has
a simple structure that enables us to compute terms like σ−1

min explicitly.

Before we start, we give the following simple result.

Lemma 1. If we estimate Ô from samples w(1), w(2), . . . , w(n) by Ô := 1
n

∑n
i=1 w

(i)w(i)T , we can bound

E
[
‖Ô −O∗‖

]
as

E
[
‖Ô −O∗‖

]
≤ m2

√
32π

n
.

Proof. We use a concentration bound to obtain ‖Ô−O∗‖. We shall use the matrix Hoeffding inequality (Tropp,
2011). It states that for any finite sequence of independent random symmetric m ×m matrices {Xk} that are
centered (mean-zero), and satisfy X2

k � A2
k, then

P

(
‖
∑
k

Xk‖ ≥ t

)
≤ m exp

(
−t2

8σ2

)
, (3)
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where σ2 := ‖
∑
k A

2
k‖.

To apply the result, we take Xk = 1
n (Ô−wk(wk)T ) for 1 ≤ k ≤ n. Clearly, E[Xk] = 0. The Xk’s are also clearly

symmetric and mutually independent. We now argue that suitable Ak matrices exist. First, it is easy to see
that, from Cauchy-Schwartz, for any two vectors v1 and v2, vT1 (‖v2‖2I − v2v

T
2 ) ≥ 0, so ‖v2‖2I � v2v

T
2 . Thus, as

each vector wk ∈ {−1,+1}m, we have that

m2I = ‖wk‖4I � ‖wk‖2wk(wk)T = (wk(wk)T )2.

Note that wk(wk)T � 0 and Ô � 0, so (wk(wk)T + Ô)2 � 0. This yields

(nXk)2 = (wk(wk)T − Ô)2

� (wk(wk)T − Ô)2 + (wk(wk)T + Ô)2

= 2((wk(wk)T )2 + Ô2)

� 2(m2I + Ô2).

Setting A2
k = 2

n2 (m2I + Ô2), we have that ‖Ô2‖ ≤ m2, and then that σ2 = ‖
∑
k A

2
k‖ ≤

∑
k‖A2

k‖ ≤
2
n2

∑
k(‖m2I‖+ ‖Ô2‖) = 2

n (m2 + ‖Ô2‖) ≤ 4m2/n, so applying the bound (3), we get

P
(
‖Ô −O∗‖ ≥ t

)
≤ m exp

(
−nt2

32m2

)
. (4)

Next, we can integrate the result to obtain

E
[
‖Ô −O∗‖

]
≤ m2

√
32π

n
.

Now we are ready for the proof of Theorem 3. We start with a lemma that tackles the structure learning
component of the algorithm:

Lemma 2. Run Algorithm 2 on n samples of m IV candidates, where s of the m candidates are invalid and
p = m − s are valid. Suppose the assumptions detailed above are met. Let Ĝ = (V̂ , Ê) be the resulting graph.
Then, with probability at least 1− 1/m,

|V̂ \ V | ≤ o1

(
c3m

2

T1
√
n

)
and |E \ Ê| ≤ o2

(
T2 + c4

√
m
n

)
.

That is, Ĝ contains at most iS invalid candidates and has at most eS missing edges among valid candidates.

This result characterizes the performance of the structure learning component. It tells us how many invalid IVs
we may inadvertently be using in the estimation phase (due to noise) and how many such edges we may include.
The proof is a simple modification of the result in Varma et al. (2019).

Proof. First, we note a difference from the result in Varma et al. (2019) and our application of it: in that work,
all of the nodes are connected to the latent node. In our version, the invalid candidates are not connected to any
of the valid candidates or the latent variable.

This ensures that in Σ`, the terms corresponding to the valid candidates are zero, which enables us to estimate
the set of valid candidates V̂ . The result in Varma et al. (2019) still holds in this setting; it does not require
that all of the observed variables are connected to the latent variable. Next, we need to map our assumptions
into those of Varma et al. (2019). The main requirement here is the singleton separator set assumption; for us,
this is exactly equivalent to requiring that candidates that are dependent are all mutually dependent. The other
assumptions are directly borrowed.

Next, note that in Varma et al. (2019), Theorem 1 is stated in terms of the number of samples sufficient to recover
the structure exactly; this is done by driving the error below the smallest magnitude of the sparse component
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encoding the structure. The number of samples n is determined by the smallest error sufficient to do this. That
is, the authors obtain

n > c1d
2m,

where we set c1 to be the term (in the notation of Varma et al. (2019))[
6c2β(3− 2ν)(2− ν)ψ1

να2ψm
max

{
1

ψm
,

γ

KO,min
, σ−1

}]2

.

In fact, a stronger version is possible where m in the preceding expression on sample complexity can be reduced
to mτ for some τ ≤ 1.

Instead, we use the version of the result that computes the number of errors as for a particular number of
samples via the step functions iS and eS . Note that we consider both Ŝ (encoding the edges) and Σ̂ˆ̀ (encoding
the valid/invalid candidates). We have, using the proof of Theorem 1 in Varma et al. (2019), itself following Wu
et al. (2017) (top of Step 2 in the proof of Theorem 4.1) for some constants c4, c5 that are a function of c1 above,
that

‖L̂− L‖ ≤ c5
√
m

n
,

and

‖K̂O −KO‖∞ ≤ c4
√
m

n
,

where the inf-norm here refers to the norm taken over the vectorized version of the matrix.

Missing edges It is easier to deal with the second term. Which edges will we fail to recognize among the
valid candidates when running Algorithm 2? Precisely those entries of KO where K̂O is no larger than our
threshold than c4

√
m
n (as, from the bound above, the gap cannot be any larger than this). Then, recalling that

o2(x) =
∑

(i,j)∈E I{(KO)ij ≤ x}, we have that indeed there are o2

(
T2 + c4

√
m
n

)
missing edges among the valid

candidates.

Invalid candidates Next, we consider how many invalid candidates may be left after structure learning. The
idea is similar, but requires several additional steps.

First, we have a bound on the gap between L̂ and L. Since L̂ = ˆ̀̀̂ T and L = ``T , we will convert this to a
bound on the gap between ` and `T . Next, since our choice of the valid candidates in Algorithm 2 is based on
thresholding Σ̂ˆ̀, we bound the gap between this term and Σ`. We start with the first of these steps.

We have that ‖``T − ˆ̀̀̂ T ‖ ≤ c5
√

m
n as our starting point. First, consider, for some vector x and an equal-sized

vector of 1’s, the quantity x1T + 1xT . Note that ‖x1T + 1xT ‖2F consists of the sum of a series of square terms
that include (from the diagonal) 4

∑
x2
i . Then we see that

‖x‖ ≤ 1

2
‖x1T + 1xT ‖F .

Next, let y be some other vector and ymin > 0 be the smallest magnitude of entry of y, where we assume y has
no zero entries. Then,

ymin

2
‖x1T + 1xT ‖F ≤

1

2
‖xyT + yxT ‖F .

Next, we can write

‖x‖ ≤ 1

2
‖x1T + 1xT ‖F ≤

1

2ymin
‖xyT + yxT ‖F .

Now we move to 2-norms on the right, getting

‖x‖ ≤
√
m

2ymin
‖xyT + yxT ‖.
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Afterward, we can write, using the fact that in general ‖A+B‖ − ‖C‖ ≤ ‖A+B + C‖, that

‖x‖ −
√
m

2ymin
‖x‖2 ≤

√
m

2ymin

(
‖xyT + yxT ‖ − ‖x‖2

)
=

√
m

2ymin

(
‖xyT + yxT ‖ − ‖xxT ‖

)
≤
√
m

2ymin

(
‖xyT + yxT + xxT ‖

)
.

This can also be written as

‖x‖(1−
√
m

2ymin
‖x‖) ≤

√
m

2ymin

(
‖xyT + yxT + xxT ‖

)
.

Getting back to our initial problem, let us write ` = ˆ̀+ ∆`. Then,

‖``T − ˆ̀̀̂ T ‖ = ‖``T − (`+ ∆`)(`+ ∆`)
T ‖ = ‖`∆T

` + ∆``
T + ∆`∆

T
` ‖.

Now take y to be ` and x to be ∆`. We get

‖∆`‖(1−
√
m

2`min
‖∆`‖) ≤

√
m

2`min
‖∆``

T + `∆T
` + ∆`∆

T
` ‖

=

√
m

2`min
‖``T − ˆ̀̀̂ T ‖ ≤

√
m

2`min
c5

√
m

n
=

c5
2`min

m√
n
.

Now, say our number of samples n is large enough (i.e., greater than some n0) to ensure that ‖∆`‖ ≤ (
√
m/`min)−1

. Then, the left hand side is at least ‖∆`‖/2, so that

∆` = ‖`− ˆ̀‖ ≤ c5
`min

m√
n
. (5)

Now, we have to translate (5) into the terms we are actually thresholding, Σ̂ˆ̀. This is not difficult:

‖Σ`− Σ̂ˆ̀‖ = ‖(Σ`− Σˆ̀) + (Σˆ̀− Σ̂ˆ̀)‖

≤ ‖Σ`− Σˆ̀‖+ ‖Σˆ̀− Σ̂ˆ̀‖

≤ ‖Σ‖‖`− ˆ̀‖+ ‖ˆ̀‖‖Σ− Σ̂‖

≤ ‖Σ‖ c5
`min

m√
n

+ ‖ˆ̀‖c6
m2

√
n

≤ c3
m2

√
n
.

In the penultimate step, we use (5) and also bound ‖Σ − Σ̂‖; this is a conventional application of matrix
concentration. The calculations are explicitly spelled out in Ratner et al. (2019), but the proof of Lemma 1
above is almost identical. In the last step, we use the fact that m ≤ m2 and bring all of the constant terms
together into c3.

Now, from our independence assumption, (ΣOz)i = 0 for i 6∈ V . This term is just Σ`. Since we use Σ̂ˆ̀ to
estimate it, we wish to know how many of these entries are potentially above our threshold T1 and thus will be
incorrectly interpreted as valid candidates.

Since (Σ`)i = 0 for i 6∈ V , and ‖Σ`− Σ̂ˆ̀‖ ≤ c3 m
2
√
n

, the sum of the squares of terms indexed by i 6∈ V in Σ̂ˆ̀ is at

most
(
c3
m2
√
n

)2

. The maximum number of such terms whose magnitude is at least T1 is just⌊(
c3
m2

√
n

)2

/T 2
1

⌋
.
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This is just o1

(
c3m

2

T1
√
n

)
, as desired.

Now we proceed with the rest of the theorem.

Proof. First, we consider the problem setting in the noiseless population-level case, and then we proceed with
the sampled results.

We set w1, . . . , wp be valid candidates and wp+1, . . . , wp+s be invalid, without loss of generality. Next, let µ∗

be the true parameters. Note that since the invalid IVs are independent of z by assumption and hence are not
part of the actual model, µ∗p+i = 0 for 1 ≤ i ≤ s. We treat the invalid candidates as part of the model purely
for convenience in our notation; of course, in the population-level setting, we would be able to split off the valid
model immediately. In the sampled setting, which we encounter in practice, we do not know which of these IVs
are valid and which are not.

The true graph model G involving our IV candidates has the following structure: G := (V,E), where V =
{w1, . . . , wp}. E contains edges between valid candidates w1, . . . , wp only, and no edges for the invalid candidates,
which we already detect as follows: we know that for wi valid and wj invalid, E[wiwj ]− E[wi]E[wj ] = 0, by the
assumption that invalid IVs are independent of z. We also required that there are more valid IVs than invalid
ones, so that we can immediately recover the valid IVs (they form the largest connected component, with at
least m/2 candidates) and then set µ∗j = 0 for the invalids. It should be noted that the assumption that there
are more valid IVs than invalid ones can be further relaxed: as long as the valid IVs form the largest connected
component, we can distinguish between valid IVs and the invalid ones. Such a relaxation suggests that the
breakdown level of Ivy can be above 50%, as shown in Table A.1. Note also that from structure learning in the
noiseless case, we also recover the exact graph G (Lemma 1 in Varma et al. (2019)).

We show that under this correctly-specified setup, and with no noise, we recover the remaining µ∗ parameters.
We write O∗ for the population-level overlaps matrix, E[wV w

T
V ]. We recall that q∗ij = log((O∗ij)

2), and that we

wish to solve the system MΩ`
∗ = q∗, where `∗i := log((µ∗i )

2).

The matrix MΩ has a row for each pair of valid IVs that are conditionally independent given z. By assumption,

for each IV candidate, there exists another pair of IVs forming a full-rank 3× 3 submatrix

 1 1 0
1 0 1
0 1 1

 in MΩ.

Thus, the column corresponding to this IV candidate cannot be written as a linear combination of any of the
other columns in MΩ, as each row has exactly two nonzeros so none of the other columns have any zeros in these
locations. Thus, MΩ has full column rank. So, there exists a unique solution to min‖MΩ` − q∗‖2 given by the
normal equations. Since the population-level results `∗ satisfy MΩ`

∗ = q∗, i.e. ‖MΩ`
∗ − q∗‖2 = 0, we have that

`∗ is the unique solution to this system, and thus µ∗ is unique as well.

We are only missing one aspect: we need to recover the signs of each of the recovered terms. Here, we use the
assumption on the agreement, on average, of the candidates with z. For example, if a valid IV candidate i has
a better than random chance of agreeing with z, we get that E[ai] = E[wiz] > 0. Note also that as soon as we
have determined one sign, say for ai, every other candidate accuracy (that forms a row in M with wi) has its
sign determined. This concludes the noiseless case.

Sampling results In practice, we do not observe O∗, but rather a sampled version Ô that we obtain from

samples w(1), w(2), . . . , w(n), estimated as Ô = 1
n

∑n
i=1 w

(i)w(i)T . Then, applying Lemma 1, we get that

E
[
‖Ô −O∗‖

]
≤ m2

√
32π

n
. (6)

If we had access to the true set of edges in Ω (and thus MΩ), we could then solve the system MΩ
˜̀ = q̃, where

q̃ := q̂Ω represents the subvector of q̂ with q̂ij := log(Ô2
ij) that is associated with Ω. To do so would require that

|V̂ | ≥ 3; if |V̂ | ≤ 2, so that we only have two estimated valid candidates after structure learning, we will not
have enough signal to obtain accuracy estimates. However, this happens with sufficiently low probability that
we can condition on it not occurring (recall that the result holds with probability at least 1− 1/m). In practice,
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though, we do not even know Ω, but rather an estimated version Ω̂. Then, we end up solving MΩ̂
ˆ̀= q̂Ω̂, where

we note that M = MΩ̂ and q̂Ω̂ = q̂.

We work with a series of perturbation terms. Our final goal is to bound ‖µ̂− µ∗‖. Since we obtain the estimate

µ̂ from the estimate ˆ̀, we will then write ‖µ̂ − µ∗‖ as a function of ‖ˆ̀− `∗‖. We use the triangle inequality to
write

‖ˆ̀− `∗‖ = ‖ˆ̀− ˜̀+ (˜̀− `∗)‖ ≤ ‖ˆ̀− ˜̀‖+ ‖˜̀− `∗‖. (7)

Here, the first term involves misspecification with respect to the number of edges by using Ω̂ instead of the true
Ω, while the second term involves just sampling noise. We control each of these terms separately. In particular,
we shall control the second term as a function of the sampling error ‖Ô −O∗‖.

Suppose that there are o edges in the true edge set E that are not in Ê, our recovered set. Such a non-edge (i, j)
in Ê is then included in Ω̂ but not in Ω, leading to additional rows in MΩ̂ that are not in MΩ. Lastly, say that
there are Υ non-edges due to the failure of excluding the invalid IVs in our estimated graph (we can think of our
true graph as having edges between every invalid IV and any other IV, valid or invalid, since we wish to exclude
such rows). Then, we have an additional Υ rows among MΩ̂, for a total of o + Υ spurious constraints. Note
that additional spurious constraints are not an issue as long as we can still solve the (normally overdetermined)
linear system.

With this setup complete, we proceed to bound each of the two terms on the right-hand side of (7) separately.
We call the left term the misspecification term.

Misspecification Term To avoid overly cumbersome notation, let us write M for MΩ̂. Let the SVD of M be
M = UMΣMV

>
M . Note that since MΩ is full-rank, and it is a submatrix of M with the same number of columns,

M is also full-rank. Thus, UM ∈ R|Ω̂|×p,ΣM ∈ Rp×p, and VM ∈ Rp×p.

Recall that S is the row selection matrix so that SM = MΩ, the corrected form of M ; in other words, S selects
out all the spurious rows. It is a 0/1 matrix of dimensions |Ω| × |Ω̂|.

Recall that M† = VMΣ−1
M U>M and that the residual of the least-squares problem is rM = ‖q −M(M†q)‖2 =

‖U⊥M (U⊥M )>q‖2, where U⊥M is an orthogonal matrix whose orthonormal columns span a subspace orthogonal to
UM .

We use an argument established in Drineas et al. (2006). That work sought to subsample constraints in a linear
regression problem and establish bounds between the result of using all the constraints versus sampling. We use
the same strategy, but in our case we are adding rather than removing constraints.

Following section 4.2 in Drineas et al. (2006), we have that

ˆ̀− ˜̀= M†q̂ − (SM)†(Sq̂)

= VMΣ−1
M U>M q̂ − (SUMΣMV

>
M )†Sq̂

= VMΣ−1
M U>M q̂ − VMΣ−1

M (SUM )†Sq̂

= VMΣ−1
M U>M q̂ − VMΣ−1

M (SUM )†S(U⊥M (U⊥M )> + UMU
>
M )q̂

= VMΣ−1
M U>M q̂ − VMΣ−1

M (SUM )†SU⊥M (U⊥M )>q̂ − VMΣ−1
M (SUM )†SUMU

>
M q̂

= VMΣ−1
M U>M q̂ − VMΣ−1

M (SUM )†SU⊥M (U⊥M )>q̂ − VMΣ−1
M U>M q̂

= −VMΣ−1
M (SUM )†SU⊥M (U⊥M )>q̂,

where we have used the fact that U⊥M (U⊥M )> + UMU
>
M = I and (SUM )†SUM = I.

Setting Γ := (SUM )† − (SUM )>, this is

ˆ̀− ˜̀= −VMΣ−1
M (SUM )†SU⊥M (U⊥M )>q̂

= −VMΣ−1
M ((SUM )> + Γ)SU⊥M (U⊥M )>q̂.

Now, we have the fact that Γ = (SU)† − (SU)> satisfies ‖Γ‖2 = ‖Σ−1
SUM

−ΣSUM ‖2, where ΣSUM is the diagonal
matrix from the SVD of SUM . In our case, ΣSUM has entries that are all larger than 0 (and up to 1). If
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ρSUM = σmin(SUM ) is the smallest singular value, then ‖Γ‖2 = ρ−1
SUM

− ρSUM . Now we take norms above to get

‖ˆ̀− ˜̀‖2 = ‖VMΣ−1
M ((SUM )> + Γ)SU⊥M (U⊥M )>q̂‖2

= ‖Σ−1
M ((SUM )> + Γ)SU⊥M (U⊥M )>q̂‖2

≤ ‖Σ−1
M (SUM )>SU⊥M (U⊥M )>q̂‖2 + ‖Σ−1

M ΓSU⊥M (U⊥M )>q̂‖2
≤ σ−1

min(M)
(
‖U>MS>SU⊥M (U⊥M )>q̂‖2 + ‖Γ‖‖SU⊥M (U⊥M )>q̂‖2

)
= σ−1

min(M)
(
‖U>M (I − Ξ)U⊥M (U⊥M )>q̂‖2 + (ρ−1

SUM
− ρSUM )‖SU⊥M (U⊥M )>q̂‖2

)
.

In the last step, we use the fact that S>S ∈ R|Ω|×|Ω| has a submatrix that is Ik and is 0 elsewhere. We set
Ξ = I − S>S; Ξ contains an Io+Υ submatrix and 0’s elsewhere. Now, U>MIU

⊥
M = U>MU

⊥
M = 0, so we have

‖ˆ̀− ˜̀‖2 = σ−1
min(M)

(
‖U>MΞU⊥M (U⊥M )>b‖2 + (ρ−1

SUM
− ρSUM )‖SU⊥M (U⊥M )>q̂‖2

)
≤ σ−1

min(M)
(
‖U>MΞ‖F‖U⊥M (U⊥M )>b‖2 + (ρ−1

SUM
− ρSUM )‖U⊥M (U⊥M )>q̂‖2

)
≤ σ−1

min(M)
(
(o+ Υ)umax + ρ−1

SUM
− ρSUM

)
‖U⊥M (U⊥M )>q̂‖2

≤ σ−1
min(M)

(
(o+ Υ)umax + ρ−1

SUM
− ρSUM

)
‖U⊥M (U⊥M )>‖‖q̂‖.

≤ σ−1
min(M)

(
(o+ Υ)umax + ρ−1

SUM
− ρSUM

)
‖U⊥M (U⊥M )>‖

√
|Ω̂|qmax.

Here, we used the fact that S has maximal singular value 1, along with the fact that the norm of largest row
of UM is umax, that the 2-norm of a matrix is no larger than its Frobenius norm, and that Ξ has only o + Υ
non-zero entries (all of which are 1’s on the diagonal).

Noise Term Now we work on the rightmost term, ‖˜̀− `∗‖, where ˜̀ is formed from the correct MΩ matrix,
but we still have sampling noise.

Recall that |µ̃| = exp(
˜̀

2 ) and similarly |µ∗| = exp( `
∗

2 ), where the exponential is applied elementwise. We have
that, since our matrix M in both cases is full-rank and we have a unique solution,

‖|µ̃| − |µ∗|‖ =

∥∥∥∥∥exp

(
˜̀

2

)
− exp

(
`∗

2

)∥∥∥∥∥
=

∥∥∥∥∥exp

(
`∗

2

)(
exp

(
˜̀− `∗

2

)
− 1

)∥∥∥∥∥
≤
∥∥∥∥exp

(
`∗

2

)∥∥∥∥
∥∥∥∥∥exp

(
˜̀− `∗

2

)
− 1

∥∥∥∥∥
= ‖µ∗‖

∥∥∥∥∥exp

(
˜̀− `∗

2

)
− 1

∥∥∥∥∥
≤
√
m

∥∥∥∥∥exp

(
|˜̀− `∗|

2

)
− 1

∥∥∥∥∥ ,
where the absolute value in the last expression is applied elementwise.

Note that for all x ≤ 1, exp(x)− 1 ≤ 2x. Using this, we get that in the case ‖˜̀− `∗‖∞ ≤ 2,

‖|µ̃| − |µ∗|‖ ≤ 2
√
m‖˜̀− `∗‖.

Note that as µ∗ = E[w · z], the entries of µ∗ (and µ̂, by construction) lie in [−1,+1]. Thus ‖|µ̂| − |µ∗|‖ ≤
√
m

always. So in the case ‖˜̀− `∗‖∞ > 2, we trivially have that ‖|µ̂| − |µ∗|‖ ≤ 2
√
m‖˜̀− `∗‖∞.

Recall that MΩ
˜̀ = q̃ and MΩ`

∗ = q∗, so ‖˜̀− `∗‖ = ‖M†(q̃ − q∗)‖. Combining this with the above analysis, we
have that

‖|µ̃| − |µ∗|‖ ≤ 2
√
m‖M†(q̃ − q∗)‖

≤ 2
√
m‖M†‖‖q̃ − q∗‖. (8)
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So we just need to bound ‖q̃ − q∗‖. Recall that qi,j = log(Oij)
2, then we have that

‖q̃ − q∗‖2 =
∑

(i,j)∈Ω

(
log(Ô2

i,j)− log((O∗i,j)
2)
)2

= 4
∑

(i,j)∈Ω

(
log(|Ôi,j |)− log(|O∗i,j |)

)2

= 4
∑

(i,j)∈Ω

(
log(|O∗i,j + (∆O)i,j |)− log(|O∗i,j |)

)2
≤ 4

∑
(i,j)∈Ω

[
log

(
1 +

∣∣∣∣ (∆O)i,j
Pi,j

∣∣∣∣)]2

≤ 4
∑

(i,j)∈Ω

(
|(∆O)i,j |
|O∗i,j |

)2

≤ 4

(O∗min)2

∑
(i,j)∈Ω

(∆O)2
i,j .

Here, we define ∆O := Ô − O. Note that O∗min is the same as Rmin. In the second inequality above, we use
log(1 + x))2 ≤ x2. Next, taking square roots and applying (6) by taking expectations, we get that

E[‖q̃ − q∗‖] ≤ 2

O∗min

‖∆O‖

≤ 8m2

O∗min

√
2π

n
.

We plug this into (8) to obtain

E[‖|µ̃| − |µ∗|‖] ≤ 16m
5
2

O∗min

‖M†‖
√

2π

n
. (9)

The only remaining step is to combine this with the misspecification step. Using the same idea as earlier, we
have that

‖|µ̂| − |µ̃|‖ ≤
√
m‖ˆ̀− ˜̀‖.

Next, using our earlier bound, we have that

‖ˆ̀− ˜̀‖ ≤ σ−1
min(M)

(
(o+ Υ)umax + ρ−1

SUM
− ρSUM

)
‖U⊥M (U⊥M )>‖

√
|Ω̂|qmax.

Then,

‖|µ̂| − |µ̃|‖ ≤
√
mσ−1

min(M)
(
(o+ Υ)umax + ρ−1

SUM
− ρSUM

)
‖U⊥M (U⊥M )>‖

√
|Ω̂|qmax.

Taking expectations, and using the fact that |Ω̂| ≤ m2, we get

E[‖|µ̂| − |µ̃|‖] ≤ m3/2σ−1
min(M)

(
(o+ Υ)umax + ρ−1

SUM
− ρSUM

)
‖U⊥M (U⊥M )>‖qmax. (10)

Then, from triangle inequality.
‖|µ̂| − |µ∗|‖ ≤ ‖|µ̂| − |µ̃|‖+ ‖|µ̃| − |µ∗|‖.

We combine (9) with (10) to get

E[‖|µ̂| − |µ∗|‖] ≤ 16m
5
2

O∗min

‖M†‖
√

2π

n

+m3/2σ−1
min(M)

(
(o+ Υ)umax + ρ−1

SUM
− ρSUM

)
‖U⊥M (U⊥M )>‖qmax.
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We assumed, initially, that we had Υ edges from the invalid IVs. After structure learning, from Lemma 2,
with probability at least 1 − 1/m, we have iS invalid IVs and eS edges. The iS invalid IVs can lead to up to
Υ = iS(p + iS) invalid edges (between any invalid IV and any other IV), while we have o = eS dependencies.
Then, after this substitution, we get our main result.

The second part of the theorem statement involves the case where we bypass structure learning and directly
plug in our IVs, assuming conditional independence, despite the presence of i invalid sources and e dependencies.
The only distinction in this case is that we can explicitly compute the minimal singular value of the structured
matrix M , which is

√
s+ p− 2, and the umax term, which is

√
2/(s+ p− 2).

Theorem 1 follows from Theorem 3 since when n > c1d
2m, the structure learning component correctly identifies

the valid IV candidates and the correct dependencies among them with high probability (in which case we recover
MΩ and thereby the correct signs for µ̂ as well). For convenience, we restate Theorem 1 below.

Theorem 1. Let µ̂ be the result of Algorithm 1 run on n samples of m IV candidates, where m > c0. Denote
µ∗ to be the mean parameter of (1). If n > c1d

2m, then with probability at least 1− 1
m ,

E[‖µ̂− µ∗‖] ≤ 16m
5
2

Rmin
‖M†‖

√
2π

n
.

B.5 Auxiliary Lemmas for Theorem 2

Next, we present some useful results that will help us with our proof of Theorem 2. We first present Lemma 3,
which details a mild regularity condition under which we can reason within a feasible region of the parameter
space that yields a strongly convex population level negative log-likelihood function.

Lemma 3. Let `(x; θ) be the negative log-likelihood function parameterized by θ ∈ Θ. Let I(θ) := E
[
∂2`(x;θ)
∂θ2

]
be the corresponding Fisher information matrix. Suppose that for any given θ ∈ Θ, there exists an unbiased
estimator θ̌ of θ that is a function of some number n of independent samples

{
x(i)
}n
i=1

drawn from D such that,

for some constant λ, Cov(θ̌) � I
2λn . Then L(θ) := E[`(x; θ)] is λ-strongly convex with respect to θ.

Proof. The proof follows the rationale of that in Ratner et al. (2016). From the Cramér-Rao lower bound, we
know in general that the variance of any unbiased estimator is bounded by the inverse of the Fisher information:

Cov(θ̌) � (I(θ))−1.

Since the unbiased γ̌ by construction is learned from n independent samples from D, it follows that the Fisher
information is n times the Fisher information of a single sample:

E

[
n∑
i=1

∂2

∂θ2
`(x(i); θ)

]
=

n∑
i=1

E
[
∂2`(x(i); θ)

∂θ2

]
= nE

[
∂2`(x; θ)

∂θ2

]
= nI(θ).

Combining this with the bound in the lemma statement on the covariance, we get

I

2λn
� (nI(θ))−1.

It follows that

E
[
∂2`(x; θ)

∂θ2

]
= I(θ) � 2λI,

which means L(γ) is λ-strongly convex.

Let l(y, z; γ) := log[1 + exp(−y(k+βz))], with γ := (k, β). Lemma 4 upper bounds the error in the parameter of
the logistic regression model that uses z to predict y by the error in the parameters of Ivy. Notice that the same
lemma can also be applied to upper bound the error in the parameters of the logistic regression model that uses
z to predict x.
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Lemma 4. Let L(γ) := E[l(y, z; γ)], γ∗ := argminγ L(γ), and let γ̂ be the logistic regression parameters
learned using the data set and the Ivy estimator ẑ. Suppose that there exists a constant c5 > 0 such that
max{l(y, z; γ̂), l(y, z; γ∗))} ≤ c5, and let c6 be a constant. Suppose further that the assumptions in Lemma 3 hold
for l(y, z; γ). Then, L(γ) is λ-strongly convex, and

‖γ̂ − γ∗‖22 ≤
2c6
λ

√
2π

n
+

32

λ
c5

(
E [‖µ̂− µ∗‖∞] + E

[
‖Ô −O∗‖∞

])
.

Proof. In words, γ∗ ∈ R2 is the optimal parameter vector of the population level logistic regression when z
is observed. Similarly, γ̂ ∈ R2 is the optimal parameter vector of the logistic regression when using ẑ to
predict y. First, we would like to characterize |L(γ̂) − L(γ∗)| = |E[l(y, z; γ̂) − l(y, z; γ∗)]|. Define Lµ,O(γ) :=
Ey,w∼D[Ez∼Pµ,O(z|w)[l(y, z; γ)]]. Note that L(γ) = Ey,w∼D[Ez∼Pµ∗,O∗ (z|w)[l(y, z; γ)]] = Lµ∗,O∗(γ) by definition of
µ∗, O∗. Furthermore,

L(γ̂)− L(γ∗) =Lµ∗,O∗(γ̂) + Lµ̂,Ô(γ̂)− Lµ̂,Ô(γ̂) + Lµ̂,Ô(γ̃)− Lµ̂,Ô(γ̃)− Lµ∗,O∗(γ∗)
≤Lµ∗,O∗(γ̂) + Lµ̂,Ô(γ̂)− Lµ̂,Ô(γ̂) + Lµ̂,Ô(γ∗)− Lµ̂,Ô(γ̃)− Lµ∗,O∗(γ∗)
≤Lµ̂,Ô(γ̂)− Lµ̂,Ô(γ̃) + |Lµ∗,O∗(γ̂)− Lµ̂,Ô(γ̂)|+ |Lµ̂,Ô(γ∗)− Lµ∗,O∗(γ∗)|
≤ξ(n) + 2|Lµ̂,Ô(γ′)− Lµ∗,O∗(γ′)|,

where γ̃ := argminγ Lµ̂,Ô(γ), ξ(n) is the estimation error Lµ̂,Ô(γ̂)−Lµ̂,Ô(γ̃), and γ′ := argmaxγ∈{γ̂,γ∗}|Lµ̂,Ô(γ)−
Lµ∗,O∗(γ)|. It remains to control |Lµ̂,Ô(γ′)− Lµ∗,O∗(γ′)|. Specifically,

|Lµ̂,Ô(γ′)− Lµ∗,O∗(γ′)| =
∣∣∣Ey,w∼D[Ez∼Pµ̂,Ô(·|w)[l(y, z; γ

′)]]− Ey,w∼D[Ez∼Pµ∗,O∗ (·|w)[l(y, z; γ
′)]]
∣∣∣

=

∣∣∣∣∣Ey,w∼D
[∑

z

l(y, z; γ′)
(

Pµ̂,Ô(z | w)− Pµ∗,O∗(z | w)
)]∣∣∣∣∣

≤c5
∑

z∈{−1,1}

Ey,w∼D
[∣∣∣Pµ̂,Ô(z | w)− Pµ∗,O∗(z | w)

∣∣∣]
≤2c5 max

z∈{−1,1}
Ey,w∼D

[∣∣∣Pµ̂,Ô(z | w)− Pµ∗,O∗(z | w)
∣∣∣]

≤2c5 max
z∈{−1,1}

Ey,w∼D
[∣∣∣log Pµ̂,Ô(z | w)− log Pµ∗,O∗(z | w)

∣∣∣]
≤8c5‖θ̂ − θ∗‖∞,

where in the first inequality we use the assumption that l(y, z; γ′) ≤ c5, in the penultimate inequality we use the
fact that |x−y| ≤ |log x− log y| for x,y ∈ [0, 1], and in the last inequality we follow the argument in Ratner et al.

2019, Appendix B.3 and use the fact that
∣∣∣Pµ̂,Ô(z, w)− Pµ∗,O∗(z, w)

∣∣∣ ≤ 2‖θ̂−θ∗‖∞ due to Honorio 2012, Lemma

19. Here, θ̂ and θ∗ are the canonical parameters of the graphical models. It remains to bound ‖θ̂ − θ∗‖ with
‖µ̂−µ∗‖. To this end, notice that ∇A(θ) = µ (Wainwright et al., 2008), where A(θ) is the log partition function.
Furthermore, ∇2A(θ) is the covariance matrix whose smallest eigenvalue value is σmin > 0. We therefore have
that ∇A(θ) is σmin-strongly convex. By Fenchel duality (Zhou, 2018), ∇A∗(µ)—the dual of the σmin-strongly
convex ∇A(θ)—is 1/σmin-Lipschtiz. As a result,

‖θ̂ − θ∗‖∞ ≤ ‖θ̂ − θ∗‖2 = ‖∇A∗(µ̂)−∇A∗(µ∗)‖2 ≤
1

σmin

(
‖µ̂− µ∗‖2 + ‖Ô −O∗‖2

)
,

where we have used the fact that ∇∗A(µ) = θ. Therefore,

L(γ̂)− L(γ∗) ≤ ξ(n) + 16c̃5

(
E [‖µ̂− µ∗‖] + E

[
‖Ô −O∗‖

])
,

where c̃5 = c5
2σmin

. Using the fact that L(γ) is λ-strongly convex and γ∗ is the global optimizer of L(γ), we have
that

λ

2
‖γ̂ − γ∗‖22 ≤ L(γ̂)− L(γ∗) ≤ ξ(n) +

16c̃5
σmin

(
E [‖µ̂− µ∗‖] + E

[
‖Ô −O∗‖

])
⇒‖γ̂ − γ∗‖22 ≤

2

λ
ξ(n) +

32c̃5
λσmin

(
E [‖µ̂− µ∗‖] + E

[
‖Ô −O∗‖

])
.
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What remains is to bound the ξ(n) estimation term; this is standard. First, we can use the Lipschitz property
of the functions involved to write

ξ(n) ≤ c6Ey,w∼D
[
Ez1,...,zn∼Pµ̂,Ô(·|w)

[∣∣∣∣z1 + . . .+ zn
n

− z̄
∣∣∣∣]] ,

where z̄ = EPµ̂,Ô (z) and c5 combines the Lipschitz constants. Then, it remains to apply Hoeffding’s inequality,

noting that z takes on values in {−1,+1}. Thus, we have

P

(∣∣∣∣z1 + . . .+ zn
n

− z̄
∣∣∣∣ ≥ t) ≤ 2 exp(−nt2/2).

Finally, integrating this over t, we get that

ξ(n) ≤ c6

√
2π

n
.

Lemma 5 upper bounds the error in the Wald causal effect estimates with the error in the parameters of the
corresponding logistic regression models.

Lemma 5. Let β̂ẑy and β̂ẑx be estimates of Ivy from n data points. Let γ∗zy := argminγ E [l(y, z; γ)] and
γ∗zx := argminγ E [l(x, z; γ)], with γ∗zy = (k∗zy, β

∗
zy) and γ∗zx = (k∗zx, β

∗
zx). That is, β∗zy and β∗zx are the population-

level regression coefficients of z when z is observed. If there exists 0 < κ < 1 such that,

δ := max
{
|β̂ẑy − β∗zy|, |β̂ẑx − β∗zx|

}
≤ κ|β∗zx|, (11)

then the Wald causal effect estimator α̂x→y :=
β̂ẑy

β̂ẑx
and the population-level Wald ratio α∗x→y :=

β∗zy
β∗zx

satisfy:

|α̂x→y − α∗x→y| ≤
2(β∗zx + β∗zy)

(1− κ)β∗2zx
δ.

Proof. By the assumed inequality (11),

−δ ≤ β̂ẑy − β∗zy ≤ δ ⇒ β∗zy − δ ≤ β̂ẑy ≤ β∗zy + δ,

−δ ≤ β̂ẑx − β∗zx ≤ δ ⇒ β∗zx − δ ≤ β̂ẑx ≤ β∗zx + δ.
(12)

Without loss of generality, we assume that β∗zy ≥ 0 and β∗zx ≥ 0, because we can always make sure that β∗zy
and β∗zx are nonnegative with the appropriate representation of our data. By the assumption in (11), δ ≤ κβ∗zx,
hence β∗zx > δ since κ ∈ (0, 1). Intuitively, this means we should use an IV that is sufficiently predictive of x (i.e.
not a weak IV). Using (12),

• When β∗zy − δ ≥ 0,

0 ≤
β∗zy − δ
β∗zx + δ

≤ β̂ẑy

β̂ẑx
≤
β∗zy + δ

β∗zx − δ

and 0 ≤
β∗zy − δ
β∗zx + δ

≤
β∗zy
β∗zx
≤
β∗zy + δ

β∗zx − δ

⇒ |α̂x→y − α∗x→y| ≤
β∗zy + δ

β∗zx − δ
−
β∗zy − δ
β∗zx + δ

=
2(β∗zx + β∗zy)

β∗2zx − δ2
δ

≤
2(β∗zx + β∗zy)

(1− κ2)β∗2zx
δ ≤

2(β∗zx + β∗zy)

(1− κ)β∗2zx
δ.
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• When β∗zy − δ ≤ 0 ≤ β̂ẑy,

0 ≤ 1

β∗zx + δ
≤ 1

β̂ẑx
≤ 1

β∗zx − δ

and 0 ≤
β∗zy
β∗zx
≤
β∗zy + δ

β∗zx − δ

⇒ 0 ≤ β̂ẑy

β̂ẑx
≤
β∗zy + δ

β∗zx − δ

⇒ |α̂x→y − α∗x→y| ≤
β∗zy + δ

β∗zx − δ
≤
β∗zy + δ

β∗zx − δ
−
β∗zy − δ
β∗zx + δ

≤
2(β∗zx + β∗zy)

(1− κ2)β∗2zx
δ ≤

2(β∗zx + β∗zy)

(1− κ)β∗2zx
δ.

• When β̂ẑy ≤ 0,

0 ≤ 1

β∗zx + δ
≤ 1

β̂ẑx
≤ 1

β∗zx − δ

and 0 ≤ −β̂ẑy ≤ −(β∗zy − δ)

⇒ 0 ≤ − β̂ẑy
β̂ẑx
≤ −

β∗zy − δ
β∗zx − δ

⇒
β∗zy − δ
β∗zx − δ

≤ β̂ẑy

β̂ẑx
≤ 0

⇒ |α̂x→y − α∗x→y| ≤ α∗x→y −
β∗zy − δ
β∗zx − δ

=
β∗zx − β∗zy
β∗zx(β∗zx − δ)

δ

≤
β∗zx − β∗zy
(1− κ)β∗2zx

δ ≤
2(β∗zx + β∗zy)

(1− κ)β∗2zx
δ.

• Thus, for all the cases discussed above, we have that

|α̂x→y − α∗x→y| ≤
2(β∗zx + β∗zy)

(1− κ)β∗2zx
δ.

B.6 Proof of Theorem 2

For convenience, we restate Theorem 2:

Theorem 2. Run Algorithm 1 on n samples of m IV candidates to synthesize ẑ’s that are plugged into the Wald
estimator to obtain the causal effect estimate α̂x→y. Then, the error in the estimate α̂x→y compared to the true
effect α∗x→y is bounded as follows:

E[(α̂x→y − α∗x→y)2] ≤
√

1

n
· 6000c2m

5
2 (β∗zx+β∗zy)2(1+‖M†‖)
Rminλ(1−κ)2β∗4zx

.

Proof. The proof of Theorem 2 follows from combining Lemma 4, Lemma 5, and Theorem 1. First, from
Lemma 5,

|α̂x→y − α∗x→y| ≤
2(β∗zx + β∗zy)

(1− κ)β∗2zx
δ ≤

2(β∗zx + β∗zy)

(1− κ)β∗2zx
‖γ̂ − γ∗‖, (13)

where the second inequality is due to the fact that δ = max
{
|β̂ẑy − β∗zy|, |β̂ẑx − β∗zx|

}
≤ ‖γ̂ − γ∗‖, where γ∗

corresponding to the regression coefficient vector of using either x or y as the dependent variable. Combining
(13) with Lemma 4 and Lemma 1 yields:

(α̂x→y − α∗x→y)2 ≤
4(β∗zx + β∗zy)2

(1− κ)2β∗4zx

[
2c6
λ

√
2π

n
+

32

λ
c̃5

(
E [‖µ̂− µ∗‖∞] + E

[
‖Ô −O∗‖∞

])]

⇒ E[(α̂x→y − α∗x→y)2] ≤
8(β∗zx + β∗zy)2

λ(1− κ)2β∗4zx

(
c6 + 16c̃5m

2
)√2π

n
+

128c1
λ(1− κ)2

·
(β∗zx + β∗zy)2

β∗4zx
· E[‖µ̂− µ‖∞]. (14)
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Applying Theorem 1 to (14) and using the fact that ‖·‖∞ ≤ ‖·‖2, we have that

E[|α̂x→y − α∗x→y|] ≤
8(β∗zx + β∗zy)2

λ(1− κ)2β∗4zx

(
c6 + 16c̃5m

2
)√2π

n
+

2048c1
√

2πm
5
2 ‖M†‖(β∗zx + β∗zy)2

Rminλ(1− κ)2β∗4zx
√
n

=
(β∗zx + β∗zy)2

λ(1− κ)2β∗4zx

√
2π

n

(
8c6 + 128c̃5m

2 +
2048c1
Rmin

m
5
2 ‖M†‖

)
≤
√

1

n
·

6000c2m
5
2 (β∗zx + β∗zy)2(1 + ‖M†‖)
Rminλ(1− κ)2β∗4zx

.

with probability at least 1 − 1
m if n > c1d

2m. Here, we set c2 := max{c1, c̃5, c6}, and we used the fact that
0 < Rmin ≤ 1 since the wi’s are in {−1,+1}.

B.7 Non-Zero Error in Causal Effect Estimation

Suppose that 0 < ε < min
{
|β̂ẑy − β∗zy|, |β̂ẑx − β∗zx|

}
. Here is an example where the error of the causal effect

estimate is lower bounded. Consider the event E1 =
{
β̂ẑy > β∗zy > 0 and 0 < β̂ẑx < β∗zx

}
. When E1 happens,

we have that ε < β̂ẑy − β∗zy. Therefore,

0 <
β∗zy + ε

β̂ẑx
<
β̂ẑy

β̂ẑx

and 0 <
β∗zy
β∗zx

<
β∗zy

β̂ẑx
⇒ −

β∗zy

β̂ẑx
< −

β∗zy
β∗zx

⇒ 0 <
ε

β̂ẑx
< α̂x→y − α∗x→y

⇒ 0 <
ε

β∗zx
< α̂x→y − α∗x→y.

In general, E1 happens with non-zero probability. In this case ‖α̂x→y − α∗x→y‖2 is bounded away from zero.

B.8 Statistical Power Estimation

In addition to accurately estimating the underlying causal effects (when such effects are present), it is also useful
to characterize the reliability of such inferences. That is, when the algorithm produces a claim on the presence
of causal effects, can we confidently trust such a result?

To answer this question, we work with a standard statistical power estimator and characterize its behavior
when the Ivy estimator is used as input. Statistical power is the probability of rejecting a false null hypothesis;
here, the null hypothesis is that there is no causal effect between the risk factor and the outcome. We denote
the probability of rejecting a true null hypothesis as α (type-I error rate), and we denote the probability of
not rejecting a false null hypothesis as β (type-II error rate). Therefore, the power of the statistical test is
1 − β. When z is observed, Lemma 6 provides an estimator of statistical power based on standard normality
approximations (Freeman et al., 2013). We write p0 = P(y = 0) and p1 = P(y = 1) for convenience. We also
let ζδ be such that Φ(−ζδ) = δ, where Φ is the cdf of the standard normal distribution. The following lemma
follows from standard arguments on power estimation,

Lemma 6. The statistical power of the Wald estimator at level 1− |βxz| with respect to the null hypothesis that
there is no causal effect between a binary risk factor and a binary outcome when z is observed with n samples is
given by:

π := 1− Φ
(
ζ a

2
−√np1p0|α∗xy||β∗zx|

)
.

If we had access to the true z, the above expression would use β∗xz to yield the true power π∗; instead, we use

the Ivy procedure to estimate β∗xz by β̂xz. We denote the resulting power estimates by π̂. Our next result shows
that, despite relying on IV candidates, the Ivy procedure still produces a power that approximates the ideal
power π∗ arbitrarily well in the case where we have a correctly specified model.
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Theorem 4. Let π̂ be the power estimated using Ivy according to (6) with β̂xz in lieu of β∗xz. If n is the number
of samples, then the power difference |π̂ − π∗| satisfies

|π̂ − π∗| ≤
√
p1p0

2π
Cα∗xy exp

(
ζα

2
−√np1p0α

∗
x→yβ

∗
zx

)
,

where C is a constant.

Before presenting the proof, we briefly comment on this result. Note that as n→∞, the exponent term becomes
arbitrarily small. The impact of the estimation part is limited to the coefficient

√
p1p0Cα

∗
x→y.

Proof. To ease the notation, let us write p1 := P(Y = 1) and p0 := P(Y = 0). Then,

|π̂ − π∗| =
∣∣∣Φ(zα

2
−√np1p0α

∗
Y X β̂ZX)− Φ(zα

2
−√np1p0α

∗
Y Xβ

∗
ZX)

∣∣∣
≤
∣∣∣∣Φ(zα

2
−√np1p0α

∗
Y X

(
β∗ZX −

C√
n

)
− Φ(zα

2
−√np1p0α

∗
Y Xβ

∗
ZX)

∣∣∣∣
=
∣∣Φ([zα

2
+
√
p1p0Cα

∗
Y X ]−√np1p0α

∗
Y Xβ

∗
ZX)− Φ(zα

2
−√np1p0α

∗
Y Xβ

∗
ZX)

∣∣ .
The first step uses our result that |β̂ZX − β∗ZX | ≤ C√

n
for some constant term C.

The previous expression can be written as Φ(B)− Φ(A). Note that

Φ(B)− Φ(A) =

∫ B

A

1√
2π

exp(−x2/2)dx ≤
∫ B

A

1√
2π

exp(−A2/2)dx =
1√
2π

exp(−A2/2)(B −A).

Now, replacing A and B with their corresponding terms, we have that

|π̂ − π∗| ≤
√
p1p0

2π
Cα∗Y X exp

(
zα

2
−√np1p0α

∗
Y Xβ

∗
ZX

)
,

as desired.

B.9 Conditional Independent Model and Unary Potentials

One of the properties we used in our algorithms was that the accuracies are independent when the candidates
are conditionally independent and distributed according to our Ising model. We prove this property formally
below.

Proposition 1. Consider the following conditional independent model between IV candidates wj’s and the true
IV z.

P(w1, · · · , wp, z) =
1

Z(θ)
exp

θzz +
∑
j∈V

θjzwjz

 .

We have that P(wj = 1 | z = 1) = P(wj = −1 | z = −1) = P(wj = z) = P(aj) = P(aj | z), and P(aj , ak) =
P(aj)P(ak) for all j, k ∈ V , and aj := wjz.

Proof. Consider P(wj , z) and P(z):

P(wj , z) =
∑

j′ 6=j,j′∈V

exp (θzz + θjzwjz)

Z(θ)
exp

 ∑
j′ 6=j,j′∈V

θj′zwj′z


=

exp (θzz + θjzwjz)

Z(θ)

 ∑
j′ 6=j,j′∈V

exp

 ∑
j′ 6=j,j′∈V

θj′zwj′z


=

exp (θzz + θjzwjz)

Z(θ)
f−j(z).
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P(z) =
exp (θzz)

Z(θ)

∑
j∈V

exp

∑
j∈V

θjzwjz

 =
exp (θzz)

Z(θ)
fV (z).

Since P(w | z) = P(w, z)/P(z),

P(wj = 1 | z = 1) =
exp(θz + θjz)

Z(θ)
· f−j(1)

P(z = 1)
= exp (θjz) ·

f−j(1)

fV (1)

P(wj = −1 | z = −1) =
exp(−θz + θjz)

Z(θ)
· f−j(−1)

P(z = −1)
= exp(θjz) ·

f−j(−1)

fV (−1)
.

Notice that,

fV (z) =
∑

wj∈{−1,1}

exp (θjzwjz)
∑

j′∈V,j′ 6=j

exp

 ∑
j′∈V,j′ 6=j

θj′zwj′z


=f−j(z) [exp(θjzz) + exp(−θjzz)] .

Therefore,

P(wj = 1 | z = 1) = exp (θjz) ·
f−j(1)

f−j(1)
· 1

exp(θjz) + exp(−θjz)
,

P(wj = −1 | z = −1) = exp (θjz) ·
f−j(−1)

f−j(−1)
· 1

exp(−θjz) + exp(θjz)

⇒ P(wj = 1 | z = 1) =P(wj = −1 | z = −1).

Furthermore, P(aj) = P(wj = z) = P(wj = 1, z = 1) + P(wj = −1, z = −1) = P(wj = 1 | z = 1)p(z =
1) + P(wj = −1 | z = −1)p(z = −1) = P(wj = 1 | z = 1) = P(wj = −1 | z = −1), where we have used the fact
that p(z = 1) + p(z = −1) = 1 for the last two equalities.

Finally, when z = 1, P(aj = 1 | z = 1) = P(wj = 1 | z = 1) = P(aj = 1) and P(aj = −1 | z = 1) = P(wj =
−1 | z = 1) = P(aj = −1). Similarly, when z = −1, P(aj = 1 | z = −1) = P(wj = −1 | z = −1) = P(aj = 1)
and P(aj = −1 | z = −1) = P(wj = 1 | z = −1) = P(aj = −1). Therefore, we can conclude that P(aj |z) =
P(aj). This further implies that P(aj , ak) =

∑
z∈{−1,1} P(aj , ak|z)P(z) =

∑
z∈{−1,1} P(aj |z)P(ak|z)P(z) =∑

z∈{−1,1} P(aj)P(ak)P(z) = P(aj)P(ak).

Proposition 2 shows that how the accuracy parameters of a conditional independent Ising model of (1) are
independent of each other, using a model of three IV candidates as an example.

Proposition 2. Let w1, w2, and w3 follow:

P(w1, w2, w3, z) =
1

Z(θ)
exp (θ1w1 + θzz + θ1zw1z + θ2zw2z + θ3zw3z)

We have that P(a1, a2) = P(a1)P(a2) and P(a1, a3) = P(a1)P(a3).

Proof. Intuitively, rewrite P(w1, w2, w3, z) as:

P(a1, a2, a3, z) =
1

Z(θ)
exp (θ1a1z + θzz + θ1za1 + θ2za2 + θ3za3) .

Then P(a1, a2, a3, z) factorizes as P(a1, a2, a3, z) = P(a1, z)P(a2)P(a3). It follows that P(a1, a2) = P(a1)P(a2)
and P(a1, a3) = P(a1)P(a3).

Proposition 3 shows how the soft label of z is computed given w.
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Figure A.2: w4 is an invalid IV that does not meet the assumption made by Ivy.

Proposition 3. Let w1,w2,· · · ,and wp be given. The posterior probability of z = 1, i.e. P(z = 1 | w1, · · · , wp),
is given as

P(z = 1 | w1, · · · , wp) = σ

 p∑
j=1

log
P(wj | z = 1)

P(wj | z = −1)
+ log

P(z = 1)

P(z = −1)

 ,

where σ(t) = 1
1+exp(−t) is the sigmoid function.

Proof.

P(z = 1 |w1, · · · , wp)

=
P(w1, · · · , wp | z = 1)P(z = 1)

P(w1, · · · , wp)

=
P(w1, · · · , wp | z = 1)P(z = 1)

P(w1, · · · , wp | z = 1)P(z = 1) + P(w1, · · · , wp | z = −1)P(z = −1)

=
1

1 +
P(w1,··· ,wp|z=−1)P(z=−1)

P(w1,··· ,wp|z=1)P(z=1)

=σ

(
log

P(w1, · · · , wp | z = 1)P(z = 1)

P(w1, · · · , wp | z = −1)P(z = −1)

)
=σ

(
log

∏p
j=1 P(wj | z = 1)P(z = 1)∏p

j=1 P(wj | z = −1)P(z = −1)

)

=σ

 p∑
j=1

log P(wj | z = 1)−
p∑
j=1

log P(wj | z = −1) + log P(z = 1)− log P(z = −1)


=σ

 p∑
j=1

log
P(wj | z = 1)

P(wj | z = −1)
+ log

P(z = 1)

P(z = −1)


Note that when wj = 1, log

P(wj=1|z=1)
P(wj=1|z=−1) = 1 × log

P(wj=1|z=1)
P(wj=1|z=−1) . When wj = −1, log

P(wj=−1|z=1)
P(wj=−1|z=−1) = −1 ×

log
P(wj=−1|z=−1)
P(wj=−1|z=1) .

B.10 Example of Limitations of Ivy

Here we show a counterexample of invalid IV that does not meet the assumption made by Ivy, as given in
Figure A.2. As can be seen, w4 is an invalid IV because it is directly linked to the outcome, violating the
exclusion restriction assumption. However, Ivy cannot identify w5 as invalid because w5 is dependent on z. w4 is
called a mediator. Thankfully, in Mendelian randomization, SNPs used as IVs are usually not mediators because
a risk factor is usually a downstream product of genetic variation and hence is not causal to the status of a SNP.

C Extended Experiments

Next we provide additional experiments and detail, including synthetic data experiments. We also present a
series of experiments where we violate the key assumptions, investigating Ivy’s robustness in cases where not all
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of them are met.

C.1 Details of Experiments

Data Preprocessing For real-world data, we acquire raw data from UK Biobank, which are subsequently
binarized. For SNPs as IV candidates, we use the {−1, 0, 1} representation that reflects the dominant/recessive
genetic model. To determine the encoding of the IV candidates that we anticipate to label the latent IV, we choose
the encoding of each IV candidate that is positively correlated with the value of the risk factor. Individual-level
data from unrelated subjects of European descent are used.

Allele Scores Unweighted allele score assigns equal weight to the count of every genetic variant (IV candidate).
Weighted allele score regresses the risk factor on the IV candidates to derive a weighted combination of the IV
candidates. Since we have access to individual-level data, we derive the weights of the weighted allele score in a
multiple regression fashion (Angrist et al., 1999; Burgess and Thompson, 2013).

Implementation of Ivy When covariance matrices are calculated, we treat these candidates as numeric vari-
ables. When curated putative valid IV candidates are used to estimate causal relationships we use conditional
independent Ivy models to learn the accuracy of the IV candidates. In other cases, we run the full Algorithm 1
to estimate causal effects.

Observe that using the loss function in Section 3.3, we do not even need as many samples of the candidates as
there are candidates—which would prevent us from inverting the sample covariance matrix. However, since in
practice, many more samples are available, a direct approach is to perform this inversion and then apply the
algorithm above directly to the inverted matrix, and we do so in our experiments.

It should be noticed that when we have access to a conditional independent Ivy model, one could directly estimate
P(z = 1 | w) by µ̂ due to Proposition 3. On the other hand, when we need to handle the dependencies among
IV candidates, we cannot apply Proposition 3 anymore. Instead, we make use of moment matching (Koller

and Friedman, 2009) to map the mean parameters (µ̂, Ô) of the graphical model to its canonical parameters θ̂.

Having access to θ̂, we can compute Pθ̂(z = 1 | w) via standard graphical model inference procedures.

Causal Effect Estimation Once Ĝ = (V̂ , Ê) is determined, we split the dataset into two separated halves at
random, where the first half is used to derive the instrumental variable model, and the second half is used to
estimate causal effect. Doing so can avoid overfitting the data, similar to purpose of the practice described in
Burgess and Thompson (2013); Burgess et al. (2017). This procedure is repeated for 1000 times to compute the
median and the 95% confidence interval of the causal effect estimate. We use the Wald estimator as our causal
effect estimator. The interpretation of the Wald estimator is that the change of log-odd-ratio in the occurrence
of outcome per unit change of the log-odd-ratio in the occurrence of the risk factor. Median of the Wald ratio
estimate is recommended to describe the causal effect size (Burgess and Thompson, 2015). A 95% of confidence
interval that covers the origin suggests that no causal relationship between the risk factor and the outcome.
When conducting causal effect estimate using allele scores, we also obtain synthesized IV samples based on the
probability suggested by the allele scores to account for uncertainty in the same way as we do for Ivy.

Model Selection We consider a score-based model selection procedure, which can be viewed as an alternative
to cross validation when it comes to choosing an appropriate set of hyperparameters (Hastie et al., 2001). Such
a model selection procedure is used to determine the hyperparameters of Algorithm 2, specifically λ, γ, T1, and
T2. We run Algorithm 2 over the entire dataset using a grid of hyperparameters. From Line 4 of Algorithm 2
we have access to scores that correspond to the covariance between each of the p + s IV candidates and z. We
sort the absolute values of these scores from low to high and compute the ratios of the latter score over the
former score. We denote the largest of the ratios corresponding to a given pair of λ and γ as τλ,γ and we denote
its corresponding index in the sorted array as tλ,γ . Therefore, for each τλ,γ , we consider the following model
selection score: log(τλ,γ) · I(τλ,γ > 10) · exp(p+ q− tλ,γ), and choose λ and γ corresponding to the largest score.
Such a model selection score is designed to strike a balance between the number of IV candidates viewed as
valid and the strength of the accuracy signal encoded by the covariance that indicates validity. Determining
T1 requires taking into consideration of various factors such as the total number of candidates, prior knowledge
about the proportion of valid IV candidates available in the dataset, and the level of uncertainty of the causal
estimate desired. We sort the values of |Σ̂l̂| in ascending order and choose one of the values as T1. The higher
the total number of candidates and the higher the proportion of valid candidates the larger the index of T1 in
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Dataset Task # Samples
# IVs

(Valid/Invalid)
Ground Truth Section

hdl⇒cad Does HDL cause CAD? 286,501 49 (19/30) Noncausal 4.1
crp⇒cad Does CRP cause CAD? 311,442 160 (N.A.) Noncausal 4.1
vtd⇒cad Does VTD cause CAD? 298,386 41 (N.A.) Noncausal 4.1
sbp⇒cad Does SBP cause CAD? 332,998 35(N.A.) Causal C.2.2
hdl→cad Does HDL cause CAD? 286,501 19 (19/0) Noncausal 4.2
ldl→cad Does LDL cause CAD? 311,559 19 (19/0) Causal 4.2
sbp→cad Does SBP cause CAD? 332,998 26(26/0) Causal C.2.2

hdl valid vs invalid IVs of HDL 286,501 49 (19/30) N.A. C.2.3
ldl valid vs invalid IVs of LDL 311,559 42 (19/23) N.A. C.2.3
trg valid vs invalid IVs of TRG 311,861 68 (27/41) N.A. C.2.3

hdl-ldl HDL IVs vs LDL IVs 286,062 38 (19/19) N.A. C.2.3
hdl-trg HDL IVs vs TRG IVs 286,289 46 (19/27) N.A. C.2.3
ldl-trg LDL IVs vs TRG IVs 311,368 46 (19/27) N.A. C.2.3

Table A.2: Summary of real-world data used in the experiments. HDL: high-density lipoprotein; LDL: low-
density lipoprotein; TRG: triglyceride; SBP: systolic blood pressure; CRP: C-reactive protein; VTD: vitamin D;
CAD: coronary artery disease.
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Figure A.3: Estimation of the known positive causal effect of systolic blood pressure on coronary artery disease
using both curated and uncurated IV candidates

the sorted array we can choose. A larger T1 can reduce the variance of the estimate but could also potentially
induce more bias. In practice, we consider a T1 that is indexed by ξ · (p+s− tλ,γ) with ξ ∈ {2, 3}. After selecting

τλ,γ , we select T2 by providing the values of Ŝ to the Tukey’s fence, which is an outlier detection rule (Yu, 1977).
We then use the smallest outlier as the threshold for T2. If there is no outlier, we view the model as conditional
independent.

C.2 Extended Real-World Experiments

We first discuss the curation process of the twelve real-world datasets that we use in our experiments (Sec-
tion C.2.1). We then report the experimental results of estimating a true causal relationship between systolic
blood pressure and coronary artery disease on two real-world datasets with curated and uncurated IV candidates
respectively (Section C.2.2). Finally, we compare Ivy with a leading IV-based robust causal inference approach
sisVIVE in terms of distinguishing between valid and invalid IVs on six real-world datasets (Section C.2.3).

C.2.1 Real-World Datasets

The real-world datasets used in our experiments are summarized in Table A.2. We describe how each dataset is
produced. All the datasets consist of individual-level data from UK Biobank including data of the risk factor,
the outcome, and IV candidates (SNPs). We report what SNPs are chosen as IV candidates for each dataset. In
hdl⇒cad, the SNPs are chosen according to Holmes et al. 2014, where 19 SNPs are reported to be putatively
valid IVs and 30 are invalid. For crp⇒cad and vtd⇒cad, SNPs are chosen as IV candidates as long as they
are reported to be associated with the corresponding risk factor among individuals of European descent in the
GWAS Catalog (Buniello et al., 2018). In this case, we do not know the validity of the IV candidates, faithfully
reflecting the challenges of MR in practice. See Section C.2.2 for the curation process of sbp⇒cad and sbp→cad.
The IV candidates and their validity of the rest of the datasets are also determined according to Holmes et al.
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Figure A.4: AUCs of Ivy and sisVIVE in distinguishing between valid and invalid IVs across six datasets. Ivy:
the proposed method run on the full datasets with model selection. Ivy-Downsample: only use the subsets of
data (20,000 samples) that match those used in sisVIVE with model selection. sisVIVE: best performer run on
20,000 data points.

(2014).

C.2.2 Estimate True Causal Relationships using Ivy

Here we consider estimating the true causal effect of SBP to CAD using 26 curated IV candidates and 35
uncurated IV candidates. The curated IV candidates are due to the Mendelian randomization conducted in Lieb
et al. (2013). For the uncurated IV candidates, we identify 15 SNPs that are most significantly correlated with
SBP based on the findings in Ehret et al. (2011). As a proxy to noisy candidates weakly correlated with SBP,
we also identify 20 additional SNPs from the same study whose correlations are less significant. This results in
a total of 35 uncurated IV candidates.

Experimental results of using the curated IV candidates are reported in Figure A.3a. Using curated IVs, Ivy
performs similarly compared to UAS and WAS both in terms of the median estimate and the length of confidence
intervals.

Experimental results of using the uncurated IV candidates are reported in Figure A.3b. With uncurated IVs,
Ivy maintains a median estimate similar to that when the curated IVs are used. However, both UAS and WAS
yield different estimates compared to the case where curated IV candidates are used.

C.2.3 Valid/Invalid IVs Classification

Since properly handling invalidity is a crucial aspect of the synthesis phase, we conduct ablation experiments
of valid/invalid IV candidate classification, on datasets where such ground truth is available. On six real-world
datasets, Ivy outperforms or remains comparable to a leading approach (sisVIVE, Kang et al. 2016) for this
classification task (as depicted in Figure A.4).

sisVIVE is a leading robust IV-based causal inference approach. As it is a one-phase method (unlike Ivy),
sisVIVE is not designed to synthesize a summary IV and is not usually combined with other causal effect
estimators. Nevertheless, one of its intermediate outputs is an estimate of which candidates are valid. This leads
us to ask whether Ivy is competitive with this method on this task, despite being primarily designed for IV
synthesis (Note that we do not compare to UAS and WAS in Section C.2.3, because they assume all candidates
are valid and thus do not distinguish between valid and invalid candidates).



Kuang et al.

We frame distinguishing between valid and invalid IVs as a binary classification problem. Therefore, we can use
the area under curve (AUC) of the receiver operating characteristic of the classification to measure the capacity
of a method to tell apart valid IVs from invalid ones. Algorithm 2 is used for classification in Ivy. A total of six
datasets are used for evaluation (see Table A.2 for details). Results are presented in Figure A.4.

We report the results of two variants of Ivy. For the first one, we run Ivy on the full datasets with model selection
and report the AUC. For the second (Ivy-Downsample), we run Ivy on subsets of 20,000 data points across the
full dataset with model selection and report the mean and standard deviation of the AUC across all the subsets
for each dataset. This is because sisVIVE fails to run on the full datasets due to its large memory footprint;
thus, we run sisVIVE on subsets 20,000 data points for each dataset and compare it with Ivy run on the same
subsets of the data (Ivy-Downsample). For sisVIVE, we report the result of the best performer. As can be seen
in Figure A.4, both variants of Ivy result in competitive performance in AUCs compared with the best performer
of sisVIVE. This suggests that Ivy is capable of handling, and generally benefits from, higher sample sizes, as
shown by the increase in AUC from the downsampled version of Ivy to the full Ivy.

C.3 Further Synthetic Experiments

We evaluate various aspects of the empirical performance of Ivy via a series of experiments on synthetic data.
We seek to show that:

• Ivy can estimate causal effects with noisy, dependent, and potentially invalid IV candidates (Section C.3.1).
• When the accuracies of IV candidates vary, Ivy can benefit from estimating the accuracies of IV candidates

compared to UAS that views all candidates to be of the same accuracy (Section C.3.2).
• When the IV candidates are dependent on each other, Ivy can benefit from estimating and utilizing these

dependencies, in contrast to UAS and WAS that do not model such dependencies (Section C.3.3).
• When z itself becomes an invalid IV, Ivy can demonstrate certain level of robustness while UAS and WAS can

be more sensitive to the assumption violation (Section C.3.4).

C.3.1 Ivy With Synthetic Data

Dismissing Spurious Correlations Next, we give more details on the synthetic experiment with null causal
effect. To demonstrate the use of Ivy in causal inference using noisy, dependent, contradicting, and partially
invalid IV candidates, we consider the use of 20 IV candidates to dismiss a positive spurious correlation between
a risk factor and an outcome. Among the 20 candidates, 10 of them are valid IVs and 10 of them are invalid
by being associated with the confounder that produces the spurious correlation. Within the 10 valid candidates,
a clique of four valid candidates and a clique of two valid candidates are formed. The remaining four valid
candidates are conditional independent upon z. All the ten invalid candidates are conditional independent upon
the confounder. A total of 100,000 samples are generated from this model. UAS and WAS are used in comparison
to Ivy. Observational association between the risk factor and the outcome is also computed as a reference. We
expect Ivy to dismiss the spurious correlation successfully, while WAS and UAS will fail to do so. The causal
effects estimate are reported in Figure 5a, medians and 95% confidence intervals are generated through 100 times
of subsampling. Ivy is capable of recovering the dependency structure among the candidates and identify invalid
candidates. As a result, Ivy can successfully dismiss the spurious correlation by identifying no causal effects while
both UAS and WAS fail to do so by yielding estimates that are consistent with the direction of the spurious
correlation.

Estimating True Causal Effects Finally, we discuss the last experiment, where there is a ground truth
(synthetic) positive causal effect. We use the same experiment setup described in the previous paragraph to
estimate true causal effects. The only difference is that there is a true causal effect from the risk factor to the
outcome in the data generation model. The true effect size measured by the log odd ratio is 0.150. Experimental
results are reported in Figure 5b. Ivy provides a median estimate that is closest to the true causal effect size
while both UAS and WAS return median estimates that bias towards the observational association due to their
failure in distinguishing between valid candidates and invalid ones that are associated with the confounder.

Next, we perform several more synthetic experiments, where we vary the accuracies and the dependencies.
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Method Median 95% CI
Ivy 0.266 [-0.247, 0.784]

UAS 0.322 [-0.571, 1.308]
WAS 0.300 [-1.342, 1.994]

Association 0.432 [0.374, 0.492]

Table A.3: Dismiss spurious correlations with candidates of varying accuracies

z

w1

w2

w3 w4 w5

w6

w7w8

(a) Dependency graph

Method Median 95% CI
Ivy -0.092 [ -0.375, 0.109]

UAS -0.188 [-0.735, 0.153]
WAS -0.039 [-0.338, 0.180]

Association 0.379 [0.355, 0.400]

(b) Causal effect estimation

Figure A.5: Dismissing spurious correlations using candidates with dependencies

C.3.2 Candidates with Varying Accuracy

We demonstrate the utility of Ivy in dealing with candidates of varying accuracies by considering a model of
ten conditional independent valid IV candidates. The ten candidates are moderately accurate with accuracies
of around 0.6 while P(z = 1) ≈ 0.6. We further generate 50 independent binary noise variables to represent
(invalid) candidates that are not predictive of z at all. A total of 5,000 samples are generated to dismiss the
spurious correlation between a risk factor and an outcome. Median and 95% confidence intervals are calculated
through 1,000 times subsampling. We expect that Ivy can generate a narrower confidence interval compared to
allele scores because Ivy is capable of estimating the accuracy of the candidates and downweight those that are
less accurate so as to reach a more certain estimation of z. Results are reported in Table A.3. We observed that
all methods are successful at dismissing the spurious correlation while Ivy indeed yields a narrower confidence
interval compared to UAS and WAS. The estimate of WAS is especially uncertain. This demonstrate the need
of more samples for WAS in order to yield more certain estimate when the number of candidates are relatively
large 60 candidates in this case).

C.3.3 Candidates with Dependencies

We investigate the use of Ivy in handling IV candidates that are dependent on each other. This scenario
arises in common practice of Mendelian randomization when the SNPs served as IV candidates are in linkage
disequilibrium. We consider a model with eight valid candidates, as shown in Figure A.5a. Four of the candidates
are conditional independent upon z, while the remaining four form a clique of high dependency that yield Pearson
correlations among these four candidates of about 0.77. The four conditionally independent candidates are more
predictive of z than the four dependent ones. A total of 50,000 samples are generated. We use these data to
dismiss the spurious correlation between a risk factor and an outcome. UAS and WAS are used as a comparison
to Ivy. Median and 95% confidence interval of the Wald ratio is calculated through 100 times of subsampling.
We expect that Ivy can learn and utilize the dependencies among candidates and yields a reasonably precise
estimate. Results are summarized in Table A.5b. Ivy, UAS, and WAS can all dismiss the spurious correlation,
with the confidence interval of Ivy being the narrowest.

In order to understand the impact of the failure of modeling the dependencies among the candidates, we also use a
version of Ivy that assumes that all candidates are conditional independent to estimate causal effects. Under the
same experiment configuration as aforementioned, the conditional independent Ivy produces a median of −0.327
and a 95% confidence interval of [−16.967, 15.398]. By ignoring the strong dependencies among candidates, Ivy
essentially fails in the estimation by producing a highly imprecise estimate. This stresses the importance of
handling dependency appropriately within the Ivy framework, either by direct modeling or by just making use
of candidates that are conditional independent of each other.
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C.3.4 Violating the Key Assumption

We give more details on the experiment where we investigate the robustness of Ivy against the violation of the
key assumption—that z is a valid IV. On synthetic data, we show that Ivy yields a causal estimate that deviates
the least from the ground truth compared to allele score methods (Figure 4b).

Here, we consider the spurious correlation model given in Figure 4a. There are nine IV candidates in the
model. w9 serves as a confounder between the risk factor and the outcome. z is invalid because z is moderately
associated with w9. Then, we vary the strength of this association (i.e., tune it) and examine the results. We take
P(y = 1 | w9 = 1) = P(y = −1 | w9 = −1) = 0.55, P(x = 1 | w9 = 1) = 0.764, and P(x = −1 | w9 = −1) = 0.776.
Furthermore, P(wj = 1 | z = 1) = P(wj = −1 | z = −1) = 0.73, where j ∈ [8]. We vary the accuracy of w9

in predicting z as P(w9 = 1 | z = 1) = P(w9 = −1 | z = −1) ∈ {0.5, 0.525, 0.55, 0.575, 0.6}. 50,000 samples are
generated from each of these variations. We apply Ivy, UAS, and WAS to these nine candidates for causal effect
estimation. Median and 95% confidence intervals are computed through 100 times sampling. We expect Ivy to
demonstrate certain level of robustness by downweighting the influence of w9 while UAS and WAS will not be
able to do so. Results are given in Figure 4b, where Ivy does not detect causal effects up to the accuracy of w9

in predicting z being 0.55 while UAS and WAS fail to dismiss the spurious correlation because they consider the
invalid w9, which is fairly predictive of x by construction, as a valid IV. It should be noted that as the invalidity
of z becomes more significant, all three methods eventually fail to dismiss the spurious correlation eventually.
This emphasizes the importance of the validity assumption upon z.

C.3.5 Calibration of Confidence Intervals

We conduct further experiments on synthetic data to show that the confidence intervals are well-calibrated. We
follow the protocol established in Burgess and Thompson (2013). Specifically, we consider a data generation
model with 10 conditional independent valid IV candidates to estimate a spurious relationship (true causal effect
size = 0). We sample 1,000 datasets of 10,000 samples each from the data generation model. For each dataset,
we compute a 95% confidence interval of the causal estimate, yielding 1000 empirical confidence intervals in total.
The percentage of these empirical confidence intervals that cover 0 can then serve as a measure of the calibration
quality: if the model is well-calibrated, this percentage should be close to 95%. In our experiment, we observe a
94.6% coverage. This supports the hypothesis that the confidence intervals produced by Ivy are well-calibrated.


